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Abstract

Estrogens display intriguing tissue-selective action that is of great biomedical importance in
the development of optimal therapeutics for the prevention and treatment of breast cancer,
for menopausal hormone replacement, and for fertility regulation. Certain compounds that
act through the estrogen receptor (ER), now referred to as selective estrogen receptor
modulators (SERMs), can demonstrate remarkable differences in activity in the various
estrogen target tissues, functioning as agonists in some tissues but as antagonists in others.
Recent advances elucidating the tripartite nature of the biochemical and molecular actions
of estrogens provide a good basis for understanding these tissue-selective actions. As
discussed in this thematic review, the development of optimal SERMs should now be
viewed in the context of two estrogen receptor subtypes, ERα and ERβ, that have differing
affinities and responsiveness to various SERMs, and differing tissue distribution and
effectiveness at various gene regulatory sites. Cellular, biochemical, and structural
approaches have also shown that the nature of the ligand affects the conformation assumed
by the ER–ligand complex, thereby regulating its state of phosphorylation and the
recruitment of different coregulator proteins. Growth factors and protein kinases that control
the phosphorylation state of the complex also regulate the bioactivity of the ER. These
interactions and changes determine the magnitude of the transcriptional response and the
potency of different SERMs. As these critical components are becoming increasingly well
defined, they provide a sound basis for the development of novel SERMs with optimal
profiles of tissue selectivity as medical therapeutic agents.
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Introduction
The pharmacology of various estrogens is intriguing.
While many compounds are able to bind to the estrogen
receptor (ER), they can differ markedly in their stimulatory

and/or inhibitory effects. In addition, certain compounds,
now referred to as selective estrogen receptor modulators
(SERMs) [1,2], can demonstrate remarkable differences in
efficacy in the various tissues in which estrogens act,
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functioning as agonists in some tissues but as antagonists
in others. Such tissue-selective action is of great biomed-
ical importance in the prevention and treatment of breast
cancer, in menopausal hormone replacement, and in fertil-
ity regulation.

Originally termed an antiestrogen but now more properly
designated as a SERM, tamoxifen is the most widely used
agent in the treatment of breast cancer. In addition to its
well documented effectiveness in the treatment of
hormone-responsive breast cancer, there has been great
excitement generated by the findings that tamoxifen [3••],
as well as the related SERM raloxifene [4], are effective in
preventing breast cancer in women at high risk for the
disease. Despite these exciting new findings, it was also
noted in the National Cancer Institute-sponsored Preven-
tion Trial [3••] that tamoxifen was not a perfect SERM
because there was increased incidence of endometrial
cancer and venous thromboembolism. These findings
highlight the importance of developing more optimal
SERMs, particularly if these agents are to be used for
breast cancer prevention and menopausal hormone
replacement, where large numbers of healthy women
would receive treatment for an extended period of time. An
ideal SERM for these applications would be one that has
no stimulatory action in the breast and uterus, and one
that would block estrogen action at these sites, yet would
act as an estrogen agonist in bone, liver, and the cardio-
vascular and central nervous systems.

Tripartite receptor pharmacology: a framework
for understanding the tissue-selective actions
of estrogens
Classical concepts in pharmacology cannot readily explain
tissue selectivity in the actions of estrogens. However,
recent advances in the molecular and cellular interactions
of nuclear hormone receptors provide, for the first time, a
view of many of the critical components that mediate the
action of estrogens at the molecular level. These new find-
ings provide a rich context within which one can begin to
understand the unique properties of SERMs and to devise
strategies for enhancing their desirable selective action.

As these findings were emerging a few years ago, we
advanced the concept of ‘tripartite receptor pharmacol-
ogy’ to provide a conceptual framework for understanding
the tissue-selective actions of estrogens and other hor-
mones for nuclear receptors (eg androgens, progestins,
corticosteroids, etc), and the underlying molecular phar-
macology [5]. The action of a particular estrogen, accord-
ing to the tripartite receptor pharmacology scheme, is
determined by three principal components: first, the struc-
ture of the ligand itself; second, the ER subtype or isoform
with which the ligand binds to form a ligand–receptor
complex of a particular conformation; and, finally, the inter-
action of this complex with an array of effector compo-

nents through which the action of the hormone–receptor
complex is linked to transcriptional regulation. The most
critical effector components include the gene-regulatory
DNA site to which the receptor binds (either directly or
indirectly), as well as an array of coregulator proteins that
determine the magnitude of the transcriptional response
and its sensitivity to hormonal regulation (see Fig. 1). The
hormone–receptor complex then recruits these coregula-
tors, thereby linking the complex physically and/or func-
tionally to the basal transcription complex and affecting
the local chromatin structure.

Estrogen receptor alpha and estrogen receptor
beta: receptor subtypes that underlie the
diversity of responses to estrogens and
provide opportunities for the development of
novel SERMs
In thinking about the actions of SERMs, the discovery of a
second ER gene, estrogen receptor-beta (ERβ), now dis-
tinguished from the classical ER (denoted ERα), is of par-
ticular importance [6••,7••]. ERα and ERβ differ
significantly in their tissue distribution and ligand binding
characteristics, as shown in this thematic review [8],
thereby affording interesting potential for tissue-selective
estrogen action.

While ERα and ERβ have nearly identical DNA-binding
domains, these receptor subtypes have only 56% amino
acid identity in their hormone binding domains, and they
differ even more markedly (only 21% amino acid identity)
in their N-terminal activation function 1 regions. These dif-
ferences suggest that it should be possible to identify
ligands that will have different levels of potency or efficacy
through the two ER subtypes, which would allow selective
stimulation of diverse estrogen-regulated genes. Indeed,
initial screening of known ER ligands showed that certain

Figure 1

Estrogen receptor tripartite pharmacology. The diagram outlines the
three components (ligands, receptors, and effectors) that together
determine the magnitude and character of transcriptional and other
responses to estrogens in target tissues.
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steroidal compounds exhibited moderate affinity and
potency preference for ERα, whereas certain phytoestro-
gens and androgen-derived diols had moderate prefer-
ence for ERβ [9•]. In vivo studies have indeed shown that,
compared with estradiol, the soy phytoestrogen genestein
is more effective in providing vascular protection, presum-
ably mediated through ERβ, than uterine stimulation, pre-
sumably mediated through ERα [10•]. SERMs such as
hydroxytamoxifen and raloxifene that are partial agonists
on ERα [11•] were found to be complete antagonists on
ERβ [12,13]. Studies utilizing chimeric ER subtypes, in
which the activation function 1 regions were exchanged,
indicate that the agonism of these SERMs tracks with the
activation function 1 of ERα [12].

We have shown that it is possible to develop compounds
of novel structure that can show remarkably high potency
and/or efficacy selectivity on ERα and ERβ. For example,
we found that a triaryl pyrazole, which had nearly a 500-
fold binding affinity preference for ERα, could fully activate
genes through ERα at 1 nM, whereas there was no gene
activation through ERβ, even at 1 µM [14••,15]. We have
also developed a series of substituted tetrahydrochry-
senes that were full agonists on ERα but were complete
antagonists on ERβ (see Fig. 2) [14••,16•]. Examinations
with these compounds demonstrated that minor changes
in the size and stereochemistry of the ligand substituents
dramatically affected their activity as ERβ agonists or
antagonists [16•]. These compounds are used to help
define the respective biological roles of ERα and ERβ in

the actions of estrogens in different target tissues. They
are also being used to study, by X-ray crystallography, the
ligand-induced conformation of the ER subtypes that
mediate agonist versus antagonist activity. Genistein,
which is more potent in activation of ERβ than ERα, curi-
ously induces a conformation of helix-12 in ERβ that is
considered to resemble an antagonist complex more than
an agonist complex [17••]. These investigations further
substantiate the observation that all agonists (or antago-
nists) do not contact the identical set of amino acids
within the binding pocket of the receptor, nor induce iden-
tical receptor conformations [18,19•]. This is consistent
with prior observations of differences in ligand–receptor
proteolysis profiles [20•,21,22], as well as more recent
studies using phage display of peptide probes, through
which differences in the conformation of ERα and ERβ
complexes with agonists and antagonists can be distin-
guished [23••,24•,25].

There have been several active programs directed at the
development of new SERMs, and a number of analogs of
tamoxifen, raloxifene and other nonsteroidal ER ligands
[2,26,27] that appear to have favorable tissue-selective
character have been described in the recent literature. The
extent to which these new-generation SERMs act through
ERα and ERβ, and the degree to which they provide sub-
stantial improvements over estrogens and antiestrogens
currently in use in hormone replacement and in breast
cancer prevention and treatment, will require careful evalu-
ation. Likewise, studies on steroidal estrogens used in

Figure 2

Transcription activation assays demonstrating that a tetrahydrochrysene (THC) ligand is an agonist on ERα and an antagonist on ERβ. Transfection
assays were conducted in human endometrial cancer cells using an estrogen-responsive reporter gene and either ERα or ERβ [14••].



hormone replacement have shown that some B-ring unsat-
urated compounds have distinct tissue-selective actions,
being more efficacious in vasomotor, neuroendocrine and
bone preservation parameters than in other peripheral
actions of estrogens [28•]. The underlying bases for the
tissue selectivity of these agents may be multifactorial, as
discussed in this thematic review.

Effector components I: the nature of the gene
DNA response element through which the
estrogen receptor regulates transcription
Although the DNA binding domains of ERα and ERβ are
nearly identical, there is considerable documentation that
these receptor subtypes differ markedly in their abilities to
activate different estrogen-responsive genes. This clearly
highlights the fact that multiple regions of the receptor
protein determine the specificity of gene activation [11•].
The fact that there are distinctly different modes of ER
interaction with gene regulatory sites is of note in this
regard. These different modes include direct binding of
the receptor to estrogen response elements (EREs).
These elements may be consensus or, more commonly,
nonconsensus and may exist as single or multiple full or
half sites; they may also be composite sites, consisting of
EREs flanked by response elements for other transcription
factors (such as Sp1), which themselves may or may not
be occupied by their respective transactivating factors. It
is interesting to note that there are differences in the affini-
ties with which ERα and ERβ bind to the various EREs
present in several estrogen-responsive genes (c-fos, c-jun,
pS2, cathepsin D, choline acetyltransferase), measured by
electrophoretic mobility gel shift assays, despite the near
identity of the DNA-binding domains of the two receptors
[29]. Studies showing that the DNA gene site itself also
has an allosteric effect on the conformation of the ER
monitored by protease digestion and immunoreactivity are
relevant to this fact [30,31].

In an alternate manner, ER may interact with DNA indi-
rectly through tethering to other DNA-bound transcription
factors, as appears to be the case with the interaction of
the ERs at AP1 sites, where the receptor is tethered
through the Fos/Jun complex [32••,33]. Interestingly, the
ERs also activate the quinone reductase gene [34••,35]
and the transforming growth factor β3 (TGFβ3) gene [36•]
through regulatory regions at which they work along with
other protein factors.

There are intriguing differences in the pharmacological
character of estrogens acting through ERα versus ERβ at
these various gene sites. Compounds that are normally
agonists or antagonists at ERE sites showed similar
agonist or antagonist behavior through ERα at AP1 sites.
When acting through ERβ at AP1 sites, however,
compounds such as estradiol and diethylstilbestrol were
curiously antagonistic, whereas antiestrogens such as

hydroxytamoxifen and raloxifene showed strong stimula-
tory activity [32••]. Antiestrogens also activate the gene for
quinone reductase, an antioxidant, detoxifying enzyme,
with this stimulation being reversed by estrogens. This
behavior is observed through both ERα and ERβ, but the
magnitude of stimulation appears to be somewhat greater
through ERβ [34••,35]. The upregulation of the quinone
reductase gene by antiestrogens may contribute to the
beneficial effects of antiestrogens in breast cancer pre-
vention as well as treatment. The TGFβ3 gene in bone
cells is also better stimulated by antiestrogen ligands,
such as raloxifene, and by some equilin-type estrogens
than by estradiol, although the respective roles of ERα
and ERβ in this response have not been elucidated [36•].

These and other studies highlight not only the importance
of the nature of the gene promoter site itself, but also the
cell background (ie whether uterine, breast cancer, bone,
or another type of cell) in determining the pharmacology of
the hormone–receptor complex. This is due, at least in
part, to differences in activity of the receptor activation
functions in different cell backgrounds, reflecting differ-
ences in the balance and spectrum of coregulator proteins
present in different types of cells [37••,38,39•,40]. It is
also relevant to note that there is interaction between the
two major (N- and C-terminal) activation function-contain-
ing regions of the ER, allowing for the synergistic regula-
tion of transcription of many genes [41•,42].

Effector components II: coregulator proteins
The ER works with many other proteins in the regulation of
gene expression. These coregulators play several critical
roles: they affect the magnitude of gene stimulation or
repression ([43–47] and references cited therein); they
influence ligand dissociation kinetics [48]; and they alter
the dose–response profile to hormone [48,49]. The mag-
nitude of stimulation or repression of receptor transcrip-
tional activity can be considered as first determined by the
nature of the ligand, which controls the recruitment of
coregulators to the ligand–receptor complex [50••,51••].
The agonist–receptor complex, most notably, recruits the
p160 family of coactivators and other proteins, some of
which possess histone acetyltransferase activity. Of inter-
est in this regard in breast cancer is the report that
AIB1/SRC-3/ACTR is amplified and upregulated in a sig-
nificant number of breast tumors [52]. Such a change
might indicate that these tumors show enhanced sensitiv-
ity to estrogens that may have affected tumorigenesis
and/or progression of the disease.

The antagonist–receptor complex recruits other coregula-
tors, including an ER-selective repressor of estrogen
receptor activity (denoted REA) that enhances the
inhibitory potency of antiestrogens [51••], as well as N-CoR
and SMRT [53,54••]. The balance between coactivators
and corepressors in breast cancers is considered to be an
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important determinant of the agonist/antagonist activity of
SERMs. There is already evidence that the level of N-CoR
is correlated with tamoxifen sensitivity or resistance [54••],
and L7/SPA is recruited by the ERα–tamoxifen complex
and acts specifically to enhance the agonism by antiestro-
gen, an effect that is reversed by N-CoR [55•]. There is
clear evidence for transcription factor specific require-
ments for coregulators [56], and mounting evidence for dif-
ferential recruitment of coregulators by the occupied
ERα–receptor and ERβ–receptor complexes, with the
nature of the ligand and the nature of the receptor subtype
determining the preference for different coregulators [57].

Since ERα and ERβ can also form heterodimers when
both are present in the same cell [58,59], these hetero-
dimers could potentially also differ from either homodimer
complex in the profile of coregulators that are recruited to
a hormone–receptor complex. This may be of importance
in some breast cancers. Both ERα and ERβ are present in
most breast cancers, although ERα is usually the predomi-
nant form [60,61,62•]. There is also evidence for several
splice variants and other isoforms of both ERα and ERβ
that might also differ in their bioactivity from the wild-type
receptor forms [60,63]. Since there is evidence that ERβ
can modulate the activity of ERα under some circum-
stances [64], it is possible that normal breast develop-
ment as well as breast cancer progression may be
accompanied by changes in the ratios of these two recep-
tors [8]. Whether the onset of tamoxifen resistance might
be explained by changes in either the levels or bioactivity
of these two receptors or changes in its coregulator part-
ners (such as SRCs or REA) is equally important. In the
case of ERα, there is evidence for changes in cell signal-
ing pathways that impact on the ER in tamoxifen-resistant
breast cancer [65], as well as evidence for the presence
of mutations in ERα in a small proportion of tamoxifen-
resistant breast cancers [66–68]. The role of ERβ (wild
type and variant) in breast cancer and in tamoxifen resis-
tance needs to be investigated further.

The development of tamoxifen resistance limits the effec-
tive treatment of hormone-responsive breast cancer with
this drug. This has placed a premium on understanding
the mechanism by which tamoxifen resistance develops
[69–71]. Although many hypotheses have been advanced,
it now appears likely that the resistance to antiestrogen
therapy most frequently results from a cellular adaptation
process. One such process may involve a change in the
cellular milieu of coactivators and corepressors (as well as
changes in cell signaling pathways; see later) such that
they abrogate the tumor growth inhibitory activity of the
ER–tamoxifen complex, and/or may even make this
complex a growth stimulator (see, for example, [54••,65]).

Very relevant in this regard are the recent studies using
phage-displayed peptides in which certain peptides that

specifically recognized ER complexes with the active
tamoxifen metabolite, hydroxytamoxifen, were found to
block selectively the partial agonistic activity of this ligand,
without affecting the agonism of estradiol [24•]. This sug-
gests that specific coregulator proteins, distinct from
those involved in mediating the agonism of estrogens
such as estradiol, are responsible for mediating the ago-
nistic actions of antiestrogens such as tamoxifen. Learning
how such factors are regulated in the cell, particularly with
prolonged tamoxifen exposure, may lead to a greater
understanding of the mechanism of tamoxifen resistance
and may open up new approaches for preventing the
development of this therapy-limiting cellular adaptation.

Crosstalk between the estrogen receptor and
other cell signaling pathways
A considerable number of studies have documented the
fact that growth factors (eg epidermal growth factor
[EGF], insulin-like growth factor), cAMP and other agents
(eg dopamine) can stimulate activity of the ER and also
alter the agonist/antagonist balance of SERMs [72,73,74•,
75,76•,77]. There is mounting evidence for changes in
growth factor and protein kinase pathways in hormone
resistance in breast cancer ([69] and references cited
therein). Stimulation of the protein kinase A signaling
pathway, in particular, enhanced the agonistic activity of
tamoxifen-like antiestrogens, and reduced the antagonistic
effectiveness of this and related SERMs; observations that
may in part account for the development of tamoxifen
resistance by some ER-containing breast cancers [73].
Tamoxifen-resistant breast cancer cells also showed com-
plete insensitivity to growth inhibition by TGFβ and
reduced sensitivity to the growth inhibitory effects of
retinoic acid, supporting interrelationships among the cell
regulatory pathways utilized by these three growth-sup-
pressive agents [65]. The effects of many of these agents
are believed to reflect their ability to change the phospho-
rylation state of ER, as well as that of coregulators and
other proteins with which the ER interacts to modulate
gene expression. Interestingly, there is considerable evi-
dence for interactions between cAMP and estrogen in
regulating growth of the mammary gland and breast
cancer cells [78,79].

Several groups have documented enhanced phosphoryla-
tion of ER on serine residues upon hormone occupancy as
well as upon cell exposure to cAMP and some growth
factors. Insulin-like growth factor and EGF stimulation, as
well as estrogen stimulation, of ER transcriptional activity
are associated with phosphorylation of several serine
residues present in the N-terminal activation function 1
region of ERα and ERβ [76•,80–84]. These include, most
notably, Ser-118 in ERα (and the equivalent serine in
ERβ), a mitogen-activated protein (MAP) kinase site, and
Ser 167 in ERα, which appears to be a pp90rsk1 site [85].
While growth factor-induced phosphorylation of Ser-118

http://breast-cancer-research.com/content/2/5/335



by MAP kinase is well documented, there is evidence that
another kinase may be involved in estrogen-induced phos-
phorylation of Ser-118. The cAMP-stimulated phosphory-
lation of ER probably occurs on different residues of the
ER [82]. Mutational analyses indicate that these sites play
an important role in the transactivation ability of the ER
[76•,82,83,85,86].

Crosstalk between the ER and EGF signaling systems has
been nicely documented more recently in the ERα knock-
out mouse, where the mice lose responsiveness to the
EGF, as well as to estrogen, in the uterus [87]. Our obser-
vations that the sodium–hydrogen exchanger regulatory
factor (NHE-RF, also known as EBP50) is upregulated by
estrogen suggests that this protein may serve as a link
between the ER and some cell signaling pathways [88].
NHE-RF has been shown to interact with ezrin–radixin–
moesin cytoskeletal proteins that link actin filaments to the
cell membrane, an interaction that may mediate the estro-
gen-induced changes in cellular architecture ([88] and ref-
erences cited therein). NHE-RF also interacts through its
two PDZ domains with several important receptors,
including the beta-adrenergic receptor, the platelet-
derived growth factor receptor, and the cystic fibrosis
transporter receptor, and may thereby provide a link
between ER and these other regulatory pathways.

The issue of whether hormone-dependent phosphorylation
of the ER involves tyrosine residues and whether this affects
receptor activity has been controversial. Several articles
have reported phosphorylation of ERα on tyrosine 537 and
provided evidence for the role of this site in regulating
hormone binding and DNA binding of the receptor [89,90].
However, other studies involving replacement of this
residue with amino acids incapable of being phosphory-
lated, indicate that phosphorylation at this site is not
required for hormone or DNA binding, nor for transcriptional
activity of the receptor [21,91–94]. The amino acid substitu-
tion studies revealed that substitution of certain amino acids
for tyrosine 537 in ERα (and at the corresponding tyrosine
in ERβ [95]) produced constitutively active ERs (ie ERs fully
active in the absence of hormone). These findings suggest
that the nature of the residue at this position, which is at the
start of helix-12, may facilitate the shift of this helix into an
active conformation and/or allow stabilization of the recep-
tor in its active form [21,91–93].

Aside from the well documented synergistic effects of
estrogens and some protein kinase activators and growth
factors on gene transcription (see, for example, [96•]),
estrogens also exert rapid membrane-initiated effects that
are known to impact importantly on cell signaling and may
also influence nuclear gene transcription. For example,
estrogens increase the overall levels of tyrosine phospho-
rylation in cells [97], increase intracellular calcium concen-
tration in some cells [98,99], increase the phosphorylation

of CREB [100], activate G protein-coupled signaling
[101], and rapidly increase MAP kinase activity associated
with estrogen stimulation of cell proliferation [99,102••].
Several studies suggest that these effects may be due to
ERs present in the membrane that are similar to those that
mediate gene transcription in the nucleus [101,103,104•],
although other studies indicate a receptor pharmacology
and ligand selectivity different from that of the classical
nuclear ERs [98,105]. This remains an area of great
importance and active investigation.

Conclusion
There have been great advances in our understanding of
the biochemical and molecular basis for biomedically
important tissue selective actions of estrogens. The devel-
opment of optimal SERMs for the prevention and treat-
ment of breast cancer, and for hormone replacement
therapy and fertility regulation, can now be viewed in the
context of two estrogen receptor subtypes, ERα and ERβ,
that have differing affinities and responsiveness to various
SERMs, and differing tissue distribution and effectiveness
at different gene regulatory sites. Cellular, biochemical,
and structural approaches have revealed that the nature of
the ligand affects the conformation assumed by the
ER–ligand complex, thereby regulating its state of phos-
phorylation and the recruitment of different coactivators
and corepressors that determine the magnitude of the
transcriptional response and its sensitivity to the SERM.
The ER and its ligands do not work in isolation in various
estrogen target tissues; the ER also has its bioactivity reg-
ulated by growth factors and various protein kinases that
regulate its phosphorylation, as well as the state of phos-
phorylation of coregulator proteins with which it interacts.
As these critical components are becoming increasingly
well defined, they provide a sound basis for the develop-
ment of novel SERMs with optimal profiles of tissue selec-
tivity as medical therapeutic agents.
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