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Abstract

Background: Tissue characterisation with cardiovascular magnetic resonance (CMR) parametric mapping has the
potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by late
gadolinium enhancement. Native T; mapping in particular has shown promise as a useful biomarker to support
diagnostic, therapeutic and prognostic decision-making in ischaemic and non-ischaemic cardiomyopathies.

Methods: Convolutional neural networks (CNNs) with Bayesian inference are a category of artificial neural networks
which model the uncertainty of the network output. This study presents an automated framework for tissue
characterisation from native shortened modified Look-Locker inversion recovery ShMOLLI Ty mapping at 1.5 T using a
Probabilistic Hierarchical Segmentation (PHiSeg) network (PHCUMIS 119-127, 2019). In addition, we use the
uncertainty information provided by the PHiSeg network in a novel automated quality control (QC) step to identify
uncertain Ty values. The PHiSeg network and QC were validated against manual analysis on a cohort of the UK
Biobank containing healthy subjects and chronic cardiomyopathy patients (N=100 for the PHiSeg network and N=700
for the QQ). We used the proposed method to obtain reference Ty ranges for the left ventricular (LV) myocardium in
healthy subjects as well as common clinical cardiac conditions.

Results: T; values computed from automatic and manual segmentations were highly correlated (r=0.97).
Bland-Altman analysis showed good agreement between the automated and manual measurements. The average
Dice metric was 0.84 for the LV myocardium. The sensitivity of detection of erroneous outputs was 91%. Finally, T
values were automatically derived from 11,882 CMR exams from the UK Biobank. For the healthy cohort, the mean
(SD) corrected Ty values were 926.61 (45.26), 934.39 (43.25) and 927.56 (50.36) for global, interventricular septum and
free-wall respectively.
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Quality control, UK Biobank

Conclusions: The proposed pipeline allows for automatic analysis of myocardial native T; mapping and includes a
QC process to detect potentially erroneous results. Ty reference values were presented for healthy subjects and
common clinical cardiac conditions from the largest cohort to date using Ty-mapping images.
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Background/Introduction

Cardiovascular magnetic resonance (CMR) provides
insights into myocardial structure and function noninva-
sively, with high diagnostic accuracy and without ionis-
ing radiation. Late Gadolinium Enhancement (LGE) has
become the reference standard for non-invasive imaging
of myocardial scar and focal fibrosis in both ischaemic [2]
and non-ischaemic cardiomyopathy [3]. LGE is useful in
cardiac conditions which have stark regional differences
within the myocardium, but it cannot correctly visu-
alise myocardial pathology that is diffuse in nature and
affects the myocardium uniformly. Examples include dif-
fuse myocardial inflammation, fibrosis, hypertrophy, and
infiltration [4]. In contrast, native T1-mapping provides
quantitative myocardial tissue characterisation, without
the need for gadolinium [5]. Previous work has shown that
T1 mapping can help to detect diffuse myocardial disease
in early disease stages and aids in diagnosing the diseases’
underlying cardiac dysfunction.

Despite its recognised potential, T; mapping analy-
sis typically requires time-consuming manual segmen-
tation of T; maps. Moreover, external factors, such as
hematocrit and blood flow, impact the obtained values
and create variability that reduces the ability to separate
healthy from diseased myocardium. Several blood correc-
tion models have been proposed to limit the impact of
external factors [6—8]. However, these methods have not
been evaluated in large cohort studies. Automating T
analysis of myocardial tissue characterisation sequences
could facilitate the clinical use of T1 mapping and unlock
the potential to obtain T; data in large populations.

In recent years, deep learning methods have shown
great success in segmenting anatomical and pathologi-
cal structures in medical images [9-11]. For many tasks,
their accuracy is comparable to human-level performance,
or even surpasses it. In the context of CMR imaging,
semi-automatic and automatic techniques for cardiac cine
[9, 10] and flow [12] imaging have been developed. One
paper has proposed an automated segmentation method
for native T; maps [11]. However, this method only
extracted global left ventricle (LV) myocardial T; values,
whereas regional assessment of septal and/or focal lesion
T; values is typically used to characterise diseases [13,

14]. Furthermore, T values were only reported for healthy
subjects and a pooled group of cardiovascular diseases
(CVD), without distinguishing between different myocar-
dial disease processes and these values were not corrected
for myocardial blood volume. In this paper we add further
insight into the aforementioned areas.

Medical segmentation problems are often characterised
by ambiguities, some of them inherent to the data such as
poor contrast, inhomogeneous appearance and variations
in imaging protocol, and some due to inter- and intra-
observer variability in the annotated data used for train-
ing. To limit the effect of these factors and detect failed
cases, some groups have proposed to incorporate quality
control (QC) techniques [10, 11, 15]. We believe that mod-
eling uncertainty at a per-pixel level is an important step
in understanding the reliability of the segmentations and
increasing clinicians’ trust in the model’s outputs. Several
works have investigated uncertainty estimation for deep
neural networks [16—18]. A popular approach to account
for the uncertainty in the learned model parameters is
to use variational Bayesian methods, which are a family
of techniques for approximating Bayesian inference over
the network weights. Budd et al [19] proposed to use this
approach to automatically estimate fetal Head Circum-
ference from Ultrasound imaging and provide real-time
feedback on measurement robustness. Another approach
is to probabilistic graphical models to model the condi-
tional segmentation masks given an input image using
a conditional variational autoencoder (cVAE) approach.
Recently, Kohn [20] proposed a framework that com-
bines the cVAE framework with a U-Net architecture to
generate an unlimited number of realistic segmentation
samples. These methods can be used to automatically seg-
ment the anatomy of interest, but additionally provide a
pixel-wise uncertainty map of the confidence of the model
in segmenting the input image.

In this paper, we develop a tool for automated seg-
mentation and analysis of T; maps. We use the Proba-
bilistic Hierarchical Segmentation (PHiSeg) network [1]
to segment the images, and additionally use the gener-
ated uncertainty information in a novel QC process to
identify uncertain (and potentially inaccurate) segmenta-
tions. To the best of our knowledge this is the first time
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that segmentation uncertainty information has been used
for QC in medical image segmentation. By incorporating
this QC process, our framework automatically controls
the quality of the segmentations and rejects those that are
uncertain. We hypothesise that this method can be used
to derive high quality T; data without human interaction
from large-scale databases. Using the proposed method
we compute mean global and regional native T; values
from 11,882 subjects from the UK Biobank, which repre-
sents the largest cohort for T; mapping images to date.
We report reference values for healthy subjects and inter-
rogate typical values obtained in important relevant sub-
groups of cardiomyopathies. In addition, we investigate if
a blood correction model for T; [6] provides better dis-
crimination between healthy and diseased myocardium.
Therefore, the contributions of this paper are threefold:
novel uncertainty-based QC in the context of T; analy-
sis; investigation of myocardial T; blood correction in a
large-scale database; and the reporting of disease-specific
reference values for the T; SAMOLLI sequence.

Materials and methods

UK biobank dataset

CMR imaging was carried out on a 1.5 T scanner
(Siemens Healthineers, Erlangen, Germany). For each
subject, the SAMOLLI (WIP780B) was used to perform
native (non-contrast) myocardial T; mapping in a single
mid-ventricular short axis (SAx) slice (TE/TR/flip-angle
(FA): 1.04ms/ 2.6ms/ 35°, voxel size 0.9 x 0.9 x 8.0 mm).
The matrix size of all images was unified to 192 x 192. T
parametric maps, with pixel-by-pixel computation of the
T; values, were generated using the inline reconstruction
software installed on the scanner. Details of the full image
acquisition protocol can be found in [21].

From the UK Biobank database, we first select a cohort
of healthy subjects excluding any subjects with a history
of CVD, cardiovascular risk factors, other systemic dis-
eases or those taking medication for any systemic disease
(see all exclusion criteria in Additional file 1: Table 1).
Healthy subjects were identified as anyone with a body
mass index (BMI) <30 kg/m? and obese subjects were
identified as anyone with a BMI >30 kg/m2. From the
healthy group we excluded anyone with a 10-year Fram-
ingham Risk Score [22] above 10% to restrict the group
to only the healthiest subjects. Subsequently, we identified
non-overlapping groups of patients using ICD10 codes.
We included 7 relevant groups of CVD: aortic stenosis
(AS), atrial fibrillation (AF), cardiac sarcoidosis, chronic
coronary artery disease (CAD), dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM) and hyper-
tension (without a history of other CVD, cardiovascular
risk factors or other systemic diseases).

In addition, for the HCM group, we computed the LV
mass (LVM) and LV ejection fraction (LVEF) and excluded
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any subject with LVM<2SD above the healthy popula-
tion LVM mean or EF<45% [23]. For the DCM group,
we computed the LV end-diastolic volume (LVEDV), end-
systolic volume (LVESV) and LVEF and excluded any
subject with an LVEF>45% or LVEDV<2SD above the
healthy subjects’ EDV mean [24]. All volumetric metrics
were computed using the automated method described
in [10]. Finally, an experienced cardiologist reviewed the
most unclear cases.

As pre-processing, all of the CMR digital imaging and
communication in medicine (DICOM) images were con-
verted into NIfTI format. The segmentations used for
training and testing the PHiSeg network were performed
by a cardiologist with 5 years’ CMR experience. To com-
pute inter-observer variability, a subset of 30 subjects was
segmented by two cardiologists with 5 years’ CMR expe-
rience and an experienced T; mapping image analysis
reader supervised by an external blinded experienced car-
diologist. The LV endocardial and epicardial borders and
the right ventricle (RV) endocardial border were traced
using the ITK-SNAP interactive image visualisation and
segmentation tool [25]. For training and testing the QC
network, manual quality ratings were performed by a
cardiologist with 5 years’ CMR experience using a user
interface similar to Fig. 4 (i.e. a panel with two images:
T1 map overlaid with its automated segmentation and the
uncertainty map). To compute inter-observer variability,
a subset of 300 subjects was labelled by two cardiolo-
gists with 5 years’ CMR experience and an experienced T
mapping image analysis reader supervised by a external
blinded experienced cardiologist.

Automated image analysis

The proposed workflow for automated T; map analysis
is summarised in Fig. 1 and described in detail in the
following subsections.

Deep neural network with bayesian inference for
segmentation
In this work, we used a Probabilistic Hierarchical Seg-
mentation (PHiSeg) network [1], a recently proposed deep
learning network with Bayesian inference for segmen-
tation of the LV blood pool, LV myocardium and RV
blood pool from T mapping images (Fig. 1). The PHiSeg
network belongs to the group of probabilistic graphical
models and employs convolutions to learn task-specific
representations of the input data and predicts a pixel-wise
segmentation from an input image based on this represen-
tation. In addition, an uncertainty map is generated which
quantifies the pixel-wise uncertainty of the segmentation.
The PHiSeg network [1] models the probability distribu-
tion p(S|X) of plausible segmentations S for a given input
image X at multiple scales from fine to coarse. Performing
inference in this model using a conditional variational
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autoencoder approach results in a network architecture
resembling the commonly used U-Net. However, in con-
trast to a U-Net, this network allows modelling of the joint
probability of all pixels in the segmentation map. Specifi-
cally, after training it allows sampling of multiple plausible
segmentation hypotheses for an input image. In this man-
ner, in addition to producing a per-pixel prediction of the
label class, it also allows estimation of the uncertainty
corresponding to each pixel. The network architecture
features a number of convolutional layers, each using a
3x3 kernel and a rectified linear unit (ReLU) activation
function. After every three convolutions, the feature map
is downsampled by a factor of 2 to learn more global
scale features. After performing probabilistic inference at
each level, the learned features are upsampled and fused
to produce a predicted segmentation mask and a uncer-
tainty map at the original image resolution. In line with
the variational autoencoder literature [26] training the
model amounts to finding the network parameters which
maximise a lower bound on the log likelihood log p(S|X)
given the training data. This quantity is typically referred
to as the evidence lower bound (ELBO). The assump-
tion is that with sufficient network complexity the ELBO
will be a close-enough approximation of the distribution
logp(SIX) to act as a surrogate for it. Specifically, after
training we may evaluate the training objective (i.e. the
ELBO) for a given image/segmentation pair to obtain its
log likelihood. This may be used to identify segmenta-
tions which are very unlikely given an input image. A
detailed description of the method, as well as the network
architecture can be found in [1].

Network training and testing

For training of the PHiSeg network, all images were
cropped using the manual segmentations to the same
size of 192x192 and intensity normalised to the range
[0,1]. Data augmentation was performed on-the-fly using
random translations (£30 pixels), rotations (+15°), flips
(50% probability), scalings (up to 20%) and intensity trans-
formations by gamma correction (y € [0, 1.5]) to each
mini-batch of images before feeding them to the network.
The probability of augmentation for each of the param-
eters was 50%. Applying these transformations essen-
tially produces a further expanded dataset which con-
tains increased image variation preventing the network
from fixating on features in specific regions of its recep-
tive field. Augmentation is the only technique we use to
prevent over-fitting, other techniques like dropout were
found not to improve performance and so omitting them
contributed to a simpler network architecture. Each mini-
batch consisted of 20 native T1 map. To optimise the loss
function we used the Adam optimiser, with the momen-
tum set to 0.9 and the learning rate to 10~3. The models
were trained for 50,000 iterations on a GeForce GTX
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TITAN GPU (NVIDIA Corporation, Santa Clara, Cali-
fornia, USA) and the model with highest average Dice
score (on the validation set) over all classes was selected.
The total number of model parameters to learn was
18,709,372.

From the selected study population, we selected the
following subjects for training/testing of the PHiSeg net-
work:

¢ Training database: 800 subjects, consisting of both
healthy subjects as well as subjects with a wide variety
of CVDs. During training we used an 80/20
training/validation split to monitor the performance
of the network.

e Test database: 100 subjects (50 healthy subjects and
50 chronic cardiomyopathy subjects).

Generating uncertainty maps

During test time, we used the PHiSeg network to sample
T different segmentation output samples for a single given
input (we used T=100). From these multiple segmenta-
tions the final predicted segmentation was calculated as
the average softmax probability over all of the segmenta-
tion samples. We also decomposed the uncertainty map
into a separate map for each segmentation class (i.e. back-
ground, LV blood pool, LV myocardium and RV blood
pool) by computing the cross entropy between the mean
segmentation mask and the different segmentation output
samples for each of the different classes.

Quality control

Our QC process comprises two steps, both based upon
different aspects of the uncertainty information provided
by the PHiSeg network. To train these QC steps, we
manually labelled the PHiSeg-obtained segmentations as
correct or incorrect in a cohort of 800 subjects (consist-
ing of both healthy subjects as well as subjects with a wide
variety of CVDs).

First, we used the ELBO output [1, 26] of the trained
PHiSeg network to reject uncertain segmentations. The
ELBO quantifies how likely it is that the segmentation
is correct, and can detect very unlikely cases. However,
it cannot detect cases with minor localised errors (e.g.
inaccurate regional border). We used the manual QC
labellings to determine a threshold and any ELBO value
above this threshold resulted in the segmentation being
rejected.

To increase the sensitivity of our QC process with
respect to localised errors, we used a second QC step
which is defined as an image classification problem, where
each image/segmentation pair is classified as accurate or
inaccurate. The outputs of the PHiSeg network (i.e. the
image, segmentation and myocardial uncertainty map)
were used as input to a deep learning image classifier.
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For the image classifier, we used a VGG-16 CNN network
[27], which consists of a stack of convolutional layers fol-
lowed by three fully-connected layers for classification.
Each convolutional layer uses a 3x3 kernel and is followed
by batch normalisation and ReLU. Details of the VGG-
16 network can be found in [27]. Data augmentation was
performed on-the-fly using random translations (+30 pix-
els), rotations (+15°), flips (50% probability), scalings (up
to 20%) and intensity transformations by gamma correc-
tion (y € [0, 1.5]) to each mini-batch of images before
feeding them to the network. The probability of augmen-
tation for each of the parameters was 50%. To take into
account the class imbalance between correct/incorrect
samples we used a weighted binary cross entropy loss
function. The VGG model’s performance was evaluated
using a receiver operating characteristic curve (ROC)
and the optimal classifier was selected using the Youden
index. The model was trained for 50,000 iterations on
a GeForce GTX TITAN (NVIDIA Corporation) and the
model with highest accuracy (on the validation set) was
selected. The total number of model parameters to learn
was 11,177,025.

The following subjects were used for training/testing of
the QC steps:

¢ Training database: 800 subjects, consisting of both
healthy subjects as well as subjects with a wide variety
of CVDs. During training we used an 80/20
training/validation split to monitor the performance
of the network. The numbers of correct/incorrect
segmentations were 132/668.

e Test database: 700 subjects (500 healthy subjects and
200 chronic cardiomyopathy subjects). The numbers
of correct/incorrect segmentations were 116/584.

Data are rejected if either of these two QC steps fails.
The combination of these two steps ensures that T; maps
acquired on different planes or with inaccurate segmenta-
tions are identified and rejected for further analysis.
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T; map analysis

Myocardial T; values were measured from the mid-
ventricular SAX slice for the whole myocardium, as well
as for the interventricular septum and free-wall segments
separately. From the predicted segmentation, the RV-LV
intersection points were automatically detected from the
LV/RV segmentation masks (RV1 and RV2 in Fig. 1) using
the hit-or-miss transform, which is a morphological oper-
ation that detects a given configuration (or pattern) in
an image. In our case, we aimed to detect the inter-
section between background, LV myocardium and RV
labels. These RV-LV intersections were used to divide the
LV myocardium mask into a LV interventricular septum
(LVIVS) mask and a LV free-wall (LVFW) mask.

Myocardial t; blood correction

For myocardial T; blood correction, we used the model
proposed by Nickander et al [6], which used a linear cor-
rection between myocardial T and blood measurements
as follows:

TiorreCted = Tllmcorrected + & - (Rmean — Rpatient)s (1)

where Tjuncorrected o the pative myocardial T; value,
Rmean is the mean R; for the patient cohort, and « is
calculated as the slope of the linear regression between
myocardial T; and blood T1 measurements.

The blood T; value was computed from RV and LV
blood pool regions of interest (ROI) in the mid-ventricular
SAX T; map. To generate the LV and RV ROIs we
eroded the LV/RV blood pool segmentations to gener-
ate a mask that has 1/3 of the area of the original mask
(see Fig. 2). To ensure that no papillary muscles or tra-
beculae were included, we rejected any pixel whose T
value was less than 1.5 times the interquartile range below
the first quartile of the blood pool values. The blood T,
value was calculated as the mean of the LV and RV val-
ues calculated in this way, and then converted to the T
relaxation rate (Ry=1/T). A similar strategy was used to
obtain the ROIs and compute the global and regional T}

Pred Seg

Quality control

Uncertainty ELBO
map

Incorrect

T1 Maping analysis

B0

Correct

Fig. 1 Overview of the proposed framework for automatic T; map analysis. A composition of (1) the PHiSeg network for segmenting native T maps,
(2) a QC for detecting inaccurate segmentation, and (3) T; analysis. PHiSeg: Probabilistic Hierarchical Segmentation
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Fig. 2 Short axis (Sax) Ty map with region-of-interest (ROIs). The
figure shows the ROI drawn for native myocardial Ty values of the left
ventricular (LV) intraventricular septum (IVS), LV and right ventricular
(RV) blood pool Ty values
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values from the manual segmentations (see subsection
“UK biobank dataset” section and Fig. 2).

Reference values

In total, we analysed CMR scans of 11,882 subjects (62
+22 yrs., 48% males) included in the UK Biobank cohort
using our method. First, we derived reference T; values
from 4,148 healthy subjects, selected using stringent cri-
teria to exclude any disease or risk factor that impacts
the heart or vasculature (see exclusion criteria in Addi-
tional file 1: Table 1). Next, we derived T; values from
patients known to have one of 7 different CVDs. Outliers
for the computed T; values were defined a priori as val-
ues 3 interquartile ranges below the first or above the third
quartile and they were removed from the analysis. In addi-
tion, in order to allow comparison of cardiac functional
metrics across the different groups, we computed LVEDV
index (LVEDVI) LVEF and LVM index (LVMI) from cine
CMR data, using the automated method described in
[10]. For the healthy, hypertension and obesity groups the
10-year Framingham Risk Score was computed [22].

Evaluation of the method
We evaluated the performance of our automated method
as follows:

Deep neural network with Bayesian inference: To val-
idate the PHiSeg network, a cohort of 50 healthy subjects
and 50 chronic cardiomyopathy patients was selected and
manually segmented. These subjects were not used for
training the PHiSeg network. We used the Dice metric
to measure the degree of overlap between the automated
and manual segmentations. The Dice metric has values
between 0 and 1, where 0 denotes no overlap and 1
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denotes perfect agreement. Furthermore, Bland-Altman
analysis and Pearson’s correlation were used to compare
the obtained global LV native myocardial T; values, and
the T values in the LV interventricular septum (IVS) and
LV free wall (FW), between the automated and manual
segmentations.

We also quantitatively assessed the inter-observer vari-
ability between manual segmentations by three clinical
experts. From the test database, a subset of 30 subjects (15
healthy subjects and 15 chronic cardiomyopathy) was ran-
domly selected and each subject was manually segmented
by three clinical expert observers (01, O2, O3) indepen-
dently. The Dice metric and the global and regional T
values were evaluated between each pair of observers (O1
vs 02, 02 vs O3, O3 vs O1).

Quality control: To assess the accuracy of the QC
process, we manually labelled the PHiSeg obtained
segmentations as correct or incorrect in a cohort of
500 healthy subjects and 200 chronic cardiomyopathy
patients, which are independent from the training cohort.
We computed sensitivity (% of manually labelled as
incorrect image/segmentation pairs that were correctly
detected), specificity (% of manually labelled as correct
image/segmentation pairs that were correctly identified),
and balanced accuracy (averaged percentages of correct
answers for correct/incorrect classes individually).

We also assessed the inter-observer variability between
manual labelling by three clinical experts. From the test
database, a subset of 300 subjects (225 healthy subjects
and 75 chronic cardiomyopathy) was randomly selected
and each subject was analysed by three clinical expert
observers (O1, 02, O3) independently. The intraclass cor-
relation coefficient (ICC) and the Cohen’s kappa coeffi-
cient k were computed to measure the inter-rater agree-
ment between each pair of observers (O1 vs 02, 02 vs O3,
03 vs O1).

Statistical analysis

Statistical analysis was performed using Statsmodels, a
Python library for statistical and econometric analy-
sis [28]. Normality of distributions was tested with the
Kolmogorov-Smirnov test. Categorical data are expressed
as percentages, and continuous variables as mean =+ stan-
dard deviation (SD) or median and interquartile range,
as appropriate. Paired 2-tailed Student’s ¢-tests were used
to assess paired data, and unpaired 2-tailed Student’s
t-tests were used to assess unpaired samples. Compar-
ison of more than three normally distributed variables
was performed using analysis of variance (ANOVA, with
Bonferroni’s post-hoc correction). For the Bland-Altman
analysis, paired ¢-tests versus zero values were used to
verify the significance of the biases, and paired ¢-tests
were used to analyse the mean absolute errors of all
parameters between healthy subjects and patients. Linear
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regression was performed to estimate the slope used for
correction of myocardial T; from blood Tj. The rela-
tionships between corrected and uncorrected mean native
myocardial T; were investigated by computing the SD
of the mean native myocardial T;, and evaluated for
difference with a F-test. To investigate whether blood
correction improved the discrimination between healthy
subjects and patients with CVDs, we calculated the
z-scores of the patients in each CVD group with respect
to our healthy population for the uncorrected and cor-
rected T1 maps and compared the average z-scores using
a paired 2-tailed Student’s ¢-test. Associations between
native T; values, clinical demographics and LV function
were explored by single and multivariate linear regres-
sions. In all cases, p <0.05 denotes statistical significance.
To compute reference values, healthy subjects were used
as the study controls and unpaired t-tests were used for
comparison.

Results

Deep neural network with bayesian inference

Table 1 reports the Dice scores between automated and
manual segmentations evaluated on the cohort of 100 sub-
jects for the proposed method and a comparative model
based on the U-Net architecture [29]. We also present
Dice scores between the manual segmentations by differ-
ent observers. Overall, the Dice score between manual and
automated segmentations for the proposed method was
0.84 for the LV myocardium, which is close to or even
smaller than the human-human difference.

The Bland-Altman plot showed strong agreement
between the pipeline and manual analysis, see Fig. 3.
There was a small negative bias for all of the native T; val-
ues (-5.04 ms, 5.89 ms and -4.97 ms for global LV, LVIVS
and LVFW respectively). Table 2 shows the automati-
cally and manually calculated T; values within the three
regions averaged over the test cohort. There was no signif-
icant difference in mean absolute error between manual
and automated T; values except for LVIVS T; values
for chronic cardiomyopathy patients. The automatically
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reconstructed T1 maps showed a strong correlation with
the T; values based on manual segmentations (r=0.97)
(See Fig. 3). Finally, Table 3 reports the mean absolute
difference between automated and manual T; values and
between T values by different expert observers. It shows
that for the clinical measures, the computer-human differ-
ence is on a par with the human-human difference.

Figure 4 shows an example of a manual segmentation,
the predicted segmentation and the uncertainty map for a
healthy subject and for a chronic cardiomyopathy patient.
Note that the manual and the automatic segmentations
agree well. Additional file 2: Figure A2 presents an illus-
tration of the PHiSeg latent space by showing the 100
segmentation samples for a sample subject. In general,
the major differences in the different samples are in the
boundaries between the different labels.

Quality control

For the first QC step, the median and interquartile range
(IQR) values for the ELBO were -502 and 215. A sin-
gle threshold was selected based on the training data to
maximise the accuracy of detecting wrong cases. In this
case the selected threshold was -540. Table 4 shows the
classification results of the different QC steps.

From the test database, we manually categorised errors
detected by the 2-step QC process as: (1) incorrect
myocardium segmentation, (2) incorrect planning, (3)
motion artefacts. The percentages of subjects for each of
these categories were 19.3%, 18.1% and 62.6% respectively,
showing that approximately 80% of cases were medi-
cally untreatable, i.e. the T; maps were either affected
by motion artefacts or acquired from an incorrect plane.
The cases that could not be detected by either of the
steps tended to be those that had minor errors in the
segmentation of the myocardium.

The ICCs between observers (01, O2, O3) were
ICCp1_02 = 0.82,ICCp1_03 = 0.84 and ICCpy_03=0.89.
The Cohen’s kappa coefficients between observers (O1,
02, 03) were koi1—o2 = 0.83, koi—o3 = 0.85 and
ko2—03=0.88. The Cohen’s kappa coefficients show a

Table 1 Dice scores between automated segmentation and manual segmentation for native Ty maps for the PHiSeg and U-Net
segmentation networks, as well between segmentations by different human observers. The first two columns show the difference
between automated and manual segmentations on a test set of 100 subjects. The third to fifth columns show the inter-observer
variability, which is evaluated on a randomly selected set of 30 subjects (15 healthy subjects and 15 chronic cardiomyopathy subjects),
each being analysed by three different human observers (O1, 02, O3) independently. Dice values are reported as mean (SD)

PHiSeg Auto vs Manual U-Net Auto vs Manual 01vs 02 O1vs 03 02vs 03
(N=100) (N=100) (N=30) (N=30) (N=30)
LV Blood pool 0.95 (1.63) 0.89 (7.96) 0.94 (2.22) 0.91 (2.83) 0.95 (1.66)
LV Myocardium 0.84 (3.16) 0.78 (8.89) 0.77 (7.57) 0.77 (6.53) 0.83 (2.56)
RV blood pool 0.92 (4.14) 0.81(15.96) 0.84 (13.86) 0.90 (5.47) 0.91 (6.55)

LV, left ventricular; RV, right ventricular



Puyol-Antén et al. Journal of Cardiovascular Magnetic Resonance (2020) 22:60 Page 8 of 15
« Healthy subjects <0.01 « Healthy subjects <0.01 « Healthy subjects <0.01
3 e P o ® P g P
5 . " +1.96 SD ; . L e +1.96 SD
o 20 v . . 15.92 I 20 . M +1.96SD T 20 vy % v 24.18
=) i ' v, 16.23 ' o
. o n M LR m v A
— M (2 ve o 2 AR v .
@ o L E o e E o o ™
£ v .\ ¥ .i 30 Mean ~ 2 ‘v‘ Y Mean - y. oy ean
: v .’:."L" ‘e, -4.96 ": . .."3 ALY -5.12 e . 1. ‘..o v . -4.86
B Sy ] AR A ST o . ° ol
20 RS Ty -25.11 .g 20 * % o J 2% w;;'? =2, )
3 oI, = P L -29.31 s . oe ® V&7,
2 -1.96SD  © -1.96sD 8 LA -36.12
& .a0 -40 -40 -1.96 SD
600 700 800 900 1000 1100 1200 600 700 800 900 1000 1100 1200 600 700 800 900 1000 1100 1200
D global LV E LVIVS F LVFW
1200 1200 1200
r=0.98 r=0.97 r=0.97
11000 oo 1100 1100 .
) ;" ‘E‘ . /. ?
g by 5 KO 5
1000 .»yf. . 1000 v 1000
- ".5' . [ k7L -
] W7 - ] F ! 8
£ 900 . o % 900 B £ 900
£ M £ 7 £
o o » )
S 800 /7 S 800 S 800
< ’ < <
700 700 700
» Healthy subjects o Healthy subjects e Healthy subjects
v Cardiac patients v Cardiac patients v Cardiac i
608 0 700 800 900 1000 1100 1200 608 0 700 800 900 1000 1100 1200 608 0 700 800 900 1000 1100 1200
Manual T1 (ms) Manual T1 (ms) Manual T1 (ms)
Fig. 3 Bland-Altman and correlation plots of the automatic versus manual myocardium Ty values. a, d global LV native Ty values, (b, ) LVIVS native
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strong correlation, and the ICC indicates good reliability
between the measures provided by the different observers.

Figure 5 shows examples of uncertainty maps for a
cohort of subjects that have been rejected by the QC
steps. Note that the QC is able to identify inaccu-
rate data with a wide range of underlying causes such
as incorrect planning (i.e. images (a), (b), (c) and (d)
in Fig. 5), motion artefacts (i.e. images (e) and (f)
in Fig. 5) or segmentation failure (images (g) and (h)
in Fig. 5).

Uncertainty quantification

To understand the impact of uncertainty in the pre-
dicted T; values, from the test cohort that contains 50
healthy subjects and 50 chronic cardiomyopathy patients,
we computed the distribution of the global LV T; val-
ues over the T predicted segmentations. Additional file 3:

Figure 1 shows a graphical representations of the variabil-
ity of these estimates. The solid lines indicate the mean
Ty values from the test cohort and the shaded region
represents one SD of uncertainty.

Myocardial t; blood correction

The constants from the linear regression model between
the myocardial T; and the blood measurements were
used to correct native myocardial T; values according to
Equation 1. The global R was 0.29 (which is comparable
to that found in [6]) and the mean squared error was 101.
The linear regression had a slope of -0.36 and an intercept
of 925.

The mean uncorrected myocardial T; in the population
cohort was 951 + 49, and the mean corrected myocar-
dial T; in the population cohort was 921 =+ 44, showing a
statistically significant decrease of the SD (p <0.001).

Table 2 Mean T; values for the test cohort. Ty are reported as mean (SD). Asterisks indicate significant differences between Ty values
estimated between manual and predicted segmentations using a paired t-test

Healthy Chronic cardiomyopathy
global LV IVS FW Global LV IVS FW
Manual 945 (54) 952 (41) 941 (65) 911 (48) 930 (39) 902 (58)
Automatic 955 (66) 960 (58) 959 (72) 921 (51) 935 (37)* 913 (59)
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Table 3 The difference in mean Ty between automated segmentation and manual segmentation, as well as between measurements
by different human observers. The first two columns show the difference between automated and manual segmentations on a test set
of 100 subjects for the proposed PHiSeg and U-Net networks. The third to fifth columns show the inter-observer variability, which is
evaluated on a randomly selected set of 30 subjects, each being analysed by three different human observers (O1, 02, 03)
independently. The mean and standard deviation (in parentheses) of the absolute difference and relative difference are reported

PHiSeg Auto vs Manual U-Net Auto vs Manual 01vs 02 O1vs O3 02vs 03

(N=100) (N=100) (N=30) (N=30) (N=30)
Global LV 1240 (12.68) 75.75(83.43) 17.03 (14.40) 20.53 (16.71) 19.18 (14.39)
LVIVS 13.11(18.05) 81.33 (59.85) 19.23 (15.30) 17.88 (16.58) 21.12(14.72)
LVFW 23.15(12.85) 87.68 (164.32) 30.64 (15.02) 30.35(18.32) 22.65 (19.03)
Reference values Discussion

From the 11,882 subjects, 1865 (15.7%) subjects were
rejected by our QC process due to inaccurate T; segmen-
tations. Subject characteristics of the remaining 10,017
subjects are summarised in Table 5. Compared to healthy
subjects, all patient groups were in the same age range;
patients with obesity and cardiac sarcoidosis had statis-
tically higher BMI and body surface area (BSA); patients
with DCM and chronic coronary artery disease had signif-
icantly lower LVEF (all p <0.05); patients with HCM and
DCM had significantly higher iLVM (all p <0.05).

Uncorrected and corrected myocardial LVIVS T} values
for the different CVD groups and in healthy subjects are
shown in Fig. 6. Table 6 shows global and regional ((LV,
LVIVS, LVFW)) native corrected and uncorrected T; val-
ues. Compared to healthy subjects, patients with HCM,
DCM and cardiac sarcoidosis had significantly higher
native T values, while patients with AF, hypertension and
obesity had significantly lower native T; values. Gender
did not affect myocardial T; values significantly (2-way
ANOVA, p = 0.01), and thus only overall T; values are
reported.

In this work, we have proposed a fully automated pipeline
with a novel quality control step to automatically quantify
myocardial tissue from native T1 mapping, which allows
extraction of reference values from large-scale databases.
The method is fast and scalable, overcoming limitations
associated with current clinical CMR image analysis work-
flows, which are manual, time-consuming and prone to
subjective error. The method has potential to automate
T1 mapping analyses from CMR in clinical practice and
research. Using the proposed pipeline we present refer-
ence ranges for global and regional myocardial native T}
in healthy subjects from the UK Biobank dataset and show
that blood correction improves discrimination between
healthy subjects and patients with CVD.

Automatic analysis with quality control

We validated our segmentation network by comparing
between automated and manual analysis in a cohort of
healthy and diseased subjects. Results show a strong
agreement for both segmentations (see Table 1) as well as
estimated T values (Fig. 3).

Manual

Cardiac

Fig. 4 lllustration of the segmentation results for native T1 maps. The top row shows an example of a healthy subject and the bottom row of patient
with cardiac disease. The cardiac chambers are represented by different colours

Automatic

Uncertainty
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Table 4 QC classification sensitivity (SEN), specificity (SPE) and
balanced accuracy (BACC) of the pipeline in detecting inaccurate
or unusual output versus correct output with respect to manual
assessment are shown. Q1 refers to the ELBO classifier, Q2 referes
to the VGG network

BACC Sensitivity Specificity
Q1 70.5 63.5 774
Q2 85.5 90.5 80.4
Q1 +Q2 93.1 95.3 90.9

Residual biases on the Bland-Altman plot are within the
range of inter- and intra-observer variabilities reported in
Tables 1 and 2 and in [30]. Also, residual biases (ranging
between -4.97ms and -5.04ms) are consistent between
healthy and CVD patients and are unlikely to have sig-
nificant clinical impact. The Dice scores we obtained are
comparable to previous works [11].

QC techniques are essential to be able to translate deep
learning algorithms into a clinical setting. However, many
works proposed for the analysis of CMR data have not
taken this need into account making it impossible to
deploy them for the processing of large-scale databases.

(2020) 22:60
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In our framework, we employed a novel approach that
used the uncertainty information produced by a CNN
with Bayesian inference to identify incorrect segmenta-
tions, which can be rejected or flagged for revision by an
expert cardiologist. We show that this QC process yields
over 95% sensitivity in detecting errors.

Reference values:

We used our framework to analyse native T1 maps in
an unprecedentedly large cohort of healthy subjects and
patients with CVD. Using this cohort we were able to
provide reference values for normal myocardium in dif-
ferent CVD groups. T; values differ between different
scanners, vendors and protocols. Our values can therefore
not directly compare to other publications, but they are
in agreement with results obtained in smaller cohorts of
manual assessment [8, 31-34]. One limitation of the pre-
sented T reference values for the healthy control group
is the mean age of 61 years old, which is slightly higher
than the mean age of other cohorts. We further used our
cohort to interrogate T values in patients with 7 different
CVDs. We show that for CVDs in which diffuse myocar-
dial disease is prominent (cardiac sarcoidosis, HCM and
DCM) we find significantly higher T; values. For the other

Image Segm. Uncertainty

Segm. Uncertainty

Image

Fig. 5 Segmentation and uncertainty map results for selected subjects who were rejected by the quality control QC process. The left column
represents the Ty mapping images, the middle column the automated segmentation, and the right column the derived uncertainty map. Red
arrows indicate the regions with high uncertainty




Puyol-Antén et al. Journal of Cardiovascular Magnetic Resonance

(2020) 22:60

Page 11 of 15

Table 5 Baseline characteristics of study subjects included in the analysis for reference values. All values are n (%) or mean =+ SD.
Abbreviations: AF (atrial fibrillation), AS (aortic stenosis), BMI (body mass index), BSA (body surface area), g (grams), CAD (coronary artery
disease), DCM (dilated cardiomyopathy), HCM (hypertrophic cardiomyopathy), HR (heart rate), kg (kilograms), LVEDVI (LV end-diastolic
volume index), LVEF (left ventricular ejection fraction), LVMI (LV mass index), m (metre). Disease names are as per abbreviations list. *
denotes values significantly different from healthy subjects (all p <0.05)

n Age Male (n) BMI BSA (m?) HR (bpm) iLVEDV(mL/m?)  LVEF (%) iLVM Framingham
(years) (kg/mz) (g/mz) Risk Score
(%)
Healthy 4148 61(7) 2299 24 (3) 1.82(0.2) 61(10) 78 (13) 59 (5) 45 (8) 593.2)
(55.42)
AS 30 68 (7) 15 28 (4) 1.97(0.2) 73(5) 83(23) 59 (6) 56 (13)
(29471)
AF 527 68 (7) 293 27 (4) 1.87(0.2) 62(12) 83 (23) 58 (10) 50(14)
(55.60)
Cardiac Sarcoidosis 70 59(7) 40 297 197 61 (5) 72(18) 58 (4) 41(11)
(57.14) 0.2
Chronic CAD 1204 69 (6) 624 27 (4) 1.88(0.2) 58 (11) 84 (25) 56 (10)* 49 (15)
(51.83)
DCM 260 66 (6) 150 26 (3) 1.84(0.2) 63(14) 111 (42)* 44 (14) 59 (22)*
(57.69)
HCM 50 64 (5) 30 23 (2) 1.79(0.2) 60(15) 88 (35) 62 (14) 79 (14)*
(60.00)
Hypertension 3313 63 (7) 1722 27 (4) 1.88(0.2) 64(11) 80 (21) 59(7) 50(14)  11.9(@7.0)*
(51.98)
Obesity 415 60 (7) 213 333 205 63 (10) 75 (14) 58 (6) 46 (9) 6.9 (3.2)*
(51.33) 0.2)*

CVDs, we show that T; values did not significantly change
from healthy data. It is likely that the extent of myocar-
dial damage in these groups is less high, explaining the
lower T; values. There is large variability seen in native
T; values, which is known to be caused by several fac-
tors, including intracardiac blood flow and hematocrite
levels. We investigated a previously proposed method for
correction of T; values based on blood pool T; dynamics
[6]. This method has the benefit of working using image
data alone, but has not previously been tested in a large
cohort of patients. We demonstrate that indeed, discrim-
ination between health and disease improves using blood
pool correction. Whether this technique is better than
using hematocrite-correction or other methods should be
investigated in further studies. Investigating myocardial
disease processes should include additional measures to
native Tj, such as extracellular volume or T, imaging.
However, the data presented in our study remain valu-
able. The UK Biobank cohort will contain highly detailed
imaging and non-imaging data and follow-up in nearly
half a million subjects. On this large scale, new relation-
ships between T} and population characteristics can yield
important insights into development and progression of
CVDs.

Limitations and future directions:
The original PHiSeg paper aimed to capture uncertainty
caused by different annotators’ segmentation styles as well

as to capture inherent uncertainties due to factors such as
poor contrast or other restrictions imposed by the image
acquisition. In this work we only take advantage of the sec-
ond contribution and this might result in a slightly lower
performance. However, compared to the state-of-the-art
U-Net network we showed that the proposed method has
significantly higher Dice values and lower absolute errors
for Ty values.

A limitation of our work is that the PHiSeg network was
trained on a single dataset, the UK Biobank dataset, which
is relatively homogeneous and only contains native T
maps acquired using ShAMOLLI on a 1.5T Siemens scan-
ner. To obtain similar performance in other databases it
would be necessary to retrain the networks using a small
amount of data. However, the proposed segmentation
model and QC steps will remain applicable.

Another limitation of this study is the lack of availabil-
ity of paired LGE and native Tj-mapping data to assess
the correlation between these two measurements, and in
which cases T;-mapping could provide a better insight
into cardiac pathologies. Based on previous studies, it is
known that T;-mapping may enable detection of early
pathological processes, and serve as a tool for early diag-
nosis or screening, or differentiation of cardiomyopathies
from normal phenotypes. The provided reference ranges
could help to identity subjects at risk at an early stage.

The T; values presented in this study were derived
using a single T1-mapping technique. It is important to
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denotes values significantly different from healthy subjects and T denotes a significantly decrease of z-score from the uncorrected LVIVS Ty values
using a paired t-test (all p <0.05)

take into account that even within the same T;-mapping
technique, different versions of sequences can lead to
small differences in Tj-estimations. Therefore, it might
not be possible to directly translate the T values derived
in this study to other T;-mapping techniques. In future
work we aim to extend the automatic pipeline to be able
to accurately segment T;-mapping data from different

sequences/vendors, to make the proposed framework
generalisable.

Conclusions

We presented and validated a pipeline for automated
quantification of myocardial tissue from native T;-
mapping. The proposed method uses the uncertainty of
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Table 6 Reference ranges for the native uncorrected and corrected ShMOLLI-T; values. Reference ranges for the most common
myocardial tissue conditions encountered in clinical practice. Abbreviations: LV IVS (LV interventricular septum), LVFW (LV free-wall).
Disease names are as per abbreviations list. *denotes values significantly different from healthy subjects (all p <0.05)

n
Healthy 4148
Aortic stenosis 30
Atrial fibrillation 527
Cardiac Sarcoidosis 70
Chronic coronary artery disease 1204
Dilated cardiomyopathy 260
Hypertrophic cardiomyopathy 50
Hypertension 3313
Obesity 415
n

Healthy 4148
Aortic stenosis 30
Atrial fibrillation 527
Cardiac Sarcoidosis 70
Chronic coronary artery disease 1204
Dilated cardiomyopathy 260
Hypertrophic cardiomyopathy 50
Hypertension 3313
Obesity 415

Uncorrected SAMOLLI-T, ranges

global LVT; VST, FWT;
932 (50) 937 (49) 930 (55)
918(29) 924 (35) 916 (34)
920 (46)* 925 (47)* 917 (51)*
980 (83)* 976 (70)* 984 (91)*
908 (45)* 913 (46)* 906 (50)*
975 (56) 972 (39) 973 (66)
999 (24)* 1015 (20)* 992 (26)*
914 (46)* 921 (45)* 910 (50)*
910 (43)* 918 (43)* 906 (48)*
Corrected ShMOLLI-Tq ranges

global LVT; VST, FWT;
930 (45) 934 (43) 928 (50)
922 (23) 928 (28) 920 (30)
919 (42)* 925 (43)* 917 (48)*
986 (75)* 982 (62)* 990 (83)*
908 (42)* 913 (43)* 906 (47)*
976 (53) 973 (36) 973 (63)
992 (21)* 1009 (28)* 986 (23)*
917 (42)* 925 (41)* 914 (47)*
914 (40)* 922 (40)* 910 (45)*

a deep learning segmentation network in a novel QC
process to detect inaccurate segmentations. We used the
proposed framework to obtain reference values from the
largest cohort of subjects to date, which include data from
healthy subjects and from patients with the most common
myocardial tissue conditions.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512968-020-00650-y.
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