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The training regimens of modern-day athletes have evolved from the sole emphasis on a single fitness component (e.g., endurance
athlete or resistance/strength athlete) to an integrative,multimode approach encompassing all four of themajor fitness components:
resistance (R), interval sprints (I), stretching (S), and endurance (E) training. Athletes rarely, if ever, focus their training on
only one mode of exercise but instead routinely engage in a multimode training program. In addition, timed-daily protein (P)
intake has become a hallmark for all athletes. Recent studies, including from our laboratory, have validated the effectiveness of
this multimode paradigm (RISE) and protein-feeding regimen, which we have collectively termed PRISE. Unfortunately, sports
nutrition recommendations and guidelines have lagged behind the PRISE integrative nutrition and training model and therefore
limit an athletes’ ability to succeed. Thus, it is the purpose of this review to provide a clearly defined roadmap linking specific
performance enhancing diets (PEDs) with each PRISE component to facilitate optimal nourishment and ultimately optimal athletic
performance.

1. Introduction

At every level of athletic competition, the drive to succeed
is a natural competitive instinct that requires an appropriate
amount, type, and timing of exercise training and nutrient
intake. This balance is important because the difference
between winning and losing largely depends on the training
and nutritional status of the athlete. Thus, in order for any
athlete to be successful, proper training and nourishment
must be a daily priority.

Specific training regimens for elite athletes are often based
on the same science used to formulate exercise and nutrition
recommendations for the general public. For example, gov-
erning organizations in sports medicine (American College
of Sports Medicine, ACSM) and healthcare (American Heart
Association, AHA; Centers for Disease Control, CDC;World
Health Organization, WHO) generally promote an exercise
regimen that includes a combination of (i) cardiorespiratory
(aerobic) (150 minutes/week of 30–60 minutes moderate-
intensity 5 days/week or 20–60 minutes vigorous-intensity

exercise 3 days/week); (ii) resistance (major muscle groups 2-
3 days/week of 2–4 sets and 8–20 repetitions); (iii) flexibility
(stretches held for 10–30 seconds, repeated 2–4 times 2-3
days/week); and (iv) neuromotor/functional exercise (bal-
ance, agility, coordination 20–30minutes/day 2-3 days/week).

While the intent of these exercise recommendations is
noble, the majority of the US population (>60%) falls short
in achieving them [1–3], especially among youth. It may
very well be the case, exercise compliance and adherence
suffers because the current recommendations are not realistic
(up to 7 days of exercise per week) or compatible with
many lifestyles. An additional concern with current exercise
guidelines is they often lack a clear and specific connection to
appropriate dietary intake recommendations.

Interestingly, the contemporary athlete (competitive and
noncompetitive) no longer adheres to the traditional, nar-
rowly defined training regimen focused on only one mode
of exercise (e.g., only endurance or only resistance) but
instead adheres to a multimode, integrative training model.
Indeed, the challenge for most athletes today is finding the
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Table 1: PRISE protocol.

Exercise Type Work RPE Monday Tuesday Wednesday Thursday Friday

PRISE

Protein-pacing (P) P, A — — 20 grams × 5
servings

20 grams × 5
servings

20 grams × 5
servings

20 grams × 5
servings

20 grams × 5
servings

Resistance (R) WB 2 sets/exercise
10–15 reps 7–9 WB —

REST

— —

Intervals (I) C 5–7 sets
30 s/4min rest 10/3 — X — —

Stretching (S) S ≤60min 7–9 — — WB —
Endurance (E) C ≥60min 6 — — — X

Note: P: plant-based; A: animal-based; RPE: rating of perceived effort; RT: resistance training; Sprint: sprint interval training; C: choice of exercise modality;
WB: whole body exercise; S: stretching exercise; X: exercise day. Exercise modalities available for C include walking, jogging, running, cycling, swimming,
elliptical, rowing, rollerblading, and cross-country skiing.

balance (time and energy) to incorporate all of the fitness
components (resistance, anaerobic, aerobic, and flexibility
training) into their regular training regimen, recognizing the
vital importance each one contributes to their overall success.
Thus, herein we propose a scientifically validated model that
embraces a holistic and integrative model of exercise training
that all athletes are encouraged to follow, termed “PRISE”
(Table 1) [4]. The “P” is timed-daily protein-pacing intake;
the “R” is resistance training; “I” is interval anaerobic sprint
training; “S” is stretching (flexibility, restorative) training; and
“E” is endurance aerobic training and is based on 4 days of
structured exercise per week (Tables 2 and 3; Figures 1 and
2). This novel paradigm of exercise training integrates the
fourmajor fitness components into the training regimen of all
athletes, regardless of sport, while still allowing for an athlete
to emphasize sport-specific training.

Perhaps equally, if not more, important for athletic
performance is proper nourishment, including the type,
timing, and amount of specific food and dietary supplement
sources. Currently, there is disconnect between sports nutri-
tion guidelines and the progressive multicomponent exercise
training regimen (PRISE) that many athletes follow. As an
example, most endurance athletes (marathoners, triathletes,
etc.) are encouraged to follow a consistent diet of relatively
high carbohydrate intake (60–70% of total kcals). However,
most endurance athletes adhere to a PRISE training schedule,
including resistance (R), interval (I), and stretching (S)
training, and therefore need to adapt their nourishment to
match this integrative training paradigm in order to achieve
success and the same applies to the sprint-type athlete.

It is clear that our current exercise training and nutrition
practices need to be readjusted to meet the needs of the
evolving athlete. Thus, the major objective of the current
sports nutrition review is to establish a clear rationale and
link between a scientifically proven integrative model of
exercise training (PRISE) performed four days per week
and a matching sports performance enhancing diet (PED),
to maximize athletic performance. We advocate following
the PRISE protocol and linking the prescribed PED to
each component for that day to maximize the physiological,
biochemical, and hormonal responses. The advantage of
incorporating these nutritional strategies on a temporal basis
allows the body to avoid repeated long-term exposure and

thus potential for adverse side effects, downregulation (i.e.,
decreased cellular sensitivity), and tolerance to occur. In
addition, athletes should follow a balanced, protein-rich
diet that incorporates 20–30 grams of high-quality protein
evenly spaced throughout the day (∼every 3 hours), including
nonexercising days.

2. Timed-Daily Protein-Pacing (P) Intake

Protein is arguably the most crucial nutrient for general
health and athletic performance because of its role in protein
synthesis, energy metabolism, body composition (optimal
lean muscle mass and fat mass), immune support, and
satiation. Further, research supports timed-daily protein
feedings throughout the day to maximize protein synthesis
and thus leanmusclemass accretion [5–7]. Dietary guidelines
have consistently encouraged a higher carbohydrate (CHO)
intake (up to 65% of total kcals), moderate fat (20–35%
of total kcals), and 10–35% of intake as protein (PRO) for
proper weight control [8]. However, recent data suggests that
consuming protein at the higher acceptable range (∼25–35%)
enhances energy expenditure [9–11] and body composition
[4, 7, 12–14] and may do so independent of inducing weight
loss [15]. This is important because it will have important
implications for athletes attempting to improve health and
performance outcomes without undergoing caloric restric-
tion and weight reduction. Recent data also shows that the
combined effects of increased dietary PRO and reduced
glycemic index (GI) diets enhances weight loss maintenance
[16] and improves body composition [17, 18].

Meal frequency (number of meals eaten) is another
important factor for optimization of body composition and
athletic performance. Several studies have suggested meal
frequency is inversely related to body weight [19, 20].

Mechanisms. It is well established that energy expenditure and
metabolismdiffer greatly in response tomacronutrient intake
of isoenergetic meals. For example, protein intake elicits the
greatest thermogenic response compared to carbohydrate
and fat [21–23] and this may be related to increased satiation
[21]. In addition, compelling evidence favors dietary proteins
containing a full complement of essential amino acids with
a high leucine content to maximally stimulate muscle protein
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Table 2: Resistance exercise (R).

Circle the exercises performed from each category Reps/time Resistance

Dynamic
warm-up

Perform prior to each workout (5–10 minutes):
(1) Pendulum swings (side-to-side) (7) Over-under the fence
(2) Pendulum swings (front-to-back) (8) Hip opening/closing
(3) High knee (chest) (9) High knees
(4) High knee (external rotation) (10) Butt kicks
(5) Side shuffle (11) Lunge with twist
(6) Carioca (12) Arm windmills

Footwork and
agility

Perform using agility ladder (10 minutes):
(1) Forward, double-step (1) Side shuffle
(2) Sideways double-step (2) Figure 8’s
(3) Side-step, double in/out (3) Kangaroo hops 2/1 foot
(4) Side shuffle, two-in/out (4) Kangaroo hops, sideways
(5) Two leg hops (5) T-drill
(6) One leg hops (6) Jump rope
(7) Two leg hops, in/out
(8) One leg hops, in/out
(9) One leg hops, sideways

Resistance and
power exercises

Perform each below (10 minutes): Perform each below (10 minutes):
(1) Side-steps toes in/out, ankles/knees (1) Back rows/flys

-Side-steps with bands and med ball (2) Pull-ups
(2) Forward/backward walk with bands (3) Chest press/fly
(3) Squats (4) Pushups (choose one):
(4) Lunges with tubing (with med ball) (i) Side walking
(5) Lateral lunges (with med ball) (ii) Knees/toes w/physioball
Choose 2 below: (iii) Down dog
(6) Front step-ups (iv) Side to side (ball)
(7) Squat thrusts, med ball throws (v) Heart-to-heart
(8) Jump squats (vi) Hi/low
(9) Mountain climbers (5) Front/lateral raises
(10) Squat-plank-jump squats (6) Biceps curls
(11) Lateral step-ups (7) Shoulder press

(8) Hyperextensions

Core Exercises

Perform 4 below (10 minutes): Perform 4 below (5 minutes):
(1) Plank knees elbows/hands (1) Knees to chest
(2) Plank toes elbows/hands (2) Hyperextension on ball
(3) Plank one leg elbows (3) Reverse planks
(4) Plank one leg hands on ball (4) Ab hollow
(5) Side planks foot-elbow/twist (5) Walking sit-ups
(6) Side planks hand stars (6) Crunch bent knee
(7) Airplanes (7) Tug-of-war
(8) Supermans/womans (8) Side touch/scissors/toe
(9) Crunches on ball
(10) Plank with ball on knees/toes

Resistance exercises utilize medicine balls, physioballs, rubber tubes and bands which are incorporated into a dynamic warm-up, footwork and agility drills,
resistance and powermovements, and core exercises, bodyweight exercises (e.g., lunges, squats, and jumping rope). A 5minute cool down follows the R routine
with gentle stretching. Total R exercise time is 60 minutes.
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Figure 1: Interval exercise (I). Choose an exercise (walking, jogging, running, cycling, swimming, elliptical, snowshoeing, cross-country
skiing, jumping rope, rollerblading, rowing, etc.) and one of two options. Option 1: perform 5–7 “all-out” sprint Intervals for 30-seconds
at intensity level 10 followed by a 4 minute recovery at intensity Level 2; or Option 2: perform 8–12 sprint “almost all-out” intervals for 60
seconds at intensity level 9 followed by a 2-minute recovery at intensity Level 2. At the beginning and end of each interval session perform a
5-minute dynamic warm-up and gentle stretching cool down, respectively, so that each session is completed within 30–40 minutes.

synthesis [24–26]. In this case, whey protein is considered the
ideal protein source.Thus, the precisemechanism responsible
for enhanced energy expenditure following macronutrient
intake is partly due to an increase in muscle protein synthesis
(MPS) that is triggered by protein ingestion. In addition, there
is speculation that a frequentmacronutrient intake, especially
protein-containing meals, favors an anabolic state resulting
in an increase in protein synthesis and accretion [5, 26].
Specifically, increasedmeal frequency (timed-ingestion every
3 hours) of 20 gram servings of whey proteinmaximizesMPS
as well as signaling proteins and transcriptional activity of
muscle cells [5]. Indeed, not only does this have beneficial

implications for increased energy expenditure but also for
enhanced functional capacity of muscles and an increase in
lean body mass, all of which lead to improved body weight
control and athletic performance.

Evidence. Our laboratory previously demonstrated that
higher PRO (25%, 40%) intakes, including whey protein,
more favorably affect body composition compared with a
traditional diet (PRO < 20%) consumed over 6 meals per day
[12, 13]. In both studies, subjects consuming the higher PRO 6
meals/day lost more body weight, fat mass, and abdominal fat
mass and maintained lean body mass. In follow-up to these
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Table 3: Stretching exercise (S).

Circle the exercises performed from each category Breaths/time

Sun salutations

(1) Mountain pose (Tadasana)
(2) Standing forward bend (Uttanasana)
(3) Plank pose (Phalakasana)
(4) Four-limbed staff pose (Chaturanga Dandasana)
(5) Cobra pose (Bhujangasana)
(6) Upward facing dog pose (Urdhva Mukha Svanasana)
(7) Downward facing dog pose (Adho Mukha Svanasana)
(8) Child’s pose/rest pose (Balasana)

Standing poses

(1) Neck stretching
(2) Side bending
(3) Lunge pose (Anjaneyasana)
(4) Warrior I pose (Virabhadrasana I)
(5) Warrior II pose (Virabhadrasana II)
(6) Triangle pose (Utthita Trikonasana)
(7) Extended side angle pose (Utthita Parsvakonasana)
(8) Goddess pose (Utkata Konasana)
(9) Chair pose (Utkatasana)
(10) Revolved chair pose (Parivrtta Utkatasana)
(11) Squat pose (Malasana)
(12) Standing wide-legged forward bend pose (Prasarita Padottanasana)

Balance in motion poses

(1) Tree pose (Vrksasana)
(2) Warrior III (Virabhadrasana III)
(3) Lord of the dance pose (Natarajasana)
(4) Standing one-legged balance
(5) Eagle pose (Garudasana)
(6) Boat pose (Navasana)
(7) Bicycle pose
(8) Bow pose (Dhanurasana)
(9) Candlestick pose
(10) Camel pose (Ustrasana)
(11) Pigeon pose (Eka Pada Rajakapotasana)

Floor poses

(1) Seated cross-legged pose (Sukhasana)
(2) Staff pose (Dandasana)
(3) Seated forward bend (Paschimottanasana)
(4) Head to knee pose (Janu Sirsasana)
(5) Wide seated forward bend pose (Upavistha Konasana)
(6) Table top pose and cat/cow
(7) Bridge pose (Setu Bandhasana)
(9) Butterfly pose (Baddha Konasana)
(10) Happy baby pose (Ananda Balasana)
(11) Half twist pose (Ardha Matsyendrasana)
(12) Head to knee pose (Janu Sirsasana)
(13) Front split pose (Hanumanasana)
(14) Frog pose (Mandukasana)
(15) Spinal twist pose (Supta Matsyendrasana)
(16) Corpse pose (Savasana)

S is based primarily on traditional yoga “asanas,” or poses, with modern elements of Pilates for a total body stretching, flexibility, and strengthening workout.
All (S) routines include basic sun salutations, standing poses, balance in motion, a floor core strengthening portion, and a final resting relaxation phase. As
participants progress they are instructed to increase the intensity in which they perform the poses so the level of intensity ranges from 7 to 9 on the intensity
scale.

investigations, our laboratory recently compared a higher
PRO (∼35% of kcals) diet (containing ∼50% whey protein),
moderate in CHO (∼40% of kcals) consumed at either 3
or 6 meals/day versus a lower PRO (∼15% of kcals) diet,
higher in CHO (∼60% of kcals) consumed at 3 meals/day,

both of which contained complex, low-GI (GI values of
<50) CHO’s consumed throughout 28 days of energy balance
(weight maintenance), and deficit (weight loss), respectively
(56 days total) [7]. Our results demonstrated that following
the 28-day period of energy balance (weight maintenance)
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Figure 2: Endurance exercise (E). Perform endurance (E) exercise
at an intensity level of 6 for 60 minutes or longer using any
form of exercise (walking, jogging, running, cycling, swimming,
hiking, cross-country skiing, snowshoeing, rollerblading, rowing,
etc.). Ideally, perform E outside in nature and in themorning. At the
beginning and end of each E session perform a 5-minute dynamic
warm-up and a cool-down gentle stretch, respectively.

total and abdominal body fat decreased and lean body mass
(LBM) increased in the higher PRO six meals/day (HP6)
group versus the 3 meals/day higher PRO and CHO groups.
During the 28-day weight loss period, total and abdominal
fat continued to decrease and LBM remained elevated only
in HP6.

Perhaps most interesting was the finding that postpran-
dial thermogenesis during both weight maintenance and
loss was significantly elevated (67–100%) in HP6 compared
to the 3 meals per day groups [7]. The increased thermic
response in HP6 may partly explain the enhanced total and
abdominal fat loss in this group. These findings indicate
that macronutrient composition (increased dietary protein),
nutrient quality (low glycemic index and unprocessed car-
bohydrates), and frequency of eating (6x per day) are more
important than total energy intake to enhance body com-
position (reduce abdominal obesity and maintain lean body
mass) and enhance postprandial thermogenesis during both
weight maintenance and weight loss.

Practical Use. Consuming increased amounts of dietary
protein (20–30 grams/serving or 25–35% of total kcal intake),
mostly from whey protein sources, more often (4–6 meals
meals/day) throughout the day (every 3 hours) decreases
abdominal fat and increases postprandial thermogenesis and
lean body mass compared to traditional protein and meal
frequency intakes. These body composition changes may
directly lead to enhanced athletic performance. Importantly,
these beneficial improvements are achieved even though
total kcals consumed are identical to a traditional feeding
pattern. The data from our laboratory indicate, for the first
time, that macronutrient composition (increased dietary
protein), nutrient quality (low glycemic index and unpro-
cessed carbohydrates), and frequency of eating (4–6x per
day) are more important than total energy intake to improve
body composition and postprandial thermogenesis and thus
athletic performance [7].

3. Resistance (R) and Muscular Performance
Training and PEDs

Resistance training (R) is a vital component of every athlete’s
training regimen given its role in athletic performance.
Thus, identifying nutritional strategies that enhance muscle
strength, power, and function are essential (Table 4).

3.1. Creatine. Creatine, a component of phosphocreatine, is
critical for rapid production of adenosine triphosphate (ATP)
[27]. Along with creatine being the most well-researched
sports supplement, it has been shown to enhance lean
muscle mass, strength, and anaerobic performance and may
also improve aerobic endurance [28]. Thus, there is strong
evidence it is a potent performance enhancing nutrient.

Mechanisms. Creatine supplementation clearly increases
intramuscular creatine and phosphocreatine concentrations
[29–33]. Based on the role of phosphocreatine in energy pro-
duction, this has commonly been proposed as an explanation
for creatine’s ergogenic effects [31, 34–36]. While one study
found creatine to enhance phosphocreatine resynthesis [37],
others have not, but have shown the higher phosphocreatine
levels to persist throughout contraction and recovery [31, 38,
39]. As such, initial levels of phosphocreatine appear to be
more important than its rate of resynthesis.

Protons are consumed when ATP is resynthesized from
phosphocreatine [27], which implies that creatine may
enhance performance by buffering against intracellular aci-
dosis during exercise [35, 40]. Creatinemay also act as a buffer
by reducing reliance on glycolysis and the adenylate kinase
reaction [35].

Creatine is known to increase intracellular fluid volume
[41], which may increase glycogen [42] and protein [43]
synthesis, and has been proposed as a mechanism of per-
formance enhancement [41, 44]. However, investigation of
creatine’s influence on protein synthesis has led to conflicting
results in both animals [45, 46] and humans [47–50]. Alter-
natively, creatine may indirectly increase protein synthesis by
facilitating greater training volume [44].

Other possible mechanisms include increased energy
efficiency of muscle contraction resulting from a faster
relaxation response [51] and enhanced forced production
from increased antioxidant capacity [52].

Evidence. In a large meta-analysis, creatine supplementation
was found to increase either body weight or lean body mass
in 43 of 67 trials [53]. Furthermore, our laboratory has
shown creatine supplementation to be effective for increasing
lean body mass, particularly when combined with resistance
training [34].

Although the influence of creatine supplementation on
lean body mass has not received much recent attention,
several studies have further supported its benefit. In male
professional soccer players, 5 days of creatine loading at
20 g⋅d−1 during typical training and competition led to
increases in body mass and jumping power that did not
occur with the placebo [54]. Two other recent trials, which
did not control for creatine intake, provide some practical
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insights for using creatine to increase lean body mass. In
male recreational bodybuilders, 4 weeks of creatine supple-
mentation at 5 g⋅d−1, combined with resistance training, led
to increases in lean body mass and 1 repetition maximum
(RM) bench press with indication of greater benefit from
postexercise versus preexercise supplementation [55]. The
second trial also focused on recreationally trained men but
included a creatine loading phase and lasted for 8 weeks [56].
Furthermore, for one of the groups, the rest interval between
resistance exercises was progressively decreased by 15 seconds
each week, which resulted in a lower training volume [56].
Despite the reduced training volume, increases in muscle
cross sectional area for the upper arm and thigh, as well
as 1 RM for the squat and bench press, were not different
between groups, suggesting that creatine supplementation
can be used to increase training efficiency [56]. Other recent
trials have shown creatine to reduce postexercise levels of
inflammation [57] andmuscle damage [58], suggesting itmay
facilitate recovery.

Practical Use. A common dosage regimen for creatine is
20 g⋅d−1 during the first 4–7 days, followed by 5 g⋅d−1 there-
after [59]. As little as 2 g⋅d−1 has fully [30] or partially [32]
maintained the intramuscular creatine levels achieved with
loading, and 3 g⋅d−1 for 28 days has produced comparable
levels without loading [30]. However, as a part of the PRISE
protocol, an acute dosage of 2–5 g 1 hour prior to anR exercise
bout may enhance muscular and physical performance. It is
unclear if creatine intake from food will provide the same
benefits as supplementation.However, herring, salmon, pork,
beef, and cod are prominent sources containing 3–10 g⋅kg−1
[60, 61]. Chicken and rabbit are also within this range [62].
Therefore, it is possible to achieve a maintenance dose with
whole foods [61], but a loading dose would be much less
practical. For example, beef contains approximately 4.5 g⋅kg−1
of creatine [60], which translates to 0.8 g in a single 6 oz.
serving.

3.2. Branched-Chain Amino Acids. The branched-chain
amino acids (BCAAs), which include leucine, isoleucine,
and valine, are essential nutrients involved in muscle protein
synthesis and energymetabolism [63]. Leucine is particularly
important for stimulating muscle protein synthesis [25],
but BCAAs can be used collectively to enhance endurance,
reduce muscle breakdown, and stimulate recovery after
exercise.

Mechanisms. During exercise, BCAAs are catabolized into
succinyl-CoA and acetyl-CoA, both of which can enter
the citric acid cycle to support ATP resynthesis [63, 64].
This pathway has a critical role in exercise tolerance [65]
and is likely fed by muscle protein breakdown, which can
be reduced with BCAA supplementation [66]. Therefore,
BCAAs can preserve muscle protein by acting as an energy
substrate. Furthermore, BCAAs may enhance exercise per-
formance by reducing central fatigue [67, 68] and enhancing
fat oxidation [69–72].

Protein synthesis is the most well-known and arguably
the most important mechanism through which BCAAs
enhance performance. Although all three of the BCAAs con-
tribute to protein synthesis, leucine is particularly important.
This is because leucine activates translation initiation factors
and the mammalian target of rapamycin (mTOR), which are
influential in the regulation of protein synthesis [73–76].

Evidence. Some trials have shown BCAAs to enhance exercise
capacity [72, 77–79] while others have not [80–85]. In a
recent trial including 19 untrained males and 8 weeks of
resistance training, 9 g⋅d−1 of BCAAs failed to change body
composition or improve strength or muscular endurance to
a greater extent than the placebo [86]. However, in a similar
trial including 26 untrained men and 12 weeks of resistance
training, 4 g⋅d−1 of leucine led to greater strength gains [87].
These contrasting results suggest that either leucine alone is
more effective, or that 8weeks is too short of a training period.

Further supporting the importance of leucine, a recent
crossover trial including 9 military personnel found that
increasing the leucine content of a 10 g essential amino acid
(EAA) dose from 1.87 to 3.5 g led to greater muscle protein
synthesis and less total-body protein breakdown following
60 minutes of cycle ergometry [88]. Similarly, another recent
trial assessed myofibrillar protein synthesis following a bout
of resistance exercise and found that increasing the leucine
content of 6.25 g of whey protein from 3 to 5 g resulted in
the same rate of protein synthesis as 25 g of whey [24]. How-
ever, the inclusion of additional BCAAs prevented this out-
come, possibly due to increased competition for absorption
[24].

Practical Use. As little as 77mg⋅kg−1 of BCAAs has been
shown to reduce muscle protein breakdown during exercise
[66]. For EAAs, although 6 g has been shown to enhance
protein synthesis [89], 10 g appears to be the optimal dose
[26, 90].

While it is generally ideal to consume protein from
whole-food sources, EAA supplementation has been sug-
gested as an efficient method of promoting muscle growth
while limiting caloric intake [91]. This is particularly relevant
to athletes who need to lose ormaintainweight. Furthermore,
because exercising with a full stomach is generally not
desirable [92], supplementation may be more appropriate for
preexercise consumption.

A single acute serving of high-quality protein containing
the optimal 10 g dose of EAAs contains approximately 1.8 g of
leucine [93]. Relative to common protein sources, the leucine
content of a 100 g (3.5 oz.) serving of beef, pork, chicken,
turkey, salmon, cod, or tuna ranges from approximately 1.3
to 2.3 g [94]. Two eggs or a 100 g serving of haddock, shrimp,
or scallops contains slightly less leucine, but still more than
1 g [94].

Finally, liquid sources of protein are known to elevate
BCAA, EAA, and leucine concentrations more rapidly [95,
96], which can result in greater protein synthesis [97–99].
Whey [98] and milk [100], if well tolerated, are particularly
effective.
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4. PEDs for Interval (I) Sprint Training

A growing body of research has documented the benefits
of interval sprint training (I) for improved anaerobic and
aerobic athletic performance (Table 4). Certain nutritional
strategies have proven effective to counter the increased
acidic environment induced by I training and thus prolong
training time and adaptations, all of which may directly
enhance athletic performance.

4.1. Beta-Alanine. Beta-alanine is the rate-limiting precursor
in the synthesis of carnosine, a cytoplasmic dipeptide that
buffers intracellularH+ [101]. As such, itmay reduce the acidic
environment inside the muscle allowing for continued high-
intensity anaerobic work performance and therefore may be
suitable prior to and during an I exercise session.

Mechanism. Carnosine’s role as an H+ buffer in the muscle
is the first line of defense against local changes in pH. The
absence of carnosine in isolatedmuscles leads to acidification
and fatigue [101]. Therefore, the use of 𝛽-alanine supple-
mentation to buffer H+ during high intensity exercise that
causes muscle acidosis may extend the onset to fatigue by
elevating intracellular carnosine concentrations [101] leading
to increased work performance.

Evidence. Research has shown improved performance fol-
lowing 𝛽-alanine supplementation among different exercise
modalities, such as swimming [102], cycling [103], running
[104], and sprint performance following long endurance
cycling [105]. However, these results are conflicting in nature
with others reporting little or no change in performance [106–
109] despite elevated carnosine concentrations [107, 110] or
resistance to fatigue [107, 108]. Derave et al. [107] reported
that four weeks of 𝛽-alanine supplementation (4.8 g⋅d−1)
versus placebo in trained male athletes showed significant
improvements in both dynamic knee extension torque (dur-
ing the fourth and fifth bouts) and carnosine content in
the soleus (47%) and gastrocnemius (37%). However, there
were no differences in isometric strength or 400m race time
between groups.These findings contradict Ducker et al. [104]
who found that male recreational runners improved 800m
race time following 4 weeks of 𝛽-alanine supplementation
(6.4 g⋅d−1) versus placebo. Such contrasting results suggest
that differences in training status may limit the effectiveness
of 𝛽-alanine on improved performance more so than the
dosage of 𝛽-alanine supplementation.

It is speculated that the effectiveness of 𝛽-alanine sup-
plementation may be blunted in trained athletes due to
the already elevated muscle buffering capacity from intense
exercise training [111]. To compare the effects of 𝛽-alanine
supplementation and training status, de Salles Painelli et
al. [112] tested the effects of 𝛽-alanine supplementation in
trained and nontrained cyclists. Forty males were separated
in two groups based on training status (𝑁 = 20 endurance
trained (T); 𝑁 = 20 nontrained (NT) cyclists). Participants
performed four 30 s lower-body Wingate bouts separated
by 3min, both before and after 4 weeks of either placebo
or 𝛽-alanine supplementation (6.4 g⋅day−1). The sum of

the four bouts represented the total work done (TWD) and
the mean power (MPO) and peak power (PPO) output were
obtained from each of the four bouts individually. 𝛽-Alanine
supplementation was shown to significantly increase TWD
in both T and NT groups with no significant difference in
the T cyclist placebo group. Furthermore, it was found that
MPO significantly improved in the T group during bouts 1,
2, and 4 but also improved in bout 4 for the NT group. It
was concluded by de Salles Painelli et al. [112] that, despite
training status, 𝛽-alanine improved both TWD and MPO
during high-intensity exercise.

Practical Use. Research has found that 𝛽-alanine supplemen-
tation of 3–6 g⋅d−1 (∼40–80mg⋅kg−1⋅BW⋅d−1) for at least 4
weeks or longer will increase intramuscular concentrations
(30–80%) possibly improving muscle buffering capacity [107,
113, 114]. However, a higher intake (∼6 g⋅d−1) for four weeks
has been shown to elicit greater carnosine concentrations
and improvements in performance [103, 104, 112]. A single
acute dosage prior to an I exercise session may elicit similar
favorable buffering capacity.

4.2. Caffeine. Caffeine is the most widely consumed drug in
the world and one of the most extensively studied ergogenic
aids. It is well known for enhancing endurance [61, 115–
118] but has also been shown to improve strength, power,
and other aspects of high-intensity exercise [115, 117, 118]. Its
effects are acute and peak with 30–60 minutes.

Mechanisms. The performance benefits of caffeine are related
to enhanced fat oxidation and glycogen sparing. Caffeine
is known to increase energy expenditure and fat oxida-
tion, mostly through sympathetic nervous system activity
(SNSa) [119], and other related mechanisms [61, 118, 120].
Inhibition of adenosine receptor activity, resulting from
the molecular similarity between caffeine and adenosine, is
the primary mechanism [116, 118, 121]. By binding to its
receptors, adenosine can promote an increase in perceived
pain and a reduction in arousal [116]. Exercise can accen-
tuate this effect through the catabolism of ATP, adenosine
diphosphate (ADP), and adenosine monophosphate (AMP)
[116]. Therefore, caffeine-induced impairment of adenosine
receptor activity may enhance performance by reducing the
perception of discomfort and maintaining or enhancing
motor unit firing rates [116]. Further supporting the role
of pain perception, caffeine has been observed to increase
concentrations of 𝛽-endorphins during exercise [122].

Peripheral mechanisms are also believed to contribute to
caffeine’s ergogenic effects [116, 117, 121]. The most notable
is enhanced excitation-contraction coupling, resulting from
increased potassium transport in muscle by Na+/K+ ATPase
and increased release of calcium from the sarcoplasmic
reticulum [116, 121].

Evidence. In a meta-analysis including 40 trials, caffeine had
mild benefit for high-intensity exercise of short duration and
stronger benefit for endurance exercise, but no benefit for
graded exercise to exhaustion [123]. In a systematic review of
21 studies involving time trials of at least 5 minutes, caffeine
enhanced performance by 2.3–4.3% [124]. For activities
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lasting 5 minutes or less, another systematic review found
caffeine to improve intermittent exercise performance in 11 of
17 trials and strength-related measures in 6 of 11 trials [125].
Finally, in a meta-analysis including 27 trials for strength and
23 trials for muscular endurance, caffeine produced small but
significant benefits for each attribute [126].

Trials published since 2013 have shown caffeine to
improve agility [127, 128], jump height [127, 129, 130] and
power [131], sprint performance [131], and sport-specific
performance [127, 130–132] in athletes involved in a variety
of sports, including basketball [129], rugby [131, 132], soccer
[130], volleyball [127], and several racket sports [128]. Other
recent trials have found improvements in cycling power
output [133] and isokinetic knee extension torque during
resistance exercise [134].

Two recent trials evaluated the influence of caffeine on
exercise performed in a glycogen depleted state. In the
first, which was a crossover with 12 competitive cyclists,
3mg⋅kg−1⋅BW of caffeine resulted in similar power output
during high-intensity interval training (HIIT) compared to
the placebo with normal glycogen levels, indicating that caf-
feine attenuates the performance decline caused by glycogen
depletion [133]. In the second crossover trial, which included
7 amateur cyclists, 5mg⋅kg−1⋅BW of caffeine led to better
4 km time trial performance compared to the placebo with
normal glycogen levels [135]. However, the difference was not
significant.

Practical Use. The dosage of caffeine most commonly shown
to enhance performance with minimal side effects is 3–
6mg⋅kg−1 [61, 118, 124]. It is possible to consume such a
dosage from coffee [61], but the evidence comparing the
efficacy of coffee and caffeine is conflicting [136, 137]. This
discrepancy may be a result of variability in other coffee
constituents [137], suggesting that caffeine is likely to bemore
reliable.

Athletes who regularly consume caffeine may have a
higher tolerance and experience less benefit [138]. Further-
more, cessation of caffeine usage can result in withdrawal
symptoms including headaches and impaired performance
[138]. Therefore, to maximize benefit, usage should be dis-
continued at least 7 days prior to an event with a gradual
reduction spread over 3-4 days [138]. Finally, because caffeine
has been shown to negate the performance benefits of
creatine [139], there appears to be little value in using them
together.

4.3. Creatine. The mechanisms and practical applications of
creatine were previously discussed in relation to resistance
(R) training for muscular development. In regard to high-
intensity exercise performance, creatine is most commonly
recognized for its effect on strength but has also shown
potential for enhancing anaerobic endurance.

In a meta-analysis of 7 trials, including a total of 70 sub-
jects, creatine supplementation with concomitant resistance
training led to a 6.85 kg greater increase in 1–3 RM bench
press [59]. Similarly, among 37 subjects from 4 trials, there
was a 9.6 kg greater increase in 1 RM squat [59]. Despite this
evidence of enhanced strength, a meta-analysis of 10 trials,

including a total of 92 participants, found no improvement
in cycling power output [59]. However, in a larger meta-
analysis, performance improvements were reported in 45 of
61 trials for activities lasting 30 seconds or less, in 17 of 25
trials for activities lasting between 30 and 150 seconds, and
in 9 of 18 trials for activities lasting longer than 150 seconds
[53]. Effect sizes were significant, although modest, for all
measures, and were indicative of diminishing performance
benefit with increased exercise duration [53].

Recent evidence indicates that creatine supplementation
can enhance performance independently of training. In a trial
including 77 men, creatine improved vertical jump, 20-yard
shuttle run, 3-cone drill, and bench press endurance despite
the lack of a training intervention [140]. Similarly, in two
other trials lacking a training intervention, 7 days of creatine
supplementation improved mean power during two bouts of
the Wingate protocol [141], and 6 days of supplementation
showed a tendency for increased lactate threshold, power
output, and time to fatigue during incremental cycling [142].

4.4. Sodium Bicarbonate. Bicarbonate is a prominent buffer
in human physiology. Supplementation with sodium bicar-
bonate increases blood pH and bicarbonate concentration, is
particularly effective for enhancing anaerobic capacity, and
may also improve strength and endurance [143, 144].

Mechanisms. Although the mechanisms are not fully under-
stood, intramuscular acidosis has reduced muscle contractile
capacity in multiple studies [145]. When exercise creates
a demand for ATP that exceeds mitochondrial capacity,
accumulation of protons released from glycolysis and ATP
hydrolysis promote acidosis [146]. Although intramuscular
acidosis has been argued to have a minimal effect on per-
formance [147], sodium bicarbonate is known to increase pH
and bicarbonate concentration [148, 149], which has persisted
as the most likely mechanism of performance enhancement
[148]. During exercise, sodium bicarbonate has been shown
to result in higher lactate levels during exercise despite
a similar intramuscular pH [150] and promotes greater
glycogen and phosphocreatine utilization [151], suggesting
increased capacity for anaerobic energy production. Further-
more, exercise-induced acidosis can inhibit oxidative phos-
phorylation [152], which implies that the buffering effect of
sodium bicarbonate may enhance aerobic energy production
as well.

Sodium bicarbonate supplementation has led to greater
muscle contraction velocity following 50 minutes of high-
intensity cycling [153], suggesting it may reduce neuromus-
cular fatigue in addition to enhancing energy production.

Evidence. In a meta-analysis including 29 trials, sodium
bicarbonate was found to increase anaerobic exercise capac-
ity, with the largest improvements observed for time to
exhaustion [149]. The greatest benefit was observed in con-
junction with larger drops in pH during exercise [149],
suggesting that the benefits are most applicable to glycolytic
activities. A more recent meta-analysis, including 38 studies,
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standardized all results as a measure of mean power pro-
duction during time trial performance and found a clear but
modest performance benefit [148]. Improvement increased
slightly as exercise duration increased beyond 1 minute,
but durations beyond 10 minutes slightly reduced benefit
[148].

In a recent trial including 11 well-trained endurance
athletes, 0.3 g⋅kg−1⋅BWof sodium bicarbonate was consumed
prior to exercise for 5 consecutive days [154]. A similar
improvement in time to exhaustion was maintained each
day [154], suggesting that supplementation is appropri-
ate for multiday events. Two other recent trials evaluated
sodium bicarbonate in combination with beta-alanine. A
single 0.3 g⋅kg−1⋅BW dose of sodium bicarbonate improved
repeated sprint performance in team-sport athletes [155] and
improved sprint swimming performance in competitivemale
swimmers [156]. In both trials, however, the addition of beta-
alanine failed to further enhance performance.

In another recent trial including well-trained rowers,
preexercise consumption of 0.3 g⋅kg−1⋅BW of sodium bicar-
bonate throughout 4 weeks of HIIT failed to improve time
trial performance compared to the placebo [157], suggesting
that supplementation may not be effective for enhancing
training adaptations.However, this is in contrast to a previous
trial that observed greater improvements in lactate threshold
and time to exhaustion [158].

Practical Use. The dose of sodium bicarbonate most fre-
quently associated with performance enhancement is
0.3 g⋅kg−1 [148, 149]. However, benefits have been observed
with as little as 0.15 g⋅kg−1⋅BW [159]. Common gastro-
intestinal symptoms can be avoided during competition by
consuming the dose 3 hours prior to initiating I exercise
[160]. Consuming the dose with food may also help [161]
but increases the importance of distancing intake from
the start of competition [92]. Alternatively, smaller doses
can be consumed over several days preceding an I event
[162].

Although the buffering effect of alkalizing food [163, 164]
is unlikely to produce the 0.05 increase in pH or 6mmol⋅L−1
increase in bicarbonate that appear necessary for perfor-
mance improvement [161], potential for benefit may still
exist. The alkalizing potential of food is primarily attributed
to potassium salts, which increase bicarbonate availability
when metabolized [165–167]. Vegetables and fruit are most
abundant in potassium salts [165] and have the highest
alkalizing potential [168]. Therefore, in conjunction with the
numerous health benefits of vegetables and fruit [169], as
well as potassium [170], high intakes may facilitate perfor-
mance enhancement. Furthermore, the alkalizing potential
of vegetables and fruit can help to offset the acidifying effect
of protein [165, 167, 168], which athletes require in greater
amounts [92]. In support of this, a high vegetable intake
has recently been shown to increase capillary pH in adults
during rest and submaximal exercise [171]. Bicarbonate can be
more directly incorporated into the diet with mineral water
[163, 172] or baking soda.

5. PEDs for Stretching (S) and
Restorative Training

It is well known that intense exercise training induces
muscle damage, including an imbalanced ratio of protein
breakdown to protein synthesis and increased muscle sore-
ness (i.e., perception of pain) and inflammation [173]. A
growing number athletes turn to common nonsteroidal anti-
inflammatory drugs (NSAIDs) (i.e., ibuprofen) to alleviate
or reduce the perception of pain and to attenuate the
inflammatory response [174]. Furthermore, many athletes
will perform certainmodes of S exercise (i.e., yoga, stretching,
and massage) as a form of restorative training to actively
alleviate pain from previous strenuous exercise [175]. More
recently, the combination of both active recovery exercises
and nutraceuticals in the form of BCAA [176], ginger [177],
turmeric [178], omega-3 (PUFAs) [179], and tart cherry [180,
181] have been suggested as natural alternatives for reducing
exercise-induced inflammation (Table 4).

5.1. Ginger. Ginger (Zingiber officinale) is one of the ten
most commonly used natural complementary and alternative
medical treatments in the United States [182] and has been
suggested as a possible alternative to pharmaceuticals for
reducing pain and/or inflammation [177].

Mechanism. In animal models, ginger and its chemical
constituents gingerols, shogaols, paradols, and zingerone
are agonists to the transient receptor potential vanilloid
subfamily, member 1 (TRPV1) that function in central and
peripheral nociceptive signaling by inhibiting the release of
prostaglandins and leukotrienes [183–185]. Ginger has been
proposed as an effective analgesic based on its evidence
as a natural medicinal in reducing pain and inflammation.
Moreover, there are inconsistent findings from NSAIDs such
as ibuprofen, naproxen, aspirin, and diclofenac as effective
analgesics following eccentric exercise [186]. Thus, ginger
consumption may be more efficacious for reducing exercise
induced pain and inflammation through activation of TRPV1.
Evidence. It has been found that the use of ginger as pain
treatment, with smaller dosages (30 to 510mg⋅d−1) and longer
durations (4 to 36 weeks), resulted in reductions in knee
or hip pain in individuals with osteoarthritis. Black et al.
[177] reported that following eccentric exercise (18 eccentric
elbow flexor contractions at 120% of 1 RM) 2 g of both raw
and heat-treated ginger for 11 days significantly decreased the
perception of pain following exercise. Evidence supports the
use of ginger to aid recovery frommuscle-damaging exercise
and for longer durations of intake (>2 days), as a single-
acute dose had no effect on pain perception following low-
moderate (60% VO

2 peak) intensity cycling [187]. Thus, effec-
tiveness of ginger on pain perception may prove beneficial
as treatment for alleviating intense, muscle-damaging (i.e.,
eccentric) exercise induced pain, more so as an alternative to
pharmaceuticals.

Practical Uses. A higher dosage of 6 g of ginger may lead to
possible stomach irritation and therefore a lower dose of 2–
3 g of ginger is suggested as it has been shown to be effective
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in reducing both pain following exercise and blood sugar
concentrations [177]. This dosing regimen also allows for
daily consumption of ginger beyond just on S days and iswell-
tolerated.

5.2. Curcumin. Curcumin, a polyphenol responsible for the
yellow color of turmeric (curry powder), is known to reduce
inflammation and influence metabolic function [188]. As
such, curcumin has the potential to support recovery and
performance on S training days by promoting metabolic
health.

Mechanism. Curcumin is known to regulate inflammation
and directly interact with adipocytes, pancreatic cells, and
muscle cells [188]. Curcumin has been well documented to
regulate biochemical and molecular pathways by modulating
molecular targets such as transcription factors, cytokines,
enzymes, and the genes responsible for both cell proliferation
and apoptosis [189].

Evidence. Curcumin has recently been shown to reduce
pain associated with delayed onset muscle soreness (DOMS)
following downhill running [190]. Chuengsamarn et al.
[178] tested the effects of 250mg of curcumin compared to
placebo (corn starch) ingested twice a day for 6 months
on atherogenic risks in individuals with type II diabetes
mellitus (T2DM). After 6 months of supplementation it
was found that curcumin significantly decreased pulse wave
velocity, increased adiponectin and decreased leptin, and also
decreased homeostasis model assessment-estimated insulin
resistance (HOMA-IR), triglycerides, uric acid, and abdom-
inal obesity (visceral fat and total body fat). These findings
indicate that daily incorporation of curcumin will signif-
icantly alter the proinflammatory cytokine leptin and the
anti-inflammatory cytokine adiponectin, as well as reduce
abdominal obesity, all of which helps to ameliorate the
atherogenic risks of T2DM individuals [178].

Though a plethora of information on the positive effects
of curcumin on diseased individuals has been well docu-
mented [189], only one study known to date has specifically
reviewed the effects of curcumin on oxidative stress following
exercise in humans. Takahashi et al. [191] tested the effects
of curcumin on oxidative stress and antioxidant capacity
following exercise (60min at 75% of VO

2max) in ten healthy
men. The participants completed three trials in a random
order of ingesting either placebo, 90mg of curcumin-single
(before exercise only, 2 hr), or 90mg of curcumin-double
(before and immediately after exercise). It was found that
immediately following exercise, both the curcumin-single
and double groups had significantly lower derivatives of
reactive oxygen metabolites and plasma thioredoxin-1 and
significantly elevated biological antioxidant potential and
reduced glutathione concentrations compared to the placebo
group. These results suggest that exercise-induced oxidative
stress may be attenuated by increasing blood antioxidant
capacity from curcumin supplementation [191].

Practical Use. Though the consumption of curcumin has
shown to be safe and has been consumed by ancient people

for thousands of years the scientific analysis and understand-
ing of curcumins effects are still being researched. It has
been noted that when working with certain diseased pop-
ulations or those unaccustomed to curcumin lower dosages
(<250mg) have been shown to reduce abdominal fullness or
pain. Dosages of 90–250mg daily, particularly on S training
days, may be an effective adjuvant therapy to aid recovery and
healing from strenuous exercise. A possible limitation is the
relatively low bioavailability of curcumin consumed orally.
However, there have been recent modifications in producing
a bioavailable and higher orally absorptive curcumin known
as Theracurmin [192].

5.3. Omega-3 Poly-Unsaturated Fatty Acids (PUFAs). The
main components of omega-3 polyunsaturated fatty acids
(PUFAs) found in fish oil are eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) and are produced from the
omega-3 fatty acid alpha-linolenic acid (ALA).

Mechanism. Because EPA and DHA are not naturally syn-
thesized in the body and the breakdown of ALA to produce
EPA and DHA is enzymatically inefficient, the consumption
of fish oil through diet or supplementation is important
for providing adequate EPA and DHA concentrations. Both
EPA and DHA are eicosanoids that have anti-inflammatory,
antithrombotic, antiarrhythmic, and vasodilatory properties.
The derivative of the longer chain fatty acid linoleic acid (LA)
is arachidonic acid, the precursor to the proinflammatory and
prothrombotic eicosanoids. Because ALA and LA compete
for the same enzymes in the production of the longer chain
fatty acids EPA and arachidonic acid, the consumption of fish
or fish oil avoids the enzymatic competition to convert ALA
to EPA by providing EPA and DHA directly [193].

Evidence. More commonly known for their cardiovascular
benefits, EPA and DHA have been documented to reduce
inflammation, as well as delayed onset muscle soreness
(DOMS) or the perception of pain from exercise [179, 194–
196].When supplementingwith EPA andDHAeither prior to
or during exercise, or the combination of both, research has
found decreased resting levels of inflammatory biomarkers
(2,224 : 2,208mg⋅d−1, 6 wks) [194], decreased acute-phase
proteins after exercise (1.75 : 1.05 g⋅d−1, 3 wks) [179], and
improved perceived muscle soreness, pain, and range of
motion 48 hrs post exercise (324 : 216mg⋅d−1, 30 days and
48 hrs during recovery) [195]. More recently, Jouris et al.
[196] reported the attenuation of DOMS when consuming
EPA and DHA at a 2 : 1 ratio (2,000 : 1,000mg⋅d−1) for 7 days
following an eccentric arm-curl exercise protocol. Yet, despite
these beneficial findings, there have been reports of little
or no change in inflammation or DOMS following exercise
[197, 198]. Recently, in addition to ameliorating pain and
inflammation, supplementation with omega-3 PUFA for 8
weeks (1.86 : 1.50 g⋅d−1 EPA :DHA) was shown to augment
the activation of the mTOR-p70s6k signaling pathway stim-
ulating protein synthesis in older adults [199].Thus, omega-3
supplementationmay also prove beneficial for the prevention
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or management of sarcopenia or the atrophy of skeletal
muscle [199].

Practical Use. It should be noted that fish oil consumption at
higher levels (>4 g per day) may increase the risk of bleeding
from decreased adherence of blood platelets and lower blood
pressure. Hence, individuals with already low blood pressure
or increased risk of hemorrhage should consume moderate
to lower intakes of omega-3 PUFA. Athletes that wish to
mitigate the effects of exercise-induced inflammation and
DOMS are suggested to incorporate omega-3 FA in their diet,
especially during S days, and are suggested to do so with 1-
2 g⋅d−1 of an EPA :DHA ratio of 2 : 1 [200], or 2–4 g⋅d−1 for
those with higher blood lipid profiles or rheumatoid arthritis
[193]. A designated safe and general consumption dose of
omega-3 PUFA (EPA + DHA) for athletes to consume is
≤3,000mg⋅d−1 (3 g), as recommended by the US Food and
Drug Administration [201]. For many individuals omega-3
capsule supplementation is convenient for ensuring adequate
consumption of PUFA, and an alternative for vegetarians, but
for those who are able to incorporate whole food sources, flax
seeds, walnuts, sardines, and salmon are considered excellent
sources of rich omega-3 (e.g., EPA, DHA, and ALA). Because
of the concern of high levels of mercury the following fishes
have been given as examples of 1 g servings of EPA :DHA
because of their low mercury content: 4.0 oz. Tuna (Canned,
Light), 2.0–3.5 oz. of salmon (Atlantic, wild), 15 oz. of catfish,
and 11 oz. of shrimp (mixed species). For more recommenda-
tions of grams of EPA andDHA for various types of fishes and
servings see the review by Covington [193].

5.4. Tart Cherry. Cherries are known to be a rich source
of bioactive compounds with antioxidant and anti-inflam-
matory effects [202, 203]. Both the antioxidant and anti-
inflammatory effects of cherries are believed to contribute to
their potential to reduce pain and enhance exercise recovery
[202].

Mechanisms. Although the precise mechanisms of how
cherry consumption influences exercise recovery are not
fully understood, the mechanical muscle damage induced by
eccentric contraction is unlikely to be affected [202]. Instead,
improvements in recovery are most likely related to the
attenuation of secondary oxidative stress and inflammation
[202]. The anthocyanins from both sweet and tart cherries
are known to inhibit cyclooxygenase-I and cyclooxygenase-II
[204], which provides at least a partial explanation for their
anti-inflammatory effects. Tart cherries have a more potent
effect.

Evidence. Although the influence of tart cherry on exercise
recovery has only been investigated to a limited extent, the
available evidence is very promising. Connolly et al. [180]
assessed the effect of tart cherry juice (TCJ) on recovery from
maximal elbow flexion contractions. The trial included 14
men who consumed 12 oz. of tart cherry juice twice per day
for 8 days. Eccentric contractions were performed on the
4th day and recovery was assessed during the subsequent
4 days. The TCJ significantly reduced loss of strength and

pain during recovery [180]. However, no differences were
observed in tenderness or loss of range of motion [180]. A
similar trial was conducted to determine if the response to
tart cherry juice differed for well-trained athletes. In this
trial, TCJ was administered as TCJ concentrate of 30mL
(1 oz.) twice per day for 7 days before and 2 days after knee
extension exercise performed at 80% of maximum voluntary
contraction (MVC) [205]. Consistent with the previous trial,
TCJ significantly reduced loss of strength during the two days
of recovery, but without any differences in muscle tenderness
[205]. The TCJ also reduced protein carbonyl levels during
recovery, suggesting a reduction in oxidative stress [205].
These data support TCJ as an effective PED aid following
intense, muscle damaging R exercise as a result of mitigating
the subsequent oxidative damage [205].

Several trials have also focused on recovery from
endurance (E) exercise. Howatson et al. [206] evaluated the
effect of two 8 oz. servings per day of TCJ supplementation
for 5 days prior, the day of, and 2 days following a marathon
run. The tart cherry juice resulted in significantly faster
recovery of isometric strength, reduced inflammation and
oxidative stress, and increased antioxidant capacity during
the subsequent 2 day recovery [206]. In another running
trial, consumption of tart cherry juice for 7 days prior to and
during a 26.3 km relay race significantly reduced perceived
pain following the race [207].

Practical Use. Consumption of approximately 45 sweet Bing
cherries per day has been shown to reduce markers of
inflammation [208, 209]; however, it is not clear whether
the antioxidant and anti-inflammatory potentials of sweet
cherries are comparable to tart cherries. Furthermore, most
of the available evidence indicating a benefit from tart
cherries is based on consumption of juice containing the
equivalent of 90–120 cherries per day or 12–16 oz [180, 205–
207]. As such, practicality and the limited scope of available
evidence favor the use of tart cherry juice. The TCJ used in
the aforementioned studies was derived directly from fresh
cherries in concentrate or juice form making it feasible for
most people to consume.

Emerging evidence indicates that oxidative stress is an
important signaling mechanism for muscle remodeling [210]
and may therefore be necessary for beneficial adaptations
to exercise [211]. This concern is supported by evidence of
antioxidant supplementation inhibiting adaptation to exer-
cise [211]. Furthermore, anti-inflammatory substances such
as nonsteroidal anti-inflammatory drugs present a similar
concern. Similar to antioxidant containing foods, such asTCJ,
NSAIDs reduce inflammation by inhibiting cyclooxygenase
activity. There is indication of this mechanism inhibiting
regeneration of muscle [212] and connective tissue [213],
which could impair adaptations to exercise [212] and increase
injury risk [213]. As such, the long-term use of antioxidants
and NSAIDs may be contraindicated for athletes pursuing
enhancedmusclemass development. Based on these findings,
acute supplementation with TCJ may be most effective
endurance sessions or competitions, rather than for continual
use.
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6. PEDs for Endurance (E) and
Aerobic Training

More athletes are choosing nutritional supplements, from
both natural and organic sources, to gain a competitive
advantage in endurance-based sports. The increased energy
demands of endurance activities require fluid, electrolyte,
and energy consumption during training and competition
(Table 4). Facilitating the delivery of these key nutrients to
working muscles is paramount to athletic performance.

6.1. Beet Root Juice (BRJ). Beetroot juice (BRJ) is among the
most popular nutritional supplements to improve endurance
performance [214]. Much of this is due to an increased
consumption of organic and natural foods [215]. Thus, the
trend for organic and natural food products is particularly
relevant for athletes at all levels of competition. BRJ is
particularly popular among endurance (E) athletes, because
of its high concentration of nitrate that has been hypoth-
esized to enhance endurance. For example, there is both
anecdotal and scientific support for BRJ to improve time-trial
endurance [216] and time to exhaustion [217], reduce steady-
state oxygen consumption [218], and increase peak power and
work rate at the gas exchange threshold [219].

Mechanisms. Several mechanisms have been postulated for
the endurance exercise improvement effects of BRJ. A reduc-
tion in phosphocreatine (PCr) degradation and the reduction
of build-up of ADP and inorganic phosphate (Pi) at the same
relative exercise intensity following BRJ consumption [216,
219] are likely mechanisms responsible for the decrease in
O
2

cost (oxidative phosphorylation) of exercise and increased
time to exercise failure (reduced muscle fatigue). Beetroot
has a high nitrate (NO

3

−

) content (>250mg/100 g of fresh
weight), among the highest assessed, and contains more than
other foods high in NO

3

− including spinach, celery, arugula,
and carrot juice [220]. Nitrate is reduced to nitrite via bacteria
in the oral cavity and by specific enzymes (e.g., xanthine
oxidase) within tissues. There are several pathways to metab-
olize nitrite to nitric oxide (NO) and other biologically active
nitrogen oxides [221]. Nitric oxide is a signaling molecule
formed in the endotheliumby the enzyme endotheliumnitric
oxide synthase (eNOS) which triggers the vasculature to relax
(vasodilatation) by interacting with vascular smooth muscle
leading to increased blood flow [222] at rest [223] and during
exercise [224].

Given these properties, NO has gained a lot of attention
for possible E exercise improvements including increased O

2

,
glucose, and other nutrient uptake to better fuel working
muscles. Currently there is no means to provide NO supple-
mentation through the diet (as it is a gas), thus BRJ and its
high nitrate concentration are used as a means to generate
NOendogenously. Indeed, there is an impressive and growing
body of scientific data in support of whole food sources
of inorganic nitrate, such as that found in BRJ, showing
improved athletic performance.

Evidence. While there is very limited scientific data demon-
strating BRJ’s effect on resistance (R) exercise [225], the

vast majority of data strongly supports its beneficial effect
on improving E performance. Lansley et al. [217] recruited
9 healthy, physically active men who consumed either 0.5
liters of BRJ (6.2mmol⋅d−1 of NO

3

−) or 0.5 liters of NO
3

−-
depleted BRJ placebo (0.0034mmol⋅d−1 of NO

3

−) for 6 days
followed by acute bouts of submaximal and high-intensity
(to exhaustion) running and incremental knee-extension
exercises. BRJ consumption increased plasma nitrite by 105%
and reduced the O

2

cost for constant-work-rate moderate
and severe-intensity running by ∼7% compared to placebo.
In addition, time to exhaustion was increased during severe-
intensity running by ∼15% and incremental knee-extension
exercise by ∼5% with BRJ compared to placebo. These find-
ings suggest that performance benefits (oxygen sparing and
enhanced exercise tolerance) of consuming BRJ are attributed
to its high NO

3

− content. More recently, Murphy et al.
[226], using a double-blind placebo-controlled crossover
trial, had 11 recreationally fitmen andwomen consume either
baked beetroot (200 g with ≥500mg NO

3

−) or an isocaloric
placebo (cranberry relish) 75 minutes prior to performing a
5 km time trial treadmill run to determine whether whole
beetroot consumption would improve running performance.
They observed a nonsignificant, 41-second faster finishing
time (12.3 ± 2.7 versus 11.9 ± 2.6 km⋅h−1, resp.; 𝑃 = 0.06)
following beetroot consumption compared to placebo. Most
impressive, during the last 1.1 miles (1.8 km) of the 5 km
run, running velocity was 5% faster (12.7 ± 3.0 versus
12.1 ± 2.8 km⋅h−1, resp.; 𝑃 = 0.02) and rating of perceived
exertion was lower (13.0 ± 2.1 versus 13.7 ± 1.9, resp.; 𝑃 =
0.04) during the beetroot trial compared to the placebo.
Thus, it appears that the ingestion of whole-foods containing
inorganic NO

3

− (such as beetroot or BRJ) increase plasma
nitrite and ultimately NO levels which favorably affect the
cellular and vasculature pathways which likely result in the
observed improvements in endurance athletic performance.

Given the favorable impact of BRJ on E performance,
it would seem likely that BRJ would also favorably impact
other markers of athletic performance. As such, Lansley et al.
[216] examined the effects of BRJ ingestion on power output,
oxygen consumption (VO

2

), and performance cycling time
trials (TT) using nine competitive male cyclists who con-
sumed either 0.5 liters BRJ (6.2mmol of NO

3

−) or placebo
containing nitrate-depleted BRJ (0.0047mmol of NO

3

−)
before each TT of 4 or 16 km. BRJ consumption increased
plasma nitrite by 138% and resulted in significantly reduced
time to completion and increased power output during both
the 4 km (2.8% and 5%, resp.; 𝑃 < 0.05) and 16 km TT (2.7%
and 6%, resp.; 𝑃 < 0.05) compared to the placebo treatment.

Similarly, Bailey et al. [218] supplemented eight healthy,
recreationally active men with 0.5 liters of BRJ (5.5mmol⋅d−1
of NO

3

−) or a low-calorie black currant juice cordial (negli-
gible NO

3

− content) for 6 days while performing moderate
(80% gas exchange threshold) and intense cycling (70% of
the difference between the power output at the gas exchange
threshold and VO

2 peak) protocols during the last 3 days.
BRJ ingestion increased the average plasma nitrite by 96%
and increased the time to task failure by ∼16% during fixed
high intensity exercise. The authors concluded that increased
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dietary inorganic NO
3

− consumption from BRJ has the
potential to improve high-intensity exercise tolerance.

These data confirm that BRJ improves endurance exercise
performance; however, the minimal time needed to use BRJ
for a performance benefit remains to be elucidated. One
attempt to answer this question was reported by Vanhatalo et
al. [219] in which they examined the effects of acute (1 and 5
days) and chronic (15 days) BRJ consumption on amoderate-
intensity exercise bout (90% gas exchange threshold) and an
incremental cycle ergometer ramp test (increasing work rate
by 1W every 2 sec (30W/min)) to exhaustion.

Eight healthy subjects (5 males, 3 females) consumed
either 0.5 liters BRJ (5.2mmol⋅d−1 NO

3

−) or a placebo
(blackcurrant juice cordial with negligible NO

3

− content)
for 15 days and were exercise tested on days 1, 5, and
15. Plasma nitrite was significantly increased on all test
days following BRJ compared to placebo. The O

2

cost of
moderate-intensity exercise (increase in VO

2

relative to the
increase in external work rate) was lower during BRJ and was
maintained throughout the 15 days (𝑃 = 0.002). VO

2max,
peak power output, and the work rate associated with the
anaerobic threshold were all higher following 15 days of BRJ
consumption compared to placebo and baseline conditions.
In addition, BRJ systolic blood pressure was significantly
lower at 2.5 hours after ingestion as well as 2, 12, and 15 days
after ingestion compared to PL (−3%; 𝑃 < 0.05). Diastolic
blood pressure decreased with BRJ compared to PL (−5%;
𝑃 < 0.01).

The authors concluded that acute (1–5 days) dietaryNO
3

−

supplementation significantly decreased blood pressure and
the O

2

cost of submaximal exercise and increased VO
2max

and peak power output and these outcomes were maintained
for at least 15 days with continued BRJ supplementation
[219]. While most studies agree with these findings [227–
229], others note that highly trained athletes (averageVO

2max
of 72 ± 4mL⋅kg−1⋅min−1) may not have the same response
to BRJ [230], suggesting that the impact of BRJ may be
influenced by the training status of the individual.

In nonathletic populations, the impact of BRJ also has
a significant positive impact on endurance performance.
Kenjale et al. [231] provided 8 patients with peripheral
arterial disease either 0.5 liters of BRJ (18.1mmol⋅L−1 NO

3

−)
or an isocaloric placebo on two separate occasions while
performing an incremental, graded treadmill running test
and demonstrated an increased exercise tolerance (walked
18% longer before claudication pain onset and experienced a
17% longer peak walking time), and decreased fractional O

2

extraction.These findings support BRJ to enhance peripheral
tissue oxygenation in hypoxic areas and increase exercise
tolerance in individuals with peripheral arterial disease.Thus,
strong scientific evidence supports BRJ supplementation as
an effective ergogenic aid for both athletes and nonathletes
alike in order to improve endurance/aerobic exercise perfor-
mance.

Practical Use. It is important to note that the acute dose of
BRJ used in most research studies is approximately 0.5 liters
or ∼16 fl. oz. There are several ways to incorporate BRJ into

an athlete’s diet. One strategy is to prepare the BRJ from the
whole beets using the following technique: remove the stalks
and thoroughly wash the beets, cut into cubes, submerge in
water, bring to a boil and then simmer for 45 minutes until
beets are tender, allow to cool, pour off the fluid, and place
in refrigerator (lasts up to 5 days) or freeze (up to 3 months).
Consume 16 fl. oz. alone or mixed with another antioxidant-
rich juice (tart cherry, grape, cranberry, and pomegranate) on
endurance exercise days. Another technique is to thoroughly
blend 2-3 whole beets (stalks removed) in a food processor,
blender, or juice compressor.

6.2. Caffeine. The mechanisms through which caffeine
enhances performance, as well as the practical considerations
for caffeine use, were previously discussed in relation to
anaerobic performance. In addition to the potential for
caffeine to enhance anaerobic performance, meta-analysis
has indicated it is more effective for enhancing aerobic
performance [123].

Several recent studies have demonstrated the beneficial
influence of caffeine on endurance performance. In 10 well-
trained cross-country skiers, 6mg⋅kg−1⋅BW of caffeine con-
sumed 45 minutes prior to exercise led to better performance
and reduced rating of perceived exertion (RPE) during an
8 km double-poling time trial [232]. Similarly, in trained
cyclists, 200mg of caffeine consumed 60 minutes before
exercise improved 40 km time trial performance [233], and
5mg⋅kg−1⋅BW of caffeine consumed 60 minutes before exer-
cise, either in supplement form or from coffee, improved
performance during an approximately 45 minute time trial
with a target of 70% of maximal work output [137]. In
addition, 3mg⋅kg−1⋅BW of caffeine consumed 90 minutes
prior to exercise has been shown to improve performance
during an approximately 60 minute work-based time trial
during hot conditions [234].

6.3. Carbohydrate and Fat Intake. Although protein con-
tributes to energy production during E exercise, it is a
small contribution relative to fat and carbohydrate [235]. As
such, optimalmacronutrient intake for supporting the energy
demands of E athletic performance is primarily related to fat
and carbohydrate.

Storage capacity for glycogen is greatly limited com-
pared to fat and is therefore more tightly regulated [236].
Furthermore, reduced glycogen availability is commonly
associated with fatigue [237–239], which implies that it may
be advantageous to adjust macronutrient intake in a manner
that either spares glycogen or reduces dependency on it. Two
contrasting strategies for reducing dependency on glycogen
are increasing carbohydrate intake to maintain high glucose
and glycogen availability or restricting carbohydrate intake to
promote adaptations that increase reliance on fat oxidation.

Mechanisms. Despite the well-established associations
between glycogen depletion and fatigue, the mechanisms
are not well understood [237–239]. However, it is clear that
shifts in macronutrient intake alter the balance between fat
and carbohydrate oxidation. In contrast to carbohydrate
oxidation, which is largely influenced by carbohydrate intake,
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fat oxidation is influenced more so by carbohydrate intake
than fat intake [236, 240]. More specifically, fat oxidation
increases as carbohydrate intake decreases [236, 240].

Carbohydrate metabolism inhibits fat oxidation, and one
mechanism for this has been eloquently isolated to the
carnitine palmitoyltransferase (CPT) system, which trans-
ports long-chain fatty acids through the inner mitochondrial
membrane. Infusion of glucose and insulin has been shown to
inhibit oxidation of long-chain fatty acids, but not medium-
chain fatty acids, implicating the CPT system as a location of
inhibition [241]. Similar results have been observed in con-
junction with elevated levels of malonyl CoA [242], which is
known to inhibit the CPT system [243]. Furthermore, insulin
activates acetyl CoA carboxylase (ACC), which catalyzes the
production of malonyl CoA [244]. As such, carbohydrate
intake is likely to inhibit fat oxidation by promoting insulin
release, which then increases production of malonyl CoA by
ACC and, in turn, inhibits the CPT system from transporting
long-chain fatty acids into mitochondria [243, 245].

In addition to acute shifts in substrate selection, con-
sistent changes in macronutrient intake can promote adap-
tations that may further enhance energy metabolism. For
example, 5 days of reduced carbohydrate and increased fat
intake in actively training cyclists increased genetic expres-
sion in skeletal muscle for fatty acid translocase (FAT), fatty
acid binding protein, and𝛽-hydroxyacyl CoAdehydrogenase
(𝛽-HAD), all of which are related to fat oxidation [246].
Similarly, 2 days of reduced carbohydrate and increased fat
intake following glycogen depleting exercise led to increased
expression for FAT and uncoupling protein 3 (UCP3), while
a higher carbohydrate diet led to increased expression for
glucose transporter type 4 and glycogenin [247]. In contrast,
even without a change in regular diet, the consumption of
glucose during moderate exercise has been shown to inhibit
expression of FAT, UCP3, and CPT1 compared to the same
exercise performed in a fasted state [248].

In addition to enzymatic changes, reduced carbohydrate
and increased fat intake have been shown to increase intra-
muscular fat storage in conjunction with a lower respiratory
quotient during exercise in both trained [249–251] and
untrained [252] subjects. Although reduction of carbohydrate
intake typically results in lower glycogen levels compared to
a high-carbohydrate intake [251, 252], similar glycogen levels
were maintained in one trial in conjunction with increased
intramuscular fat and decreased respiratory quotient during
exercise [250].

Evidence. It is well established that carbohydrate consump-
tion prior to or during prolonged exercise enhances per-
formance [238, 253–255]. In contrast, a number of trials
have shown a high-fat and reduced-carbohydrate diet to
increase fat oxidation or reduce reliance on glycogen during
exercise, but with mixed effects on performance, ranging
from deleterious to advantageous [250, 252, 256–267]. A
meta-analysis of 38 trials found high-carbohydrate intake
to be more beneficial, but the results were concluded to be
unreliable due to heterogeneity [268]. Furthermore, benefit
was minimal for trained subjects [268], and the results were
skewed by intervention durations of less than 7 days, which

may have not been enough time for adaptation to reduced
carbohydrate intake [262, 268].

Given that carbohydrate restriction reduces glycogen
[251, 259, 262, 263, 269, 270], limited capacity for high-
intensity exercise is expected. However, the evidence ismixed
[250, 257–259, 265, 266, 270–272], with indication that it
is possible to maintain high-intensity exercise capacity even
when carbohydrate is restricted to less than 10% of energy
intake [259, 270–272]. Furthermore, normal glycogen levels
and thus performance can be maintained with moderate
carbohydrate restriction [250, 252], as well as with sup-
plementation of carbohydrate during the exercise bout, if
needed.

Practical Use. It is commonly recommended that athletes
follow a high-carbohydrate diet to replenish glycogen and
maintain blood glucose [92, 273]. However, a high-fat and
reduced-carbohydrate diet may be an effective alternative
[237, 274, 275]. The equivocal evidence indicates that a
wide range in the ratio of fat and carbohydrate intakes can
support high-level performance, although the enhancements
in fat utilization observed with carbohydrate restriction are
unlikely to have ergogenic value beyond that of a high-
carbohydrate diet [276–278]. Despite this, fat adaptation
can still be compatible with optimal performance and may
have beneficial implications for weightmanagement, training
adaptation, and metabolic health. A meta-analysis of 87
trials [15] and a number of more recent trials [271, 279,
280] have shown carbohydrate restriction to have a more
favorable influence on body composition during weight loss,
particularly when combined with resistance training [281–
283]. Furthermore, carbohydrate restriction has clearly been
shown to have a highly favorable effect on cardiovascular and
metabolic risk factors [284–289]. It has been suggested that
only a quarter of the population can tolerate the current rec-
ommendations for carbohydrate intake without developing
signs of metabolic dysfunction [275]. Although athletes are
less susceptible [275], the presence of metabolic risk factors
in athletes is not rare, especially in sports that favor a heavier
body weight [290, 291]. As such, a high-fat and carbohydrate-
restricted diet can be a valuable alternative for athletes who
need to manage body weight or have signs of metabolic
impairment. In addition, the lower glycogen levels that result
from carbohydrate restriction may enhance adaptations to
endurance training [273, 292, 293].

Overall, a high-carbohydrate intake is not the only way
to support optimal endurance performance. However, car-
bohydrate intake is likely to be more important for high-
intensity performance [278, 294]. Furthermore, there may be
considerable variation in the optimal macronutrient ratio for
each athlete [256, 262]. Given the equivocal evidence, athletes
should determine their optimal ratio of fat and carbohydrate
intakes based on a combination of factors including the
demands of their sport, their individual response to different
macronutrient ratios, and any concerns related to health
or body composition. Considerations related to health and
individuality are especially applicable to nonelite athletes,
who have less reason to prioritize performance over wellbe-
ing. One strategy to determine an ideal and individualized
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macronutrient ratio, which would be best implemented dur-
ing the off-season, is to restrict carbohydrate for several weeks
and then gradually increase carbohydrate intake until the
minimal effective dose needed to sustain performance can be
identified. This may include carbohydrate supplementation
during exercise, if needed. However, it is important to under-
stand that sufficient adaptation to carbohydrate restriction
may take 2–4 weeks [262] and that further adaptation may
continue beyond the 4th week [295]. Another approach is
to restrict carbohydrate intake long enough to promote fat
adaptation and then increase carbohydrate intake prior to
or during a competition in order to restore glycogen levels.
Enhanced fat oxidation has been shown to persist with such
a strategy, although to a lesser extent, and with mixed effects
on performance [296].

6.4. Fluid Hydration: Glycerol and Electrolytes. Fluid intake
and adequate hydration are critical during E training ses-
sions and competition events. Fluid intake helps to main-
tain hydration, body temperature (thermoregulations), and
plasma volume. For events lasting longer than one hour,
athletes need fluids containing carbohydrates and electrolytes
rather than water alone. Reduction in body water, availability
of carbohydrates, and an inadequate electrolyte balance
during prolonged exercise events will hamper performance
and may lead to serious medical disorders such as heat
exhaustion, heat stroke, or hyponatremia. A 1% reduction
in body weight due to water loss may evoke undue stress
on the cardiovascular system accompanied by increases in
heart rate and inadequate heat transfer to the skin and
the environment, an increase in plasma osmolality, and a
decrease in plasma volume and affect the intracellular and
extracellular electrolyte balance [297].

Water loss occurs through respiration, sweat, feces, and
urine; however, during prolonged endurance most water is
lost in sweat, especially during high environmental temper-
atures. About 580 kcals are lost for every liter of sweat that
is evaporated [298]. Loss of body fluid during endurance
exercise can be determined by changes in body weight; each
kg of body weight loss accounts for about 1 liter of fluid loss.
Sports drinks with adequate concentrations of electrolytes
and carbohydrates promotes maintenance of homeostasis,
prevents injuries, and maintains optimal performance [299].

Mechanisms. Regulation of fluid balance is a remarkably
complex process. Water is lost from the body through
the skin, feces, lungs, and kidneys. Water retention by the
kidneys is directly controlled by vasopressin produced in
the hypothalamus. Production of vasopressin is affected by
hypothalamic receptors sensitive to plasma osmolarity and
stretch receptors in the atria of the heart, carotid arteries, and
aorta.

The kidneys actively reabsorb sodium to regulate extra-
cellular fluid osmolarity and this is largely controlled by
aldosterone produced by the adrenal cortex. As serum osmo-
larity decreases, the adrenal cortex release of aldosterone
is triggered resulting in more sodium reabsorbed and an

increase in osmolarity. The kidneys also regulate aldos-
terone production through the rennin-angiotensin mech-
anism. Receptors in the juxtaglomerular complex of the
kidney tubules respond to low volume (pressure) by releasing
rennin, which leads to a hormonal cascade effect resulting in
production of angiotensin II, a potent vasoconstrictor, which
stimulates the release of aldosterone.

Prolonged E exercise significantly taxes the body’s ability
to regulate hydration status, body temperature, and elec-
trolytes, thusmaintaining hydration during exercise is critical
to optimal performance. It is recommended that athletes
ingest ∼500mL of fluid 1-2 hours prior to performance and
continue to consume cool drinks in the amount of 4–6 ounces
every 20 minutes during exercise to replace sweat losses
[297, 300, 301]. The rate of water ingestion should not exceed
the rate of water loss, as it might result in water retention,
weight gain, and exercise-associated hyponatremia [301, 302].

Evidence. Consumption of sports beverage drinks during
exercise is recommended to meet carbohydrate energy needs
and to replace sweat, water, and electrolyte losses [297].
The majority of the literature supports fluid, carbohydrate,
and electrolyte replacement during prolonged (≥60 minutes)
endurance exercise. Replacement of Na+ and K+ are essential
to maintain plasma volume and hydration [303]. Different
exercise tasks (metabolic requirements, duration, clothing,
and equipment), weather conditions, and other factors such
as genetic predisposition, heat acclimatization, and training
status influence sweating rate and electrolyte concentrations
and determine fluid needs [297].

Carbohydrate and electrolyte content, palatability, color,
odor, taste, temperature, and texture of a sports drink can
increase fluid consumption before, during, and after exercise
[297, 304] and therefore improve performance. Athletes
should ingest 4 to 8 ounces of a 6%–8% carbohydrate-
electrolyte sports drink every 10 to 20minutes during exercise
and avoid carbohydrate concentrations over 8% as this will
delay gastric-emptying and should be avoided. Increasing
plasma volume can positively affect performance and sodium
in sports drinks may help achieve this by improving glucose
and water absorption in the small intestine. Sodium is
important in rehydration, especially during exercise in the
heat [305].

Galloway and Maughan [306] studied six healthy males
who cycled to exhaustion while ingesting either no drink, a
15% carbohydrate-electrolyte drink, or a 2% carbohydrate-
electrolyte drink. Consumption of the 2% carbohydrate-
electrolyte drink leads to a lower serum osmolality and
reduced plasma volume deficits. Potassium is important in
rehydration after exercise due to the increased retention
of fluid in the intracellular space [305]. Numerous recent
studies [305, 307–310] have confirmed that during E events,
consumption of glucose-electrolyte solutions improved per-
formance greater than water alone.

Several factors including fluid, fuel substrate, and elec-
trolyte depletion have been implicated in the reduction
of endurance performance. Recent investigations have sug-
gested that consumption of lactate and fructose in energy-
electrolyte hydration beverages improves performance and
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delays fatigue compared to glucose-electrolyte beverages
via increased substrate oxidation and enhanced buffering
capacity [311].

Hyperhydrationmay be induced by the oral consumption
of glycerol which induces an osmotic gradient that favors
greater renalwater absorption. Studies examining the effect of
hyperhydration by glycerol consumption on performance are
equivocal. Several studies have shown performance enhance-
ments [298, 312, 313] while others have shown no difference
when comparing hyperhydration by glycerol consumption
to hyperhydration by water or flavored-water consumption
[314–316]. Recently, investigations have examined the effect
of glycerol ingestion and fluids of varying tonicities (0.9%
versus 0.45% NaCl) during the rehydration period following
exercise-induced dehydration (∼4% of body weight) and
prior to exercise in the heat [307, 317]. Rehydration with
either a 0.45% or 0.9% NaCl solution resulted in similar
fluid restoration, similar cardiovascular, thermoregulatory,
and exercise performance responses and were superior to no
fluid ingestion [317]. Glycerol ingestion during the rehydra-
tion period was found to significantly prolong subsequent
exercise time to exhaustion in the heat but was not associated
with specific thermoregulatory or cardiovascular advantages
compared to rehydration with water alone [307].

Practical Use. The most recent data suggest that multiple-
transportable-carbohydrates containing a combination of
glucose/maltodextrin + fructose in combination with elec-
trolytes are the most favorable beverages to ingest during
endurance exercise to enhance performance. Specifically, a 6–
8% carbohydrate mixture of glucose and fructose (GF) plus
an electrolyte solution containingNaCl and Kwill further aid
endurance performance [318]. Coconut water is also gaining
in popularity due to its high K concentration. Mixing the
coconut water with a GF plus NaCL solution may serve
as another electrolyte beverage to enhance hydration and
performance.

6.5. Modified and Resistant Starches. As previously men-
tioned (see carbohydrate intake), endurance athletes must
maintain blood glucose and replenish glycogen stores during
and following longer bouts, respectively [92, 273]. Indeed, the
type of CHO (glycemic index and gastric-emptying rate) in
relation to the timing of exercise (pre- and during exercise)
is critical in the maintenance of blood glucose and insulin,
sparing hepatic glycogen stores, and manipulating substrate
utilization for endurance exercise. The blood glucose and
insulin responses vary depending on CHO digestion and
gastric-emptying rate and need to be considered prior to
competition. In efforts to minimize and control the spike in
blood glucose and insulin fromCHO intake prior to exercise,
research has turned to the use of modified and resistance
starches as CHO alternatives.

Mechanism. Modified starches have gained popularity
because of the benefits to digestion and gastric-emptying
rate mostly due to the amylose : amylopectin ratio. In
general, the higher the ratio of amylose : amylopectin,
the greater the resistance to digestion [319], blunting

the initial response of blood glucose and insulin. This spares
glycogen stores and enhances fat oxidation. However, it
should be noted that despite the amylose : amylopectin
ratio the gastric emptying and absorption rates may also be
manipulated by modifying the different starches consumed
(i.e., hydrothermal modification) [253].

Evidence. Stephens et al. [320] measured the effects of a
high molecular weight (HMW) rapidly digested modified
starch commercially known as Vitargo, a low molecular
weight glucose polymer (LMW) (similar to commercial
sports drinks), and sugar-free water (SFW) on blood glucose
and insulin for two hours after a glycogen depleting exercise
(GDE) (60min at 75% of VO

2max). Following the two-hour
postprandial period each individual performed a 15min “all-
out” bout of cycling. Both the HMW and LMW starch
elevated blood glucose and insulin during the two-hour
recovery versus the SFW, with the initial response (<60min)
of HMWbeing significantly greater than the LMW. A greater
work output (10%) during the 15min cycle performance was
found when consuming HMW compared to LMW and SFW
suggesting that the rise in blood glucose and insulin allowed
replenishment of glycogen stores from the HMW between
exercise sessions [320].

Jozsi et al. [321] tested blood glucose and insulin response
to amylose and amylopectin versus glucose andmaltodextrin.
Amylose in the form of a resistance starch (see Section 7)
acts similar to a dietary fiber allowing increased fat oxidation
by blunting glucose and insulin prior to exercise, whereas
amylopectin (as waxy maize starch) responds similar to a
normal CHO (i.e., glucose). In their study [321] male cyclists
(𝑛 = 8) completed a GDE (60min at 75% of VO

2max) where
they consumed either resistance starch (100% amylose), waxy
maize (100% amylopectin), glucose, or maltodextrin as 65%
(∼1950 kcals) of a 3,000 kcal diet for twenty-four hours after
GDE. Following the GDE and CHO consumption the indi-
viduals performed a thirty-minute cycling time trial. Twenty-
four hours after the GDE, immediately before exercise the
resistance starch (100% amylose) resulted in significantly
lower muscle glycogen concentrations compared to waxy
maize (100% amylopectin), glucose, and maltodextrin. How-
ever, no differences were found between the four types of
CHOduring the thirty-minute cycling time trial [321].There-
fore, a high amylopectin starch (100%) [321] and a HMW
rapidly digesting starch both [320] increase blood glucose
and insulin following a glycogen depleting exercise, while
high amylose resistant starch (100%) results in a lower blood
glucose and insulin response, thereby inhibiting glycogen
resynthesis [321].

However, modification of these starches (i.e., hydrother-
mal modification) may decrease the digestion time altering
the response of blood glucose and insulin regardless of the
amylose : amylopectin ratio [253]. Roberts et al. [322] mea-
sured a hydrothermally modified and slow digesting starch
(HMS) consisting primarily of amylopectin (95%), commer-
cially known as UCAN versus maltodextrin (1 g⋅kg−1⋅BW)
during both steady state (150min submaximal cycling bout
at 70% VO

2 peak) and exhaustive (100% VO
2 peak) exercise,

as well as during 75 minutes of recovery. There was no
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significant difference in performance between either HMS or
maltodextrin. However, both the initial and recovery periods
of glucose and insulin were blunted with HMS compared
to maltodextrin, allowing an increase in fat oxidation [322].
Thus, despite the HMS consisting of amylopectin (95%)
known to increase postprandial glucose and insulin [321],
modification of the HMS resulted in a lower postprandial
glucose and insulin, similar to that of a high amylose starch
[321]. This finding suggests that chemical modification of
amylopectin as HMS may augment fat oxidation and spare
muscle glycogen.

Practical Use. Although performance benefits from modified
and resistant starches appear to be minimal, the glucose and
insulin responses during exercise and recovery are optimal
for both fat oxidation and glycogen resynthesis. Therefore,
in efforts to minimize glucose and insulin secretions and
promote a greater reliance on fat oxidation it may be recom-
mended to consume (1 g⋅kg−1⋅BW) either a modified-HMW
(UCAN) or 100% amylose starch prior to and during exercise.
Athletes who will be competing in multiple events or are
dependent on the replenishment of glycogen stores between
exercises are recommended a high molecular weight rapidly
digesting starch, such as Vitargo. Other whole food sources of
resistant starches include cooked and cooled potatoes, whole
grains (rice, pasta, etc.), and legumes and, thus, should be
consumed prior to and between extended bouts of exercise.

7. PEDs for Energy Metabolism and
Body Composition

Optimal body composition plays a critical factor in athletic
performance and it varies among different types of athletes
and sports. It is well known that energymetabolism and body
composition are directly related to each other and nutritional
factors are the primary determinants of each (Table 4).

7.1. Caffeine. The practical use of caffeine, as well as mech-
anisms through which it may enhance performance and
energy metabolism, was previously discussed in relation to I
and E athletic performance. In regard to energy metabolism,
a meta-analysis including 6 trials found caffeine consump-
tion to increase daily energy expenditure by approximately
100 kcal [323]. However, fat oxidation was found to only
increase when caffeine was combined with catechins [323],
indicating that teamay be a favorable source of caffeine for the
purpose of weight management. In this meta-analysis, caf-
feine intake ranged from 150 to 1604mg⋅d−1 [323]. Consistent
with the above results, our laboratory found a 5mg⋅kg−1⋅FFM
dose of caffeine to increase energy expenditure in men [324]
and women [325]. Although fat oxidation was not measured
in the women, it did not change in themen [324]. In addition,
the increase in energy expenditure was reduced for older
versus younger women [325], but this was not the case with
the men [319, 324] suggesting a gender difference in the
influence of age on the metabolic response to caffeine.

In contrast to previous results, two recent trials found
5mg⋅kg−1⋅d−1⋅BW of caffeine, consumed for 4 days, to have

no influence on resting, active, or total energy expenditure in
young men [326, 327]. However, in both trials, the caffeine
was divided into two doses, one of which was consumed with
breakfast and the other with lunch. Furthermore, although
participation was restricted to individuals who habitually
consumed less than 100mg⋅d−1 of caffeine, actual caffeine
consumption prior to the trials was not reported. As such, the
previously described evidence, indicating that caffeine does
increase energy expenditure, appears to be more reliable.

7.2. Capsinoids. Capsaicin, the known pungent flavor of hot
red chili peppers, has become a popularly marketed natural
spice for enhancing thermogenesis (i.e., catecholamines, fat
oxidation) and improving satiety [328].

Mechanism. Capsaicin will bind to the TRVP1 passively
absorbing through the stomach and upper portion of the
small intestine. After being released into circulation, cap-
saicin will be transported to the adrenal gland to release cate-
cholamines, thereby increasing SNSa and energy expenditure
[328, 329].

Evidence. Research has shown capsaicin to increase SNSa
[330–334], energy expenditure [329, 335–337], and substrate
oxidation [329, 330, 335, 336, 338], although these findings
are not universal [339, 340]. The effectiveness of capsaicin to
increase thermogenesis and satiety may differ due to vary-
ing dosages and with individuals who frequently consume
capsaicin compared to nonusers. More recently, Ludy and
Mattes [329] tested the effects of capsaicin (1 g red pepper) on
energy expenditure, fat oxidation, and satiety in individuals
who regularly consume red peppers versus nonusers in both
oral and capsule forms.The postprandial energy expenditure
increased in both groups following both oral and capsule
form. Interestingly, fat oxidation increased only with the oral
form with satiety and energy intake decreasing in only the
nonusers. Because capsaicin binds to the TRPV1 in the oral
cavity activating heat and pain sensitive sensory neurons
it is suggested that when consumed orally rather than in
capsule form capsaicin’s influence on substrate oxidationmay
be greatest [329].

Because the pungent sensory burn and pain elicited from
capsaicin may cause difficulty in palatability, the capsaicin-
like compound capsiate, in the form of nonpungent red pep-
per “CH-19 Sweet,” is an alternative for those unaccustomed
or opposed to eating spices. Despite the difference of activa-
tion sites, both capsaicin and capsiate bind with high affinity
to TRPV1 located in the gut, increasing SNSa [338, 341]
without the elevated systolic blood pressure and heart rate
response reported with capsaicin [334]. As documented with
capsaicin, similar supporting research has found capsiate to
increase SNSa [334, 342], energy expenditure [342–344] and
substrate oxidation [338, 342–344] in higher dosages. Josse
et al. [342] found increases in SNSa, energy expenditure,
and fat oxidation with 10mg. Likewise, Galgani and Ravussin
[345] found a 54 kcal⋅d−1 increase in RMR when individuals
consumed 3 and 9mg compared to placebo, and Lee et al.
[344] reported increases in postprandial energy expenditure
and fat oxidation with 3 and 9mg. Thus, when consumed
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in higher concentrations (3–10mg) in capsule form, capsiate
appears to elicit the greatest thermogenic response.

Practical Use. Individuals not accustomed or willing to
consume spices, capsaicin, and capsiate may serve as effective
PED supplements to augment and optimize postprandial
thermogenesis and substrate oxidation. Common sources of
capsaicin in market stores are chili powder, chili peppers,
cayenne pepper, jalapenos, and habaneros. A lower dosage of
2mg to a higher dosage of 10mg is recommended for indi-
viduals with varying thresholds and tolerance, with capsiate
as an alternative to those unwilling or unable to consume the
pungent capsaicin. However, those unaccustomed to eating
capsaicin should consider timing because consumption of
the spice prior to exercise has been reported to cause
stomach discomfort, nausea, intestinal cramping, flatulence,
and burning bowel movements in male athletes [346].

7.3. Carnitine. Carnitine is naturally synthesized in the body
from the essential amino acids lysine and methionine [347].
Based on its role in fatty acid transport, carnitine has the
potential to support weight management by facilitating fat
oxidation.

Mechanism. Carnitinemakes up the substrate to CPT1, a rate-
limiting step in fatty acid oxidation within skeletal muscle
[348]. It is logical to assume that consuming exogenous
carnitine via diet or supplementation would be beneficial by
inhibiting carbohydrate utilization and augmenting fatty acid
oxidation through enhanced translocation of long-chain acyl
groups across the inner mitochondrial membrane [348, 349].

Evidence. Recently, Stephens et al. [348] tested the effects
of 12 weeks of L-carnitine (CAR) in combination with a
CHO consumed twice daily on muscle expression of genes
associated with metabolism, body composition (DEXA), and
energy expenditure during low intensity exercise (50% of
VO
2max for 30min) in twelve males. Participants ingested

either the CAR + CHO, 𝑛 = 6 (1.36 g + 80 g l-CAR +
CHO), or CHO, 𝑛 = 6 (80 g) first thing in the morning and
again 4 hours later. Those who consumed CAR + CHO had
a 20% and 200% increase in total carnitine and long-chain
acyl-CoA, respectively (𝑃 < 0.05), and elevated expression
of genes involved in fatty acid metabolism. There were no
changes in body composition in the CAR + CHO group;
however over 12 weeks there was a 1.9 and 1.8 kg increase
in body mass and whole-body fat mass, respectively, in the
CHO group. Furthermore, there were no changes in whole-
body energy expenditure in the CHO group, but there was
a significant increase of 6% in the CAR + CHO group
during the 30min low-intensity exercise.These findings from
Stephens et al. [348] suggest that the consumption of CAR +
CHO for twelve weeks prevented increased body fatmass and
in turn was associated with a greater energy expenditure and
fat oxidation during low-intensity exercise, as supported in
previous research [350].

Practical Use. Carnitine is found in abundance throughout
the skeletal muscle cells of the body [351] and may be

ingested through diet containing red meat, fish, poultry, and
dairy products (for amount of carnitine per each nutrient,
see Rebouche [352]) or can be biosynthesized within the
liver and kidneys primarily from the essential amino acids
lysine and methionine [351, 352]. Those who consume a
vegetarian diet are estimated to receive ∼90% of their total
available carnitine from endogenous synthesis due to the
lack of available carnitine in plant foods, while omnivores
receive one-eighth to one-half of total carnitine through diet
[352]. Therefore athletes consuming a predominately plant
based diet may consider commercially produced carnitine
supplements which have been shown to be safe in humans
[353].

7.4. Dietary Fiber and Resistant Starches. Resistance starches
(RS) are touted as weight loss wonder foods because they
have digestive properties and satiating effects similar to those
of dietary fibers [354]. In addition, RS may further facilitate
weight management by increasing fat oxidation and total
energy expenditure and improving glycemic regulation [354].

Mechanism. In comparison to normal dietary starches (DS),
RS lowers the glycemic response by passing digestion in the
small intestine and moving directly into the large intestine,
where it is fermented into short-chain fatty acids [354,
355]. Of the five types of RS1, RS2, RS3, and RS4 are
most commonly measured in humans for their effects on
postprandial glycemia/insulinemia responses and gut satiety
peptides that influence weight loss or weight maintenance
(i.e., energy expenditure). RS1 is physically inaccessible to
digestive enzymes from the presence of seed coats (e.g.,
whole grains), RS2 is a high amylose maize starch comprised
primarily of 𝛼-1,4 glycosidic links, RS3 is retrograded starch
(e.g., pasta or rice that has been cooked then cooled), and
RS4 is chemically modified to be resistant to digestion
[354, 356].

Evidence. Following consumption of RS2, the postprandial
glycemia/insulinemia responses in healthy men and women
have been shown to significantly decrease compared to DS
[357, 358]. Interestingly though, when RS2 was adjusted as
0%, 2.7%, 5.4%, and 10.7% (percentage of total carbohydrate)
at 30% of an individuals’ daily energy needs there were no
differences in postprandial glycemia/insulinemia, suggesting
dosages up to 10% have little impact on glycemia and that
a combination of additional ingredients might affect RS2
function [359]. Among the other types of RS, RS3 has been
shown to decrease postprandial glycemia [360], and RS4
has resulted in decreases in both postprandial glycemia and
insulinemia [361–363].

In addition to improved postprandial glycemic/insulin-
emic responses, RS2 and 3 have shown to positively alter gut
satiating peptides (glucose-dependent insulinotropic pep-
tide (GIP)) [358], suppress energy intake [357], improve
satiation/appetite [358, 364], and significantly increase fat
oxidation [359], although these findings are not universal
[357, 359, 365, 366]. Yet, despite the conflicting results
of RS2 and RS3, RS4 has consistently reported favorable
postprandial glycemia/insulinemia responses [355, 363, 367]
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and beneficial increases in energy expenditure in healthy
individuals [363].

To determine differences in postprandial glycemia/insu-
linemia responses between RS (RS2 and RS4 cross-linked,
XL) and a normal carbohydrate (dextrose), Haub et al. [355]
tested eleven healthy males (𝑛 = 4) and females (𝑛 =
7) for two hours after consuming 30 g of RS4XL, RS2, or
dextrose combined with water. Postprandial glucose and
insulin responses were significantly lower in the RS4XL and
RS2 compared to dextrose, with RS4XL being significantly
lower than that of the RS2 [355]. Because RS is more
commonly consumed in combination with foods rather than
water alone, Al-Tamimi et al. [367] examined the effects
RS4XL in combination with additional ingredients in the
form of a nutrition bar and found that RS4XL compared to
wheat starch resulted in significantly lower 2 hr postprandial
glycemia/insulinemia response.

Shimotoyodome et al. [363] tested RS4 (hydroxypropyl-
distarch, HDP) versus waxy maize starch (WMS) using a
pancake meal on the 3 hr postprandial glycemic/insulinemic,
GIP, and energy expenditure response in healthy lean
males. HDP resulted in significantly lower postprandial
glycemia/insulinemia and GIP, as well as increased fat oxi-
dation and energy expenditure compared to WMS. Research
supports suppressed postprandial glycemia/insulinemia by
both RS2 and RS4; interestingly, only RS4 has elicited signif-
icant increases in energy expenditure [363].

Practical Use. Current research suggests the effects of RS4
(RS4XL and HDP) on postprandial glycemia/insulinemia,
gut satiety peptides GIP, and augmented energy expenditure
and fat oxidation [355, 363, 367] are greater than those
of RS2. A suggested dosage of 20–40 g of RS4 consumed
at breakfast or a late evening snack may facilitate greater
appetite suppression, postprandial glycemia and insulinemia,
and increase energy expenditure.

7.5. Medium-Chain Triglycerides. Medium-chain triglyc-
erides (MCTs) consist of fatty acids ranging in length from
6 to 12 carbons [368]. Although MCTs appear to have little
influence on performance, benefits related to energy balance
and weight loss are better supported [369].

Mechanisms. The benefits of MCT consumption may be
explained by the unique ways their constituent fatty acids
are absorbed and metabolized. Prior to reaching systemic
circulation, long-chain fatty acids are reincorporated into
triglycerides, assembled into chylomicrons, and released into
lymphatic circulation [370]. In contrast, medium-chain fatty
acids enter portal circulation directly through the enterocyte
[370]. As such, medium-chain fatty acids enter circulation
more rapidly and are primarily absorbed by the liver [368].
Once absorbed, medium-chain fatty acids pass through the
inner mitochondrial membrane independently of the CPT
transport system and can therefore be rapidly oxidized [368].
This, alongwith the poor binding potential betweenmedium-
chain fatty acids and fatty-acid-binding protein, limits the
lipogenic potential of MCTs [368]. As such, MCTs are more

likely to be utilized for energy and less likely to be stored as
body fat.

MCTs also have the potential to increase energy expen-
diture [371]. Urinary noradrenaline excretion has been found
to increase in conjunction with increased energy expenditure
following MCT consumption [372]. Furthermore, in rats fed
MCTs, an increase in energy expenditure was prevented with
administration of propranolol [373]. Therefore, increased
SNSa may be the underlying mechanism.

Evidence. In a recent systematic review [371], 6 of 8 trials
foundMCT consumption to improve body composition, and
4 of 6 trials identified an increase in energy expenditure [371].
However, an increase in satiety was only observed in 1 of
7 trials [371]. Some trials have shown MCT consumption
to increase average daily energy expenditure by more than
100 kcal in overweight [374] and normal-weight [372] men,
which could amount to more than 30 lbs of weight loss over
a year [375]. However, such an increase is not consistently
supported [371] and may be less notable in women [376].
Furthermore, the increase in energy expenditure induced by
MCT consumption has been shown to diminish over time
[369]. Despite this, superior weight loss has been observed in
trials lasting as long as 16 weeks [369]. However, because the
increases in energy expenditure and fat oxidation associated
with MCT consumption have been inversely correlated with
initial bodyweight,MCT consumptionmay bemore effective
for preventing weight gain than promoting weight loss [377].

In a recent trial including 7 normal-weight subjects, a
breakfastmeal containing 20 g ofMCTswas found to increase
diet-induced thermogenesis and fat oxidation compared
to the same meal with a calorically matched content of
sunflower oil [378]. Similarly, in another recent trial, the
inclusion of MCTs in a meal replacement shake led to greater
diet-induced thermogenesis compared to shakes with lesser
amounts of MCTs or noMCTs at all [379]. As such, replacing
a portion of dietary fat withMCTsmay be an effective strategy
for weight maintenance.

Practical Use. Increases in energy expenditure have been
observed with MCT intakes ranging from 8 to 35 g⋅d−1 [371].
While MCT oil is readily available, coconut oil and palm
kernel oil are two alternatives that more closely resemble
whole foods. They contain approximately 63 and 58% MCT,
respectively [380]. These oils can easily be incorporated into
the diet through cooking or by melting them for use as a
sauce or salad dressing. The meat of a coconut, although less
practical, is truly a whole food and contains approximately
19% MCT [94].

8. Summary

Advances in athletic performance training and nutrition have
prompted a reevaluation of our current practices in order
for both (training and nutrition) to work synergistically
with each other instead of in isolation to one another. The
current review, albeit novel, bridges the gap between athletic
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performance training and sports nutrition by linking the sci-
entifically validated multicomponent training model (timed-
protein feedings; resistance training; interval sprint training;
stretching/recovery training; and endurance training; PRISE)
employed by most, if not all, athletes with specific perfor-
mance enhancing diets (PEDs) to foster optimal athletic
performance. The goal of this innovative review is to provide
a new paradigm of sports nutrition that allows performance
training (PRISE) and sports nutrition (PEDs) to complement
each other instead of working apart from one another.
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frequency of meals. Its relation to overweight, hypercholestero-
laemia, and decreased glucose tolerance,” The Lancet, vol. 284,
no. 7360, pp. 614–615, 1964.



28 Journal of Nutrition and Metabolism

[21] R. Crovetti, M. Porrini, A. Santangelo, and G. Testolin, “The
influence of thermic effect of food on satiety,” European Journal
of Clinical Nutrition, vol. 52, no. 7, pp. 482–488, 1998.

[22] J. O. Hill, S. B. Heymsfield, C. McMannus III, and M. DiGiro-
lamo, “Meal size and thermic response to food in male subjects
as a function of maximum aerobic capacity,” Metabolism, vol.
33, no. 8, pp. 743–749, 1984.

[23] K. S. Nair, D. Halliday, and J. S. Garrow, “Thermic response to
isoenergetic protein, carbohydrate or fatmeals in lean and obese
subjects,” Clinical Science, vol. 65, no. 3, pp. 307–312, 1983.

[24] T. A. Churchward-Venne, L. Breen, D. M. di Donato et al.,
“Leucine supplementation of a low-protein mixed macronutri-
ent beverage enhances myofibrillar protein synthesis in young
men: a double-blind, randomized trial,” The American Journal
of Clinical Nutrition, vol. 99, no. 2, pp. 276–286, 2014.

[25] S. M. Phillips, “A brief review of critical processes in exercise-
induced muscular hypertrophy,” Sports Medicine, vol. 44, sup-
plement 1, pp. S71–S77, 2014.

[26] D. R. Moore, M. J. Robinson, J. L. Fry et al., “Ingested protein
dose response of muscle and albumin protein synthesis after
resistance exercise in young men,” The American Journal of
Clinical Nutrition, vol. 89, no. 1, pp. 161–168, 2009.
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