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A growing amount of evidence has suggested the clinical importance of stromal
and immune cells in the liver cancer microenvironment. However, reliable prognostic
signatures based on assessments of stromal and immune components have not been
well-established. This study aimed to identify stromal-immune score–based potential
prognostic biomarkers for hepatocellular carcinoma. Stromal and immune scores were
estimated from transcriptomic profiles of a liver cancer cohort from The Cancer Genome
Atlas using the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors
using Expression data) algorithm. Least absolute shrinkage and selection operator
(LASSO) algorithm was applied to select prognostic genes. Favorable overall survivals
and progression-free interval were found in patients with high stromal score and immune
score, and 828 differentially expressed genes were identified. Functional enrichment
analysis and protein–protein interaction networks further showed that these genes
mainly participated in immune response, extracellular matrix, and cell adhesion. MMP9
(matrix metallopeptidase 9) was identified as a prognostic tumor microenvironment–
associated gene by using LASSO and TIMER (Tumor IMmune Estimation Resource)
algorithms and was found to be positively correlated with immunosuppressive molecules
and drug response.

Keywords: liver cancer, ESTIMATE, bioinformatics analysis, biomarker, tumor-microenvironment

INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. The median
survival of HCC patients in China is about 23 months, and ≥ 60% of patients present with
intermediate-stage or advanced-stage HCC (Kanwal and Singal, 2019; Yang et al., 2019). Currently,
the main treatment for HCC patients in early stages is surgery, combination with transarterial
chemoembolization, ablation, and liver transplantation. For others in advanced stages, the effective
approaches involve molecular targeting agents (sorafenib, lenvatinib, and regorafenib). Although
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these methods have improved the prognosis of HCC patients,
the overall survival (OS) of HCC remains challenging for the
heterogeneity of HCC. And also, there is still a lack of molecular
markers used in determination of prognosis and treatment for
patients (Bruix et al., 2016).

The liver cancer microenvironment consists of not only
tumor cells but also stromal cells, including distinct immune
cell subsets. Tumor-infiltrating immune cells and stromal
cells are associated with angiogenesis, immune suppression,
chemotherapeutic resistance, and tumor cell migration (Affo
et al., 2017; Barry et al., 2020; Jin and Jin, 2020; Son
et al., 2020; Zhang et al., 2020). An increasing amount of
evidence has suggested the clinical importance of stromal cells
and immune cells in the microenvironment of liver cancer
tissues, tumor microenvironment (TME)–associated genes also
have potential as novel biomarkers for a range of cancers
(Yang et al., 2020).

In the present study, the Estimation of STromal and Immune
cells in MAlignant Tumors using Expression data (ESTIMATE)
algorithm (Yoshihara et al., 2013) was applied to estimate the
stromal and immune scores of a series of cancer tissues based
on their transcriptional profiles, to perform a comprehensive
analysis of immune and stromal cells, and to correlate the data
to clinical outcomes of patients.

The least absolute shrinkage and selection operator (LASSO)
method is a compressed estimation used to obtain a refined
model by constructing a penalty function (Korenberg, 2006). It
can help with the selection of variables at the time of parameter
estimation so as to better solve the multicollinearity problem of
regression analysis. A growing body of research confirms that
LASSO is an effective method for gene selection of tumors (Wang
et al., 2020; Xu et al., 2020).

Tumor IMmune Estimation Resource (TIMER) integrates
multiple state-of-the-art algorithms for immune infiltration
estimation, which can explore various associations between
immune infiltrates and genetic features in The Cancer Genome
Atlas (TCGA) cohorts (Li et al., 2017, 2020). Computational
Analysis of REsistance (CARE) is a computational method
focused on targeted therapies, to infer genome-wide
transcriptomic signatures of drug efficacy from cell line
compound screens (Jiang et al., 2018). Previous studies have
confirmed that the efficacy of immunotherapy is strongly
influenced by the composition and abundance of immune cells
in the TME (Boyero et al., 2020).

Thus, we combined LASSO, TIMER algorithms, and CARE to
preliminarily demonstrate that the expression of TME-associated
genes could be new prognostic and reliable drug response
biomarkers for HCC patients.

MATERIALS AND METHODS

Database
In total, data from 365 HCC patients and 18,161 RNAs extracted
from RNA-seq data according to ENSEMBL Genomes (hg38)
were analyzed in this study. All RNA expression data and the
corresponding clinical data were obtained from TCGA (data

version, July 19, 2019)1. The clinicopathological characteristics
of the analyzed patients are listed in Supplementary Table 1.
The progression-free interval (PFI) is characterized as a time
without a new tumor occurrence or a death from cancer. The
Estimation of STromal and Immune cells in MAlignant Tumors
using Expression data (ESTIMATE) algorithm was applied to
the normalized expression matrix for estimating the stromal and
immune scores by using “estimate” R package in R software
(version: 3.6.3) for each HCC sample.

Correlations Between Prognoses and
Stromal/Immune Scores
OS and PFI was used as the primary prognosis endpoint and was
estimated by the GraphPad Prism 8.0. Supplementary Figure 3B
is realized by R package “Survival” (Therneau, 2020),
“Survminer” (Kassambara et al., 2019), and “timeROC”
(Paul Blanche and Jacqmin-Gadda, 2013). Based on the stromal
and immune scores estimated from each sample, patients were
classified into two groups by using X-tile, and prognoses for
each group were examined. The bioinformatics tool, X-tile
(Camp et al., 2004), was used to determine the optimum
cutoff point according to the minimum P-value defined by
the Kaplan–Meier analysis and log-rank test. The principle of
X-tile is “enumeration method that different values are grouped
as truncation values to conduct statistical tests, and the test
result with the lowest P-value can be considered as the best
truncation value. The survival outcomes of the two groups
were compared by log-rank tests. P < 0.05 was considered as
statistically significant.

Identification of Differentially Expressed
Genes
Data analysis was performed using an open-source web tool
NetworkAnalyst2 (Xia et al., 2013a,b; Zhou et al., 2019). Log2
fold change > 1 and adjusted P < 0.05 were set as the cutoffs
to screen for differentially expressed genes (DEGs). A website
Venn diagrams tool (Bardou et al., 2014)3was used to identify the
commonly upregulated or downregulated DEGs in the immune
and stromal groups. Heatmaps and clustering were generated
using the R package “ggplot2” (Wickham, 2016), “ggtree” (Yu,
2020b), and “aplot” (Yu, 2020a).

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analyses
GO (Gene Ontology) enrichment analyses were performed by
the “Goseq” (Young et al., 2010) R package, and visualization
of bubble diagrams used Hiplot4. KEGG (Kyoto Encyclopedia
of Genes and Genomes) enrichment analyses and visualization
of intersection genes were performed by the “clusterProfiler”

1https://xenabrowser.net
2https://www.networkanalyst.ca/NetworkAnalyst/home.xhtml
3http://www.ehbio.com/test/venn/#/
4https://hiplot.com.cn
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(Yu et al., 2012) R package and “enrichplot” (Yu, 2019) R package
with P < 0.05 as the cutoff value.

Protein–Protein Interaction Network
Construction
The protein–protein interaction (PPI) network was retrieved
from Search Tool for the Retrieval of Interaction Gene/Proteins
(STRING) (Szklarczyk et al., 2019) database with high confidence
(0.7) and reconstructed via the Cytoscape software (Shannon
et al., 2003). In Cytoscape, we used Molecular COmplex
DEtection (MCODE) (Bader and Hogue, 2003) to select two
clusters that contained the largest number of nodes. ClueGo
(Bindea et al., 2009) App was used to perform enrichment
analysis of each cluster selected by MCODE.

Identification of TME-Associated
Prognostic Genes
LASSO algorithm was used to identify candidate genes by
“glmnet” (Friedman et al., 2010) R package with the number of
lambda = 1,000. Clinical outcomes and gene expression profiles
were analyzed by LASSO. Lambda.min is the cutoff point that
brings minimum mean cross-validated error. Genes with the
highest lambda values were selected for further analysis.

Identification of TME-Associated
Prognostic Genes
The TIMER algorithm was used to calculate the tumor
abundance of six infiltrating immune cells (CD4+ T cells,
CD8+ T cells, B cells, neutrophils, macrophages, and
dendritic cells) based on RNA-Seq expression profiles data.
The correlation between the selected prognostic genes and
immune cells was calculated by Spearman correlation analysis
by TIMER. The estimation results were calculated by TIMER2.0,
CIBERSORT, quanTIseq, xCell, MCP-counter, and EPIC
methods. Relations between immunoinhibitors and expression
of matrix metallopeptidase 9 (MMP9) were calculated by
Spearman correlation analysis by a web tool TISIDB5 (Ru et al.,
2019). The correlation coefficient value <0.3 indicates that the
correlation is negligible, whereas the correlation coefficient≥ 0.3
indicates a positive/negative correlation. The CARE software6

was used to identify genome-scale biomarkers of targeted therapy
response using compound screen data. For each gene, the CARE
score indicates the association between its molecular alteration
and drug efficacy. A positive score indicates a higher expression
value (or presence of mutation) to be associated with drug
response, whereas a negative score indicates drug resistance.

Statistical Analysis
Unpaired t-test was used to compare two groups of continuously
distributed variables. Jonckheere–Terpstra test was used to
compare three or more groups of continuously distributed
variables. The FDR correction was performed in multiple tests.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

5http://cis.hku.hk/TISIDB/
6http://care.dfci.harvard.edu/

RESULTS

Association of Stromal and Immune
Scores With HCC Pathology and
Prognosis
A cohort containing 365 liver hepatocellular carcinoma
patients with available expression data and clinical information
in TCGA database was analyzed. The general pipeline of
the data analysis protocol is shown in Figure 1, and the
links of tools are listed in Supplementary Table 6. The
clinicopathological characteristics of the analyzed patients
are listed in Supplementary Table 1. Based on the gene
expression data, immune and stromal scores were calculated
using the ESTIMATE algorithm (Supplementary Table 2).
The associations of stromal and immune scores with HCC
patient pathological characteristics were examined by comparing
the score distributions among different tumor stages and
differentiation grades.

Significant associations were observed between stromal
scores and tumor differentiation grades; tumors with poorer
differentiation yielded higher stromal scores than those
differentiated well (Jonckheere–Terpstra test, P = 0.002)
(Figures 2A,B).

As previously described, serum α-fetoprotein (AFP) values are
not only of diagnostic value but also of prognostic significance
in patients with HCC (Galle et al., 2019). Thus, we compared
changes in immune and stromal scores between AFP low
(AFP ≤ 400 ng/mL) and high (AFP > 400 ng/mL) samples.
The AFP high cases had the lowest stromal scores (unpaired
t-test, P = 0.0204) (Figure 2D). Evidence suggests that AFP
plays an immune-suppressing role (Yang et al., 2018), but we
found that there is no significant difference in the immune
score as shown in Figure 2C. We further used the TIMER
algorithm to evaluate the effect of AFP on the immune
infiltration of HCC, and results showed that the expression
of AFP was weakly correlated with the infiltration abundance
of the six immune cells (Supplementary Figure 1A). AFP
is dynamic in the occurrence and development of HCC,
whereas TCGA patients were only tested for AFP at the
time of initial diagnosis, which may lead to the bias of the
results in our study.

Also, when we compared the immune and stromal scores
between patients with a new tumor event and without new
tumor event after initial treatment, patients without a new tumor
event had higher immune and stromal scores (unpaired t-test,
P = 0.0461 for stromal score and p = 0.1966 for immune score)
(Figures 2E,F).

We also analyzed the correlation between other clinical factors
and the immune profile, but found no statistically significant
difference (Supplementary Figures 1B,C).

The association of stromal and immune scores with HCC
prognosis was evaluated by dividing patients optimally into
two groups based on their scores by using X-tile (see section
“Materials and Methods” for details). We found that the high
immune score and stromal score positively correlated with both
OS and PFI (Figures 3A–D).
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FIGURE 1 | The general pipeline of the data analysis protocol.

Comparison of Gene Expression Profile
With Immune Scores and Stromal Scores
in HCC
To identify the immune-related and stromal-related genes,
differential analysis by using NetworkAnalyst was performed
(Supplementary Table 3). The expression profiles of stromal and
immune score–related DEGs are visualized, respectively, on the
heatmaps (Figures 4A,B).

There were 797 shared DEGs overexpressed in both the
stromal score and immune score groups (Figure 4C), and a total
of 28 common DEGs were found to be underexpressed in both
the stromal score and immune score groups (Figure 4D). Eight

hundred twenty-five intersection genes were selected for further
analysis (overlap zone in Figures 4C,D).

Using the “Goseq” and “clusterProfiler” R packages,
1,371 GO terms and 73 KEGG terms were indicated
(Supplementary Table 4).

The results showed the top 10 biological processes GO terms,
cellular component GO terms, and molecular function GO
terms (Figure 4E). The correlation between the intersection
genes and the top five biological processes is shown in
Supplementary Figure 2A. The top 20 KEGG analysis showed
that the intersection genes were associated with immune
responses (Figure 4F).
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FIGURE 2 | Relationship between immune and stromal scores and HCC clinical and pathological data. (A,B) Distribution of immune and stromal scores of HCC
grades. (C,D) Distribution of immune and stromal scores of AFP value of HCC. AFP is divided into high and low groups at the limit of 400 ng/mL. (E,F) Distribution of
immune and stromal scores of new tumor event after initial treatment of HCC. Unpaired t-test was used to compare two groups of continuously distributed variables.
Jonckheere–Terpstra test was used to compare three or more groups of continuously distributed variables. ∗P < 0.05 and ∗∗P < 0.01.

Protein–Protein Interactions Among
Intersection Genes
To better understand the interplay among the identified
DEGs, we obtained PPI networks using the STRING tool.
Using the MCODE software, we found modules in the
network; the network was made up of eight modules, which

included 408 nodes and 2,702 edges. We selected the top
two significant modules for further analysis (Figure 5A and
Supplementary Figure 2B).

GO analyses of module 1 (Figure 5A) by ClueGo are
shown in Figure 5B. Likewise, GO analyses of module
2 (Supplementary Figure 2B) by ClueGo are shown in
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FIGURE 3 | Kaplan–Meier (KM) survival curve of HCC patients based on their immune-stromal scores. Patients were classified into high immune-stromal scores
groups and low immune/stromal scores groups by using X-tile. (A) The KM curve of overall survival (OS) time of high and low immune score group. (B) The KM curve
of OS time of high and low stromal score group. (C) The KM curve of PFI time according to immune scores. (D) The KM curve of progression-free interval (PFI) time
according to stromal scores. The survival outcomes of the two groups were compared by log-rank tests. P < 0.05 was statistically significant.

Supplementary Figure 2C. The results demonstrated that
module 1 was mainly enriched in regulation of dendritic cell
apoptotic process, regulation of dendritic cell dendrite assembly,
and positive regulation of T cell migration. Module 2 was mainly
enriched in the regulation of phospholipase C activity, cellular
response to interferon-γ (IFN-γ) and IFN-γ–mediated signaling
pathway. Obviously, the top two modules were enriched for
functional terms related to immune response processes, especially
T cell responses.

Identification of Prognostic DEGs in HCC
To enrich for genes with the greatest prognostic values, we
performed LASSO algorithm, and seven genes were identified
(Supplementary Figure 3A). We also analyzed the association
between the seven genes and OS using the Kaplan–Meier
survival analysis. We found that the high levels of GDF10

(P = 0.0484) and MMP9 (P = 0.0143) negatively correlated with
OS (Figure 6A).

Immune Cell Infiltration Analysis
To determine whether there is a correlation between tumor
infiltration with immune cells and immune-related gene
expression, the tumor infiltration with multiple immune
cells was analyzed by TIMER 2.0 and other methods
(Supplementary Table 5). Figure 6B shows the strong
correlation between six types of immune cell infiltration
and the expression of MMP9. The expression of MMP9
positively correlated with the infiltrating levels of B cells
(partial correlation = 0.529, P = 3.05e-26), CD8+ T cells
(partial correlation = 0.421, P = 4.13e-16), CD4+ T cells
(partial correlation = 0.356, P = 9.68e-12), macrophages
(partial correlation = 0.473, P = 2.12e-20), neutrophils
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FIGURE 4 | Expression profiles and biological functions of stromal and immune score–related DEGs. (A,B) Heatmaps showing expression profiles for selected
stromal score (right) and immune score (left)–related DEGs (Log2 fold change ≥ 3 and adjusted P < 0.05) with unsupervised hierarchical clustering analyses, using
the complete linkage method to measure distances between clusters. (C) Shows the commonly upregulated DEGs, and (D) shows the commonly downregulated
DEGs. (E) The top 10 of biological processes GO terms (top), cellular component GO terms (middle), and molecular function GO terms (bottom); (F) KEGG (Kyoto
Encyclopedia of Genes and Genomes) analysis of microenvironment-related DEGs.

(partial correlation = 0.34, P = 8.96e-11), and dendritic
cells (partial correlation = 0.584, P = 1.72e-32). GDF10
expression was weakly associated with different immune cell
infiltrates (Figure 6B).

We analyzed the correlation between MMP9 and immune
checkpoints in liver cancer. MMP9 was found to be correlated
with the expression of a series of immune checkpoints.
Particularly, MMP9 was significantly correlated with
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FIGURE 5 | Protein–protein interaction (PPI) network of microenvironment-related genes. (A) Module 1 is the top module in the PPI network. (B) GO analyses of
module 1 (top 10 of biological processes GO terms). The color and thickness of edges reflect the combined score.

PDCD1 (ρ = 0.576), PDCD1LG2 (ρ = 0.372), and CTLA4
(ρ = 0.672) (Figure 6C).

Besides, identifying reliable drug response biomarkers
is a significant challenge in cancer research. We present
CARE, a computational method that enables large-scale
inference of response biomarkers and drug combinations
for targeted therapies using compound screen data. High
expression of MMP9 has been associated with better response to
immunotherapies on CTRP dataset (Figure 6D).

DISCUSSION

Prognosis prediction for liver cancer patients remains challenging
for clinicians and investigators. Through a specific view of
the microenvironment, this study provides a stromal-immune
score–based gene signature to help answer this important
clinical question.

Using the ESTIMATE algorithm, we revealed the correlation
between the immune-stromal scores and the clinical HCC
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FIGURE 6 | Selection of microenvironment-related prognostic genes and the analysis of immune cell infiltration and immunoinhibitor. (A) Kaplan–Meier (KM) survival
curve of GDF10 and MMP9. Patients were divided into two groups based on the median of gene expression. The survival outcomes of the two groups were
compared by log-rank tests. P < 0.05 was statistically significant. (B) Correlation of microenvironment-related prognostic genes’ expression with immune infiltration
level. (C) Relations between three kinds of immunoinhibitors and expression of MMP9. P < 0.05 was statistically significant, and partial correlation ≥0.3 indicates
strong correlation. (D) The CARE score of MMP9 on CCLE, CGP, CTRP dataset. A positive score indicates a higher expression value to be associated with drug
response.

characteristics obtained from TCGA-CDR. The stromal and
immune scores for tumor tissue were found to be positively
associated with the clinicopathologic characteristics of the tumor
and the patient’s prognosis. By analyzing the correlation between
the immune scores and tumor recurrence, our data show that
high-immune-score patients have a longer PFI and OS rates,
indicating that the TME composition affects the clinical outcomes
of HCC patients, which is consistent with previous studies
(Haider et al., 2020).

Next, we analyzed 825 DEGs yielded from a comparison
of high- versus low-immune-score (or stromal scores) groups
and found that many of them were involved in the TME,

specifically regulate T cell functions (Figure 4E). This is
consistent with previous reports that the functions of immune
cells and extracellular matrix molecules are interrelated in
building TME in HCC (Lu et al., 2019; Yin et al., 2019). Moreover,
we were able to construct two PPI modules (Figure 5 and
Supplementary Figures 2B,C), the major of which were related
to IFN-γ. We infer that these TME-associated genes might affect
the development of HCC by affecting the T cell functions.

Finally, by using the LASSO algorithm
(Supplementary Figure 3A), we identified seven TME-related
genes. Of the seven genes identified, high levels of GDF10 and
MMP9 showed a negative correlation to OS, which has been
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reported to be involved in carcinogenesis and the development of
various cancers (Chang et al., 2017; Reggiani et al., 2017; Tekin
et al., 2020a). We further correlated the degree of infiltration
of six immune cell types with the expression of GDF10 and
MMP9 by using TIMER algorithm. The expression of MMP9
was positively associated with the abundance of six immune in
tumor tissues. It is worth reminding that our results did not
contradict previous findings that high infiltration of CD8+ T
cells indicated beneficial prognosis, but extended and enriched
this conclusion. In the recent literature, tumor with higher
CD8+ T cell infiltration, but T cell dysfunction and increased
immune escape result in a poor prognosis (Hossain et al., 2020;
Saka et al., 2020).

Prior studies have largely focused on MMPs’ ability to
promote the invasion and metastasis of cancer cells (Nart
et al., 2010; Chen et al., 2012), while evidence is mounting
that MMPs are highly associated with the microenvironment
of tumors and immune cells (Kessenbrock et al., 2010;
Li et al., 2016). For example, MMP9-cleaved osteopontin
fragments contribute to tumor immune escape by inducing the
expansion of myeloid-derived suppressor cells (Shao et al., 2017).
Macrophages secrete MMP9 to induce mesenchymal transition,
which supports the tumor-promoting role of macrophage influx
(Tekin et al., 2020b). Besides, MMP9 is associated with neutrophil
migration (Koymans et al., 2016). Our study confirms the
above conclusions and has found that MMP9 might associate
with T cell dysfunction, despite high CD8+ cytotoxic T
lymphocyte infiltration.

In addition, we also observed that high expression
of MMP9 indicated higher levels of immune inhibitors
(immune checkpoints), better response to immunotherapies,
and poor survival in partial HCC patients, which
was in line with our above analysis that some HCC
patients with high CD8+ T cell infiltration but with
dysfunction were immunosuppressed. And previously,
inhibition of MMP9 could modulate immunosuppression
in tumor (Melani et al., 2007). We also compared the
prediction effect between the other factors, such as AFP
(Supplementary Figure 1A) and programmed cell death
protein 1 (PDCD1) (Supplementary Figure 3B), whereas
AFP is not a good predictor of the abundance of immune
invasion in HCC tissues, and PDCD1 is weakly correlated
with the prognosis of HCC. Hence, MMP9 may be an effective
biomarker to evaluate the immune status of patients and
predict the effectiveness of immunotherapy before treatment.
However, this conclusion will need to be confirmed by clinical
trials in the future.

In summary, from comprehensively analyzing the correlation
between microenvironmental and genetic factors of TCGA
database applied by ESTIMATE algorithm-based immune and
stromal scores, we identified MMP9 as a potential TME-
related biomarker of prognostic and immunotherapy response.
However, because of the lack of large sequenced HCC cohort and
prospective clinical trials that have received immunotherapy, the
effect of MMP9 expression on the efficiency of immunotherapy
in HCC patients remains concerned.
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