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Abstract: Twin T-graphene (TTG) is a new two-dimensional carbon allotrope of graphene. Het-
eroatom co-doping is an effective method for the modulation of the physical and chemical properties
of two-dimensional materials. This study explored the structural stability, electronic structures, and
optical properties of boron and phosphorus co-doped TTG using first-principles calculations. TTG
was doped with B and P atoms (BP) at different positions considering 13 different configurations.
Pristine TTG has a band gap of 1.89 eV, and all BP co-doped TTG (TTG/BP) systems remain semicon-
ducting with band gaps that gradually decrease with increasing doping concentration. For a given
doping concentration, the TTG/BP-ortho systems had a narrower band gap than the corresponding
TTG/BP-para systems. The TTG and TTG/BP systems exhibited significant optical anisotropy. In the
infrared region, BP co-doping increased the absorption coefficient, and the reflectance and refractive
index increased with increasing doping concentration, except for the vertical component of the
TTG/BP-ortho system. In the visible region, the absorption coefficient, reflectance, and refractive
index decreased with increasing doping concentration for the vertical component, and the peaks were
red-shifted from the near-ultraviolet region to the visible region. In the near-ultraviolet region, the
reflectance also decreased with increasing doping concentration. The BP co-doping concentration can
regulate the electronic structures and optical properties of the TTG, showing that the BP co-doped
TTG has potential for application in nanoelectronics and optoelectronics.

Keywords: twin T-graphene; co-doping; electronic structure; optical property; first-principles calculation

1. Introduction

Twin T-graphene (TTG)—a new two-dimensional carbon allotrope with a thickness
of two atomic layers [1]—shows sp2 hybridization with a 4–16 membered ring structure
where two tetragonal rings are stitched together with four carbon atoms. Two-dimensional
TTG has excellent thermal stability at room temperature and its bonding pattern does not
change even at 2000 K. The TTG sheet is an intrinsic nonmagnetic semiconductor with a
band gap of 1.79 eV that is much larger than that of twin graphene (1.0 eV) and monolayer
graphene [2,3]. Moreover, the elastic constant of TTG is approximately 177 N·m−1, and its
carrier mobility is approximately 375 cm2·V−1·s−1, making semiconducting TTG suitable
for use in flexible electronic and optoelectronic devices such as field-effect transistors and
solar cells.

Bhattacharya et al. reported that nitrogen doped TTG sheet is a bipolar magnetic
semiconductor with a spin-flip band gap (1.15 eV) that has good application potential
in spintronic devices [1]. Majidi et al. systematically studied the electronic structures
of TTG doped with 3d transition metals (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and
Zn) [4]. They found that TM doping can modulate the electronic properties of TTG, and the
doping of different species and concentrations of TM atoms resulted in different electronic
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properties. TM-doped TTG systems show semiconducting behavior for Sc, Ti, V, Cr, and Zn
doping, metallic behavior for Mn, Cu, and Ni doping, and bipolar magnetic semiconducting
behavior for Fe and Co doping. For TM-doped TTG systems, the band gap decreased with
increasing concentration of the 3d transition metal atom dopants. These results show that
both pristine and metal-doped TTG can be used for electronic and spintronic applications.
However, no studies have reported doped TTG related to their optical properties; therefore,
it is important to explore whether TTG has potential applications in the optical devices.

Doping can modify the magnetic, electronic, transport, and optical properties of
two-dimensional materials, particularly for graphene and its allotropes [5–13]. In prac-
tice, due to the strong thermodynamic driving force, it is difficult to achieve single-atom
doping because atoms doped into two-dimensional materials often form clusters [14]. Co-
doped graphene was found to be relatively easier to synthesize compared to mono-doped
graphene. Moreover, compared to doping of individual elements, the doping of carbon
materials with multiple elements is more advantageous for enhancing the physical and
chemical properties of the material. Therefore, hetero-elemental co-doping is an effective
approach for the modulation of the electronic structure, transport, and catalytic properties
of graphene [15–25]. Denis et al. confirmed that co-doping of graphene is much easier to
achieve than mono-doping for both 2p elements (B, N, or O) and 3p elements (Al, Si, P or
S) [18]. Co-doping is also an excellent strategy for modulating the interaction of lithium
with graphene when lithium atoms are adsorbed on heteroatom mono (X) and dual (XY)
doped graphene (X = Al, Si, P and S and Y = B, N, and O) [25]. Many experiments on
co-doping have been reported. Wang et al. designed two simple methods for the synthe-
sis of unique N, P and N, S co-doped Mo2C/C hybrid electrocatalysts as highly active
hydrogen evolution reaction catalysts [26]. Li et al. synthesized Bi and S co-doped ZnO
samples with different doping ratios [27]. Zhang et al. experimentally studied the Li ion
storage mechanism of N and S co-doped V2CTx MXene [28]. Based on the previous success
of the co-doping strategy for the modification of two-dimensional materials, it is crucial
to further explore the properties of co-doped TTG, particularly for TTG co-doping with
nonmetallic elements.

Herein, we methodically investigated and analyzed the structural stability, electronic
structures, and optical properties of TTG co-doped with nonmetal atoms (B, P) at different
doping concentrations. Replacement of C atoms with P atoms can effectively optimize the
electronic structure of carbon-based materials [26]. Meanwhile, the doping of 2p B can
reduce the structural distortion caused by 3p P into the intrinsic TTG structure. Although
it is difficult to control the doping of different atoms at specific sites, such control has
been realized experimentally in previous studies. Zhao et al. successfully fabricated N (2p
element) and S (3p element) hetero-element co-doped few-layer graphdiyne oxide catalysts
via an improved pyrolysis method by providing continuous doping sources [29]. The stereo
positions of N and S atoms was well-controlled due to the site-controlled doping of the sp-N
atoms in graphdiyne. In [30], selective doping of Mg was conducted on tetrahedral (8a)
as well as octahedral (16c) sites in the Fd3m structure. This site-selective doping not only
suppresses unfavorable two-phase reactions and stabilizes the LiNi0.5Mn1.5O4 structure
with respect to structural deformation, but also mitigates the dissolution of Mn during
cycling. These successful experiments suggest that fabrication of B and P co-doped TTG
is feasible and the positions of the B and P atoms can be controlled during the fabrication
process. The theoretical research performed in this study may provide insights for future
experiments on heteroatomic co-doping of TTG. In addition, comprehensive understanding
of properties of TTG co-doped with the nonmetal atoms and the full exploitation of the
entire range of possible optical properties modulated by co-doping concentration can
promote the design and development of novel TTG-based optoelectronic devices.

2. Methodology

First-principles calculations were carried out using the VASP code [31]. The electron-
ion interactions were considered using the highly accurate projector-augmented wave
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(PAW) potentials [32], and the exchange-correlation energy and potential were evaluated
using the Perdew–Burke–Ernzerhof (PBE) formulation of the generalized gradient approxi-
mation (GGA) functional [33], producing the correct ground state of the system. To correctly
describe the effect of van der Waals (vDW) interactions, we employed the DFT-D3 Grimme
scheme [34]. To avoid the interaction between images, a vacuum region of 16 Å was placed
perpendicular to the model plane. The plane wave kinetic energy cut-off was set to 450 eV.
To optimize the geometry and calculate the electronic structure and optical properties of
the model systems, the Monkhorst–Pack method was used to generate a 6 × 6 × 1 k-point
sampling grid points for Brillouin zone integration [35]. The total energy and forces were
converged to 10−4 and 0.01 eV/Å, respectively, for all relaxed geometric structures. To
determine the thermodynamic stability of the model structure, the formation energy was
defined as:

E f orm = [(ETTG/BP) + nµC−C − E(TTG)− nµB−P

]
/N (1)

where E(TTG/BP) and E(TTG) are the total energies of the BP co-doped TTG and TTG,
respectively; N and n are the total number of atoms in the supercell and the number of C–C
pairs replaced by B–P pairs, and µC−C and µB−P are the chemical potentials of the C–C and
B–P pairs calculated from the graphene and h-BP monolayers, respectively. Charge transfer
was calculated quantitatively using Bader charge analysis [36,37].

To investigate the optical properties of the B and P co-doped TTG, we calculated the
absorption coefficient, reflectance, and refractive index of the doped system. These optical
coefficients are calculated from the frequency-dependent dielectric function. The tensor
component of the complex dielectric function can be defined as the sum of the real part
(εr) and the imaginary part (εi) as follows: ε(ω) = εr(ω) + iεi(ω). The imaginary part is
determined by summing the empty states according to [38]:

εi(ω) =
4π2e2

Ω
lim
q→0

1
q2 ∑

c,v,k
2wkδ(εck − εvk −ω)× (uck + eαq|uvk)(uck + eβq|uvk) (2)

where Ω is the volume of the primitive cell, wk is the k-point weight, c and v refer to
the conduction and valence bands, respectively, and εck, εyk, and uck, uvk represent the
eigenvalues and wavefunctions at the k-point, respectively. The real part of the dielectric
function is calculated according to the Kramers–Kronig transformation as follows [38]:

εr(ω) = 1 +
2
π

P
∫ ∞

0

εi(ω
,)ω,

ω,2 −ω2 + iη
dω, (3)

Consequently, other important optical properties, such as the optical absorption co-
efficient (α(ω)), reflectance (r(ω)), and refractive index (n(ω)) can be calculated from the
dielectric function as follows [38]:

α(ω) =
√

2ω

[√
ε2

r(ω)− ε2
i (ω)− εr(ω)

] 1
2

(4)

r(ω) =

∣∣∣∣∣
√

εr(ω) + iεi(ω)− 1√
εr(ω) + iεi(ω) + 1

∣∣∣∣∣
2

(5)

n(ω) =

√
2

2

[√
ε2

r(ω) + ε2
i (ω) + εr(ω)

] 1
2

(6)

3. Results and Discussion
3.1. Structural Stability

Figure 1 shows the unit cell, 2 × 2 × 1 supercell and electronic energy band structure
of the optimized stable TTG structure. In the unit cell of the TTG sheet, there are two types
of inequivalent carbon atoms, namely C1 and C2. C1 atoms are located on the surface



Materials 2022, 15, 2876 4 of 15

planes forming the tetragonal rings, and C2 atoms are found between the planes and
join the two tetragonal layers. The optimized lattice constant of the unit cell is 5.493 Å,
and the two tetragonal C1 layers are separated by 2.102 Å. The calculated C1–C1, C1–C2,
and C2–C2 bond lengths are 1.470, 1.479, and 1.333 Å, respectively. The bond angles of
C1–C1–C1, C1–C2–C1, C1–C2–C2, and C1–C1–C2 are 90.00◦, 90.54◦, 134.73◦, and 119.85◦,
respectively. These results are in good agreement with the values obtained in previous
work [1], demonstrating the accuracy of our model structure. Moreover, the calculated
energy band gap (1.89 eV) of pristine TTG is consistent with the previously reported TTG
band gaps of 1.79 eV and 1.82 eV [1,4]. Thus, TTG is nonmagnetic and semiconducting,
and its band gap is much larger than that of twin graphene (0.75 eV) and γ-graphene
(0.43 eV) [3,7].
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Figure 1. Geometrical structure (a) Top view; (b) Side view; (c) Bird’s-eye view, and electronic band
structure (d) of TTG.

Subsequently, nonmetallic B and P atoms were co-doped into TTG (TTG/BP). First,
different doping positions were considered for the co-doped B and P (BP) atoms in the TTG
1 × 1 × 1 unit cell. We studied the structure of TTG doped with one B and one P—that
is, (BP)1C46. The B and P atoms replaced either two C1 atoms, or two C2 atoms, or one
C1 atom and one C2 atom in the doped systems, and 13 different configurations were
considered, covering all possible B and P positions in the 1 × 1 × 1 unit cell. The optimized
doped structures and the corresponding formation energies of the (BP)1C46 sheets are
shown in Figure 2. When P atoms replace C2 atoms (Figure 2f,h,j,l,m), the formation
energy of the BP co-doped TTG system is positive, indicating that the co-doped structures
are unstable. The formation energy values are all negative for the remaining co-doping
systems, indicating that the doping process is exothermic and that the doping systems
are thermodynamically stable. This may be because the radius of the P atom (1.1 Å) is
larger than those of the C (0.77 Å) and B (0.82 Å) atoms. Using a P atom to replace the
C2 atom—which is located midplane and joins the two tetragonal layers—damages the
stability and periodicity of the structure. Moreover, it is observed from Figure 2 that the
formation energies are lower for the doped configurations (a), (b), (c), (d), (e), with only
slight differences between them, indicating that these doping systems are more likely to
be prepared experimentally. Studies have shown that the dopants are generally selected
to be doped on the same carbon atomic layer for both monolayer carbon allotropes and
multilayer carbon allotropes [3,16,17]. Therefore, we further study only the case where two
C1 atoms are replaced in the same atomic layer, i.e., the doped configurations shown in
Figure 2a,b that appear to be easier to prepare in future experiments and, therefore, are
more relevant.
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13 different doping configurations.

Different doping concentrations were considered in the 2 × 2 × 1 TTG supercell. As
shown in Figure 3, the B and P atoms substitute two C1 atoms at the para and ortho positions
of the tetragonal C1 layer in 1 × 1 × 1 unit cell; these substitutions are denoted as TTG/BP-
para and TTG/BP-ortho systems, respectively. For the different doping concentrations,
given the periodicity of the lattice structure, the BP co-doping is considered in the unit
cell and in the enlarged 2 × 2 × 1 supercell. We did not consider the co-doping B and P
between different unit cells of the 2× 2× 1 supercell because such co-doped configurations
are quite complicated and are difficult to describe. The TTG/BP systems with different
doping concentrations are denoted as TTG/BP-para-4.2%, TTG/BP-para-8.3%, TTG/BP-
para-12.5%, and TTG/BP-para-16.7%, and as TTG/BP-ortho-4.2%, TTG/BP-ortho-8.3%,
TTG/BP-ortho-12.5%, and TTG/BP-ortho-16.7% systems. The formation energy values (Ef)
of the stable co-doped TTG structures are listed in Table 1. The formation energy values are
negative for all the co-doping systems, indicating that the doping process is exothermic, and
the doping systems are thermodynamically stable. An examination of the data presented
in Table 1 shows that for the same doped para or ortho positions, the formation energy
decreases with increasing doping concentration, and the stability of the TTG/BP-para
or TTG/BP-ortho systems also increases with increasing doping concentration—that is,
the symmetry of the TTG/BP systems increases with increasing doping concentration.
Consequently, the four-pair BP atom-doped TTG system was the most stable.

For the same doping concentration at different doping positions, the absolute values of
the formation energy of the TTG/BP-para system are lower than those of the TTG/BP-ortho
system—that is, ortho doping results in more stable systems than para doping. This may
be explained by the hybridization of the orbitals between the atoms. The valence electrons
configurations for the B, C, and P atoms are 2s22p1, 2s22p2, and 3s23p3, respectively. When
the B (2s22p1) and P (3s23p3) atoms substitute two C1 atoms at the ortho positions of
the tetragonal C1 layer, the 2p orbitals of B (2s22p1) and P (3s23p3) have more unpaired
valence electrons than C (2s22p2), leading to greater hybridization and stronger interactions
between the 2p orbitals of B or P and the 2p orbitals of C.
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Figure 3. B and P co-doped 2 × 2 × 1 TTG supercell with doping at the para (TTG/BP-para)
and ortho (TTG/BP-ortho) positions with different doping concentrations. (a) TTG/BP-para-4.2%;
(b) TTG/BP-para-8.3%; (c) TTG/BP-para-12.5%; (d) TTG/BP-para-16.7%; (e) TTG/BP-ortho-4.2%;
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Table 1. Formation energy (Ef) and band gap values of co-doped TTG systems.

Position Concentration (%) Ef (eV) Band Gap (eV)

Para

4.2 −0.035 1.28
8.3 −0.069 1.12
12.5 −0.100 1.00
16.7 −0.131 0.98

Ortho

4.2 −0.038 1.04
8.3 −0.075 0.86
12.5 –0.112 0.80
16.7 −0.148 0.70

3.2. Electronic Properties

The electron localization function (ELF) diagram was used to characterize the localized
distribution of electrons in co-doped TTG systems, as shown in Figure 4a–c. A larger ELF
value indicates stronger electron localization while a smaller ELF value indicates stronger
delocalization. It is observed that all C–C bonds share the valence electrons of adjacent
atoms, demonstrating covalent bond characteristics. Upon B and P co-doping, electron
localization of the bonds between the B and P atoms and the surrounding C atoms are
enhanced, indicating that the B–C and P–C bonds in the doping system possess some ionic
bond characteristics.

Bader charge analysis is the simplest and most direct method for determination of
atomic charges and charge transfer analysis. For BP co-doped TTG systems, the calculated
charges of B and P are −1.66 e and −1.29 e in the TTG/BP-para system, and are −1.28 e and
−0.65 e in the TTG/BP-ortho, respectively. The negative charge value represents the charge
loss. Consequently, in the doped systems, both B and P atoms lose charge by donating
their own charges to the surrounding C atoms of the TTG. This is because the C atom has
a higher electronegativity (2.55) than the B (2.04) and P (2.19) atoms. Moreover, charge
transfer can also be characterized by the difference charge density, as shown in Figure 4d,e
where yellow and blue regions indicate electron gain and loss, respectively. The B and P
atoms of all TTG/BP systems are surrounded by blue regions, indicating that B and P atoms
are electron donors. It is observed from the electron density that the electron localization of



Materials 2022, 15, 2876 7 of 15

P atoms is stronger in the TTG/BP-ortho system than in the TTG/BP-para system, as was
also found from the ELF diagram. In addition, in the TTG/BP-ortho system (Figure 4e),
the interaction between the two C atoms around the B and P atoms is enhanced due to the
introduction of the B and P dopants.
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The band structure of the TTG/BP system is shown in Figure 5. The band gaps of
the co-doped systems are listed in Table 1. Regardless of doping, all TTG/BP systems
show semiconducting behavior. Compared to the band gap of the pristine TTG, the band
gaps of all the co-doped systems are reduced, implying that the transport barrier of the
system is reduced and electron transfer is enhanced. The band gaps of the TTG/BP-para
and TTG/BP-ortho systems are 1.28 eV and 1.04 eV, respectively, for the 4.2% doping
concentration. The band gaps of both the TTG/BP-para and TTG/BP-ortho systems
gradually diminish with increasing doping concentration—that is, their electron transfer
ability is gradually enhanced. This phenomenon is similar to that observed for the TM-
doped TTG systems where higher concentration of the 3d transition metal atoms leads to
smaller band gap [4]. Moreover, for the same doping concentration, the TTG/BP-ortho
system has a narrower band gap than the TTG/BP-para system. In the TTG/BP-para
and TTG/BP-ortho systems, the BP co-doping concentration regulates the TTG band gap.
Among all of the doped systems with different BP concentrations, the TTG/BP-ortho-
16.7% system has the smallest band gap (0.70 eV). The band gaps of all doped systems
are in the range of 0.7~1.28 eV. These band gaps are very close to that of the widely used
silicon semiconductor material (1.16 eV), suggesting that these doped systems have great
potential for applications in semiconductor devices such as pn junction diodes, metal
oxide field-effect transistors (MOSs), bipolar transistors (BJTs), and junction field-effect
transistors (JFETs).
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Figure 5. Electronic band structure of co-doped TTG systems. (a) TTG/BP-para-4.2%; (b) TTG/BP-
para-8.3%; (c) TTG/BP-para-12.5%; (d) TTG/BP-para-16.7%; (e) TTG/BP-ortho-4.2%; (f) TTG/BP-
ortho-8.3%; (g) TTG/BP-ortho-12.5%; (h) TTG/BP-ortho-16.7%.

Next, we discuss the partial density of states (PDOS) of the co-doped TTG systems
shown in Figure 6. The valence band maximum (VBM) of the TTG/BP-para doping systems
with different concentrations are formed by the hybridization of the C-p (the sum of C-px,
C-py, and C-pz orbitals), B-py, P-px, and P-py orbitals. The conduction band minimum (CBM)
is formed by the hybridization of C-pz, B-s, B-py, and P-pz orbitals. With increased doping
concentration, the contribution of the C-px orbital gradually increased relative to those of
the C-py and C-pz orbitals and the VBM formed by the hybridization of the C-px orbitals and
other orbitals (B-py, P-px, P-py) shifted upward. Combining these findings with the results
presented in Figure 5, we find that the energy contributions of different atoms near the
Fermi level are different, resulting in the reduction of the band gap. For all TTG/BP-ortho
doping systems, the hybridization of the C-p, B-py, and P-py orbitals contributed to the
VBM, and the hybridization of the C-pz, B-s, B-py, P-pz orbitals contributed to the CBM.
With increased doping concentration, the VBM and CBM of the TTG/BP-ortho doped
systems gradually move toward the Fermi level, resulting in the reduction of the band
gap in the TTG/BP-ortho doped systems. In addition, the coupling effect between the C,
B, and P atoms near the Fermi level is enhanced by increasing BP doping concentration.
These results indicate that the doping concentration of the TTG/BP systems can strongly
regulate the electronic properties, showing potential for the application of the BP-doped
TTG systems in nanoelectronics.
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Figure 6. Partial density of states (PDOS) of TTG/BP systems. (a) TTG/BP-para-4.2%; (b) TTG/BP-
para-8.3%; (c) TTG/BP-para-12.5%; (d) TTG/BP-para-16.7%; (e) TTG/BP-ortho-4.2%; (f) TTG/BP-
ortho-8.3%; (g) TTG/BP-ortho-12.5%; (h) TTG/BP-ortho-16.7%.

3.3. Optical Properties

Optical properties are another important feature of two-dimensional materials and
particularly of graphene. Therefore, we investigated the absorption coefficient (α(ω)),
reflectance (r(ω)), and refractive index (n(ω)) of the TTG/BP systems.

The optical absorption spectrum is the most important optical parameter; for the dop-
ing concentration of 4.2%, Figure 7 shows the absorption coefficients (α(ω)) of the pristine
TTG, TTG/BP-para, and TTG/BP-ortho systems parallel (αxx, αyy) and perpendicular (αzz)
to the TTG surface. A magnification of the region between 0.8 and 2.4 eV is shown in the
inset in the top right corner of Figure 7. It is observed that the optical band gap of TTG is
approximately 2.06 eV, which is much larger than the 0.75 eV of monolayer graphene [38].
As shown in Figure 7, the optical band gap is the value of the intersection between the
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reverse tangent and the x-axis. For the TTG system, the adsorption coefficients for the
parallel components αxx and αyy are the same, and αxx and αyy are different from the
vertical component αzz. Moreover, the adsorption coefficients of the TTG systems are
clearly different from those of the monolayer and bilayer graphene [38,39]—that is, the
optical properties of TTG are different from those of graphene.
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After BP co-doping, the αxx, αyy, and αzz adsorption coefficients are markedly different,
indicating significant optical anisotropy. All of the main absorption peaks are found in
the ultraviolet region, and the peaks of the TTG/BP systems are significantly reduced at
5, 10, and 15 eV compared to the TTG system. The BP co-doping changes the maximum
absorption peak from the vacuum ultraviolet region (10.5 eV) of the pristine TTG to the
near-ultraviolet regions (4.8 eV) of the TTG/BP systems for the parallel components αxx and
αyy, but for the vertical component αzz, the main absorption peak is still located at 9.8 eV in
the vacuum ultraviolet region. In the low-energy (1.6~2.2 eV) zone of the visible region
(1.6~3.2 eV), the BP co-doping increases the absorption coefficient, and the enhancement of
the absorption coefficient of the TTG/BP-ortho system is larger than that of the TTG/BP-
para system for αxx and αyy, whereas the opposite is true for αzz. A similar phenomenon
occurs for αzz in the near-infrared region (1.2~1.6 eV). For all TTG and TTG/BP systems,
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the absorption edge appears in the mid-infrared region (approximately 1.2 eV), except for
the presence of a small peak for the αyy of the TTG/BP-ortho system. The optical band
gaps are 1.09 and 1.30 eV for the TTG/BP-para and TTG/BP-ortho systems, respectively,
which are smaller than that of pristine TTG (2.06 eV) because of the intraband transition.
These results are consistent with the decrease in the energy band gap upon BP co-doping.
Consequently, a lower energy can be used for the photoexcitation of electrons in BP co-
doped TTG systems because of their smaller optical band gap. In addition, the absorption
edge of TTG/BP system is redshifted, implying an increased utilization rate of the visible
light for this system. This phenomenon is related to the reduction of the band gap caused
by the co-doping of BP.

The effect of doping concentration on the absorption coefficient of TTG/BP systems
is shown in Figure 8. In the near-ultraviolet region (3.2~5.0 eV), the absorption coeffi-
cient monotonically decreases with increasing doping concentration, except for the αyy

of the TTG/BP-para system. Conversely, in the vacuum ultraviolet region (6.0~13.0 eV),
the absorption coefficient monotonically increased with increasing doping concentration.
Moreover, the absorption peaks for αzz are redshifted from the near-ultraviolet region to the
visible region (1.6~3.2 eV) for both the TTG/BP-para and TTG/BP-ortho systems. Thus, BP
doping concentration primarily affects the absorption coefficient in the visible region and
the vacuum ultraviolet region. These results show that increased utilization of visible light
is obtained for TTG by BP co-doping. Moreover, for the TTG/BP-para systems, the doping
concentration has different effects on the absorption coefficient in different directions (αxx,
αyy, and αzz), and the maximum absorption peaks in the x, y, and z- directions are obtained
by 4.2%, 8.3%, and 16.7% doping, respectively.
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Figure 8. Absorption coefficient of TTG/BP system with different doping concentrations. (a) αxx of
TTG/BP-para; (b) αyy of TTG/BP-para; (c) αzz of TTG/BP-para; (d) αxx of TTG/BP-ortho; (e) αyy of
TTG/BP-ortho; (f) αzz of TTG/BP-ortho.

Figure 9 shows the reflectance rxx, ryy, and rzz of the pristine TTG and TTG/BP
systems in the x-, y-, and z-directions, respectively. It is observed that the reflectance
spectrum of TTG differs from that of graphene [38], and the main reflectance peaks are
found in the near-ultraviolet region (3.2~5.0 eV), revealing that the TTG and TTG/BP
systems can be possibly used for short-wavelength optoelectronic devices. In addition, for
a given doping concentration, the values of the main reflectance peaks of the TTG/BP-para
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system are larger than those of the TTG/BP-ortho system. In the infrared region (0~1.6 eV),
reflectance gradually increases with increasing doping concentration, and large peaks
are produced for all BP co-doped TTG systems, although rzz is essentially unchanged
in the TTG/BP-ortho system. In the visible region (1.6~3.2 eV), the maximum doping
concentration (16.7%) induces the maximum reflectance, with no obvious relationship
between the reflectance and doping concentration, with the exception of rzz that gradually
decreases with increasing doping concentration. In the ultraviolet region (3.2~13.0 eV),
the reflectance of the TTG/BP systems decreases dramatically with an increasing doping
concentration at 4.8 eV for rxx and ryy, and at 3.4 eV for rzz. Meanwhile, for rzz of the
TTG/BP systems, the reflectance peaks are redshifted from the near-ultraviolet region
(3.4 eV) to the visible region (1.6~3.2 eV) with increasing doping concentration. Moreover,
BP co-doping causes the two peaks to disappear at approximately 10.0 eV in the vacuum
ultraviolet region. These results show that light transmittance in TTG is enhanced after BP
doping—that is, BP-doped TTG has potential application in optical waveguide devices.
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Figure 9. Reflectance of the TTG/BP systems. (a) rxx of TTG/BP; (b) ryy of TTG/BP; (c) rzz of TTG/BP;
(d) rxx of TTG/BP-para; (e) ryy of TTG/BP-para; (f) rzz of TTG/BP- para; (g) rxx of TTG/BP-ortho;
(h) ryy of TTG/BP-ortho; (i) rzz of TTG/BP-ortho.

Refractive index is another important optical property of materials; Figure 10 shows
the refractive indices nxx, nyy, and nzz of pristine TTG and of TTG/BP systems in the
x-, y-, and z-directions, respectively. The refractive spectrum of TTG is similar to that
of graphene [38], with the peak refractive index occurring in the 0~5.0 eV region. Sim-
ilar to TTG reflectance, the refractive index in the infrared region (0–1.6 eV) gradually
increases with increasing doping concentration, and significant peaks are produced for all
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BP co-doped TTG systems. However, an interesting phenomenon is observed based on the
comparison between the results for the two doping systems shown in Figure 10c,f,i. For the
vertical component nzz, para and ortho site doping have completely different effects, with
the refractive index remaining essentially unchanged for the TTG/BP-ortho system. The
visible region (1.6~3.2 eV) has the largest refractive index, indicating strong refraction by
the pristine TTG and TTG/BP systems in this region of the spectrum. Most importantly,
comparison of the three refractive indices shows that the maximum refractive index is
obtained in the z-direction, and nzz gradually decreases with increasing doping concentra-
tion. Consequently, the TTG and BP co-doped TTG systems can be used as reflectors with a
high refractive index (2.0~2.5), and as dielectric filters with high transmittance in the visible
range. In the ultraviolet region (3.2~13.0 eV), a minimum value of the refractive index and
maximum reflectance are obtained at 4.9 eV, as shown in Figure 9. In particular, for nzz, the
refractive index at 3.9 eV increases significantly with increasing doping concentration in the
near-ultraviolet region. In conclusion, the values of the absorption coefficient, reflectance,
and refractive index in the ultraviolet region decrease—that is, BP co-doping improves the
transmittance of TTG. In the infrared and visible regions, the increased reflectivity and
refraction and the reduced absorption coefficient make BP co-doped TTG systems suitable
for use in optical communication devices.
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4. Conclusions

This study used first-principles calculations to systematically examine the structural
stability and the electronic and optical properties of the TTG/BP systems formed by the
co-doping of TTG with B and P atoms. The stability of the TTG/BP systems increased
with increasing doping concentration. The position and concentration of BP co-doping can
regulate the TTG band gap. All TTG/BP systems remain semiconductors with band gaps
that gradually decrease with increasing doping concentration. TTG and the BP co-doped
TTG systems exhibited significant optical anisotropy. The absorption coefficient, reflectance,
and refractive index values decreased in the ultraviolet region upon co-doping, indicating
that B and P co-doping improves the transmittance of TTG. The increased reflectivity and
refraction, and the reduced absorption coefficient in the infrared and visible regions, make
BP co-doped TTG suitable for use in optoelectronic devices.
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