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ABSTRACT 

Emerging evidence revealed the critical roles of long non-coding RNAs (lncRNAs) in maintaining genomic 
instability. However, genome instability-associated lncRNAs (GILncRNAs) and their performance in clinical 
prognostic significance in hepatocellular carcinoma (HCC) are rarely reported. Our study constructed a 
computational framework integrating somatic mutation information and lncRNA expression profiles of HCC 
genome and we identified 88 GILncRNAs of HCC. Function enrichment analysis revealed that GILncRNAs were 
involved in various metabolism processes and genome instability of cancer. A genome instability-derived 
lncRNA-based gene signature (GILncSig) was constructed using training set data. The performance of GILncSig 
for outcome prediction was validated in testing set and The Cancer Genome Atlas (TCGA) set. The multivariate 
cox regression analysis and stratification analysis demonstrated GILncSig could serve as an independent 
prognostic factor for the overall survival of HCC patients. The time-dependent Receiver Operating Characteristic 
(ROC) curve illustrated GILncSig outperformed two recently published lncRNA signatures for overall survival 
prediction. The combination of GILncSig and tumor protein p53 (TP53) mutation status exhibited better 
prognostic performance in survival evaluation compared to TP53 mutation status alone. AC145343.1 was 
further validated to be a risk factor for HCC in vitro among GILncSig. Overall, our study provided a novel 
approach for identification of genome instability-associated lncRNAs and established an independent risk score 
system for outcome prediction of HCC patients, which provided a new insight for exploring in-depth mechanism 
and potential therapy strategy. 
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INTRODUCTION 
 

Liver cancer is the second leading cause of tumor-

related death and disability-adjusted living-years 

causing more than 700,000 deaths each year [1]. There 

are about 840,000 people suffering from liver cancer, 

but the death toll is as high as 780,000 every year 

worldwide, most of which occur in developing countries 

according to the global cancer statistics in 2018 [2]. 

Although sensitivity and specificity of early diagnosis 

of liver cancer have improved to a certain extent, the 5-

year survival rate is still only about 17%. Hepatocellular 

carcinoma (HCC) as the most important type of liver 

cancer accounting for 85% to 90% is critical for liver 

cancer research. Liver resection and liver trans-

plantation are the main treatments for HCC, but only a 

few patients are eligible for surgery and approximately 

70% of patients undergoing surgery will relapse within 

5 years after surgery [3]. In addition, the symptoms of 

HCC commonly appear late leading to most HCC 

patients being diagnosed with advanced cancer 

accompanied by intrahepatic or distant metastasis with 

poor effect of surgical treatment and the prognosis of 

HCC is still very poor with a 5-year survival rate of less 

than 20% [4, 5]. To improve clinical outcomes for 

patients, serum biomarkers of HCC were being 

continuously developed. An abnormal increased level of 

plasma AFP in adults is considered to be a hallmark of 

pathological conditions of HCC [6]. AFP is over-

expressed in more than 70% of clinical HCC patients. 

Serum AFP level has been considered  

the ‘gold standard’ biomarker for clinical liver cancer 

diagnosis over the last few decades [7]. A protein 

induced by vitamin K absence or antagonist-II (PIVKA-

II) is also useful for the diagnosis of early HCC and has 

been used as a predictive marker of microvascular 

invasion [8]. In addition, 1 specific type of AFP—AFP-

L3—binds to a lectin and displays serum levels that are 

in consistent with levels of AFP in human sera [9]. 

AFP-L3 can be used to differentiate an increase in AFP 

due to HCC or benign liver disease [10–12]. However, 

these biomarkers at the protein level are still limited by 

low sensitivity and specificity [13]. Genome instability, 

an increase in the tendency to acquire genomic changes 

ranging from base pair mutations to chromosomal 

aberrations, contributes to somatic cell heterogeneity 

and genetic diversity as a material for natural and 

artificial selection, while it also contributes to the 

progression of genetic related diseases including cancer 

[14, 15]. Genome instability is the basic feature of 

tumor cells and the core sign of tumorigenesis, and the 

evolution from early atypical hyperplasia to malignant 

and metastatic tumors is often accompanied by 

increasing genomic instability [16]. Moreover, genomic 

instability is closely related to tumor progression and 

affects prognosis and survival [17]. The causes of 

genome instability are very complicated which may be 

associated with replication dysfunction, DNA repair 

failure, abnormal transcription, various metabolism 

process and post-transcriptional regulation.  

 

It is clear that long non-coding RNA (lncRNA) is 

becoming a potential regulator and quantitative 

measurement of genome instability [18, 19]. LncRNA 

mostly transcribed by RNA polymerase II without 

protein-coding function is defined as an RNA 

transcript with more than 200 nucleotides located in 

the nucleus or cytoplasm. LncRNA participates in cell 

cycle, differentiation, cell migration, invasion, 

proliferation and apoptosis, and functions as a cell 

microstructure original and small RNA precursor  

[20, 21]. Transcription and dysfunction of lncRNA is 

closely involved in tumorigenesis, including HCC 

[22]. Moreover, lncRNA with time and tissue 

specificity shows different expression levels in tumors 

and healthy states and different tumor stages, which 

suggests lncRNA has great potential to be a new 

prognostic biomarker [23]. For example, a controlled 

study involving 80 HCC patients and 50 healthy 

subjects finds that the expression of cancer 

susceptibility candidate 9 in HCC patients significantly 

increases with area under the curve (AUC) at  

0.933 [24]. Study shows the volume of liver cancer 

tumors reduces by 82% in animal models of liver 

cancer when H19 (the first reported lncRNA) is 

knocked out, which fully confirms the tumorigenic 

effect of H19 [25]. Short-term recurrence after liver 

resection or liver transplantation in patients with HCC 

is related to the increasing expression of HOTAIR and 

the decreased expression of HOTAIR leads to the 

apoptosis of liver cancer cell lines [26]. The above 

researches show that lncRNAs are closely related to 

the progression of HCC, but the mechanism of 

regulating HCC is still elusive. Evidence shows that 

lncRNA participates in gene expression at the 

transcription and post-transcriptional levels, thus 

involves in regulating genomic instability [27]. 

However, genome instability-associated lncRNAs 

(GILncRNAs) and their clinical prognostic significance 

in HCC are rarely reported. 

 

In this study, we constructed a computational framework 

integrating somatic mutation profiles and lncRNA 

expression profiles of HCC to recognize GILncSig for 

HCC, and confirmed the performance of GILncSig on 

HCC. We further validated the biology function of the 

most important lncRNA of the GILncSig-AC145343.1 

with Cell Counting Kit-8 (CCK-8), colony formation, 

transwell and wound healing assay. Our study revealed a 

novel approach for identification of genome instability-

associated lncRNAs and established an independent 

signature for outcome prediction of HCC. 
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RESULTS 
 

Identification of GILncRNAs in HCC patients  

 

The cumulative somatic mutations for each sample were 

first computed and ranked in the decreasing order. The 

top 25% samples and the last 25% ones in the ranking 

list were defined as genomic unstable (GU)-like group 

and genomic stable (GS)-like group, respectively 

(Figure 1A). Each group was consisted of 91 samples. 

Next, significant expressed lncRNAs were identified by 

comparing the lncRNA expression profiles between 

GU-like group and GS-like group. 88 lncRNAs were 

obtained based on the criteria of |fold change| > 1.5  

and FDR adjusted P<0.05 and served as GILncRNAs. 

Of these, 32 lncRNAs were upregulated and 56 were 

downregulated in GU-like group (Supplementary  

Data 2). Then, we performed unsupervised hierarchical 

clustering analysis of all 364 samples using the filtered 

expression profile of differently expressed GILncRNAs. 

All samples were hence re-grouped based on the cluster 

result (Figure 1B). The group with higher cumulative 

somatic mutations was defined as GU-like group, and 

the other group was named as GS-like group. As shown 

in Figure 1B, the somatic mutation pattern was 

significantly different between the two groups. The 

median value of somatic cumulative mutations was 

156.7 in the GU-like group while 124.0 in the GS-like 

group (P<0.001) (Figure 1C). 

 

To validate the potential function of identified 88 

lncRNAs and uncover their association with genomic 

instability, Gene Ontology (GO) terms and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analysis 

were carried out using clusterProfiler software in R-

version 3.5.2. Firstly, protein coding genes (PCGs) 

closely related to the expression of lncRNAs were 

screened out using Pearson Correlation Coefficients. 

The top 10 PCGs most correlated with each lncRNAs 

were retained for lncRNAs–mRNA co-expression 

network construction. In the co-expression network, the 

nodes represented lncRNAs and mRNAs, and the lines 

represented the relationships between lncRNAs and 

mRNAs (Figure 1D). Go analysis of the PCGs in the 

network indicated that genomic instability might impact 

various metabolism process including fatty acid / fatty 

acid derivative metabolic process, pentose metabolic 

process, cellular aldehyde metabolic process, small 

molecule catabolic process and so on (Figure 1E).  

In terms of KEGG pathway analysis, PCGs in the  

network were found to enriched in a variety of  

metabolism pathway, HIF-1 signal pathway, extracellular

 

 
 

Figure 1. Identification and functional annotations of genomic instability-related lncRNAs. (A) GU-like group and GS-like group 

identification according to the top 25% samples and the last 25% ones in the ranking list of cumulative somatic mutations. The left blue 
cluster is GS-like group, and the right red cluster is GU-like group. (B) Unsupervised clustering of 364 HCC patients based on the expression 
pattern of 88 candidate genomic instability-related lncRNAs. The left orange cluster is GU-like group, and the right blue cluster is GS-like 
group. (C) Boxplots of somatic mutations in the GU-like group and GS-like group. Somatic cumulative mutations in the GU-like group are 
significantly higher than those in the GS-like group. (D) Coexpression network of genomic instability-related lncRNAs and mRNAs. The red 
circles represent mRNAs, and the blue circles represent lncRNAs. (E, F) Functional enrichment analysis of GO and KEGG for mRNAs co-
expressed lncRNAs. 
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matrix-receptor interaction, biosynthesis of amino acids 

and so on (Figure 1F). Enrichment results further reveal 

genomic instability-related lncRNAs were involved in 

various biological process of cancer. Expression of 

lncRNA could break the regulatory balance between 

lncRNA and PCGs, subsequently interfere with a 

variety of metabolism pathway, leading to gene damage 

repair process and exacerbation of genomic instability.  

 

Construction of GILncSig for outcome prediction in 

the training set 

 

To explore the role of GILncRNAs in the prognosis of 

HCC patients, 343 samples downloaded from TCGA 

were randomly divided into 2 groups named the training 

set (n=172) and testing set (n=171) respectively. As 

shown in Supplementary Table 1, there was no significant 

difference observed in the common clinical features 

characteristic between two groups (P > 0.05, Chis-square 

test). Then training set were used to establish GILncSig of 

HCC patients. We performed univariate Cox proportional 

hazard regression analysis to investigate the association of 

GILncRNAs and overall survival (OS) of HCC patients in 

the training set and found 9 GILncRNAs were closely 

related to the prognosis of HCC patients (P<0.05; 

Supplementary Table 2). Furthermore, multivariate Cox 

regression analysis was performed to evaluate the 

independent prognostic value of 9 GILncRNAs. 3 of 9 

candidate lncRNAs including AC145343.1, AC004862.1 

and ZFPM2-AS1 were obtained with prognostic 

significance in multivariate Cox analysis (P<0.05)  

(Table 1). Finally, GILncSig was established to predict 

outcome of HCC patients in the training set according to 

the equation mentioned above. The GILncSig was 

constructed as follow: GILncSig score = (0.3804 × 

expression level of AC145343.1) + (0.1253 × expression 

level of ZFPM2-AS1) + (−0.2344 × expression level of 

AC004862.1). A positive/negative regression coefficient 

demonstrated a positive/negative association between risk 

score and the expression level of lncRNA. Higher 

GILncSig score means higher risk of poor prognosis. Of 

the GILncSig, AC145343.1 and ZFPM2-AS1 tended to 

be risky factors while AC004862.1 was more likely to be 

a protective factor for the survival of HCC patients.  

 

The GILncSig of each sample in the training set were 

calculated and then these patients were equally divided 

into high risk group and low risk group according to 

computed risk score with a decreasing order. Next we 

investigated the survival time of patients in the two 

groups using Kaplan–Meier analysis. The result showed 

that longer survival of patients in the low-risk group 

compared that in the high-risk. 

 

Group (P<0.001, log rank test; Figure 2A). The time-

dependent ROC curve was illustrated in Figure 2B and 

demonstrated an AUC of 0.781 for the GILncSig. We 

also plotted the expression levels of lncRNAs in the 

GILncSig and the count of somatic mutations with the 

increasing score in patients of the training set. As shown 

in Figure 2C, the risk lncRNA AC145343.1 and 

ZFPM2-AS1 showed up-regulated expression while the 

protective lncRNA AC004862.1 showed opposing 

expression pattern in the samples with high risk scores. 

Comparison analysis showed the number of somatic 

mutation between two groups has no significance (P = 

0.16) but the average count of somatic mutation in 

patients of high-risk group was higher than that of low-

risk group (Figure 2D). 

 

Independent examination of GILncSig for HCC 

patients 

 

The RNA-seq data of testing group including 171 

HCC samples was analyzed to assess the stability, 

validity and prediction ability of the GILncSig. 

Patients in the testing group were also evenly 

separated into the high-risk group and low-risk group 

based on their GILncSig score. Kaplan–Meier survival 

analysis showed that patients in the high-risk group 

had a shorter survival time compared to those in the 

low-risk group (P<0.05) (Figure 3A; Left panel). The 

time-dependent ROC curves analysis of the GILncSig 

in the testing set yielded an AUC of 0.665 (Figure 3B; 

Left panel). Then we sorted the samples in the testing 

group according to GILncSig score with the increasing 

order to further demonstrate the alteration of the 

expression levels of the GILncSig (Figure 3C; Left 

panel). Concurring with the expectation, the risk 

lncRNAs AC145343.1 and ZFPM2-AS1 were more 

highly expressed and the protective lncRNA 

AC004862.1 showed lower expression pattern in the 

patients of testing set with higher risk scores. The 

number of the distribution of somatic mutation in 

patients with high scores was significantly higher than 

in patients with low scores (P<0.05, Figure 3D;  

Left panel). 

 

Similar results have been obtained in the whole TCGA 

samples in terms of the prognostic value of the 

GILncSig. Kaplan–Meier plot analysis demonstrated 

that patients in the low-risk group had a more favorable 

survival time compared to those in the high-risk group 

(P<0.001) (Figure 3A; Right panel). As for ROC curve, 

the TCGA set yielded an AUC of 0.728 (Figure 3B; 

Right panel). The expression patterns of lncRNAs 

AC145343.1, ZFPM2-AS1 and AC004862.1 in TCGA 

set were consistent with that in the training and testing 

group (Figure 3C; Right panel). The high-risk group 

also showed increased somatic mutation counts 

compared to the low-risk group (P<0.05) (Figure 3D; 

Right panel). 
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Table 1. Multivariate Cox regression analysis.  

Gene symbol Coefficient HR 95% CI P-value 

AC145343.1 0.380 1.463 1.134-1.888 0.003 

AC004862.1 -0.234 0.791 0.657-0.952 0.013 

ZFPM2-AS1 0.125 1.133 1.076-1.193 1.57E-06 

 

Independence of the GILncSig from common clinical 

variables  

 

To access the prognostic value of other clinical factors, 

we first conducted univariate Cox regression analyses 

on age, gender, tumor grade, tumor stage and GILncSig 

of each set. The result showed that only tumor stage and 

GILncSig were closely related to the survival time of 

HCC patients in each set (Table 2). Multivariate Cox 

regression was further analyzed to explore the 

independence performance of the GILncSig. Tumor 

stage and GILncSig also exhibited significant difference 

in each group based on the multivariate analysis result 

(Table 2). Then we continued to examine whether the 

prognosis performance of GILncSig was independent of 

the tumor stage. We excluded the patients with 

 

 
 

Figure 2. Identification of the genomic instability-derived lncRNA signature (GILncSig) using the training set. (A) Kaplan–Meier 
analysis of overall survival of patients with low or high risk according to the GILncSig score in the training set. Statistical analysis was 
performed using the log-rank test and univariate Cox analysis. (B) Time-dependent ROC curves analysis of the GILncSig. (C) LncRNA 
expression patterns with increasing GILncSig score. (D) Somatic mutations count in the high- and low-risk groups for the training set patients. 
The red represents the high-risk group, and the blue represents the low-risk group. 
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Figure 3. Performance examination of the GILncSig in the testing set and TCGA set. (A) Kaplan–Meier analysis of overall survival of 

patients with low or high risk according to the GILncSig score in the testing set (Left panel) and TCGA set (Right panel). Statistical analysis was 
performed using the log-rank test and univariate Cox analysis. (B) Time-dependent ROC curves analysis of the GILncSig in the testing set (Left 
panel) and TCGA set (Right panel). (C) LncRNA expression patterns with increasing GILncSig score in the testing set (Left panel) and TCGA set 
(Right panel). (D) Somatic mutations count in the high- and low-risk groups for the patients in the testing set (Left panel) and TCGA set (Right 
panel). The red represents the high-risk group, and the blue represents the low-risk group. 
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Table 2. Univariate and multivariate Cox regression analysis of the GILncSig and overall survival in 
different patient sets. 

Variables 
 Univariable model  Multivariable model 

HR  95% CI P-value HR  95% CI P-value 

Training set (n =182)       

GILncSig  High/Low  1.129 1.076 8.37E-07 1.153 1.096-1.213 2.96E-08 

Age  1.004 0.984 1.025    

Gender  0.721 0.419 1.241    

Grade  1.300 0.932 0.122    

Stage  1.811 1.353 6.51E-05 1.931 1.428-2.611 1.90E-05 

Testing set (n =182)       

GILncSig  High/Low  1.023 0.922-1.136 6.64E-03 1.102 1.042-1.145 2.23E-03 

Age  1.007 0.986-1.029 0.497    

Gender  0.792 0.451-1.391 0.417    

Grade  0.887 0.593-1.327 0.560    

Stage  1.849 1.355-2.523 1.04E-04 1.849 1.355-2.523 1.04E-04 

TCGA set (n =364 )       

GILncSig  High/Low  1.091 1.042-1.141 1.68E-04 1.114 1.061-1.168 1.39E-08 

Age  1.005 0.991-1.020 0.481    

Gender  0.758 0.513-1.118 0.162    

Grade  1.121 0..865-1.454 0.388    

Stage  1.808 1.463-2.234 4.31E-08 1.866 1.505-2.315 1.11E-05 

 

unknown stage and stratified remaining samples into 

early-stage group (stage I-II, n = 238) and late-stage 

group (stage III-IV, n = 83) for stratification analysis. 

Samples in each group were further separated into high- 

risk and low-risk group. A significant difference in 

survival outcome between high-risk and low-risk group 

was observed in both early-stage group and a late-stage 

group (P<0.01) (Figure 4). It was clear that the 

GILncSig could serve as an independent prognostic 

factor for the overall survival of HCC patients. 

 

 
 

Figure 4. Stratification analyses by stage. Kaplan–Meier curve analysis of overall survival of patients in high- and low-risk groups for 
early-stage patients (A) and late-stage patients (B). Statistical analysis was performed using the log-rank test and univariate Cox analysis. 
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Comparison of the GILncSig with existing lncRNA-

related signatures in prognosis value 

 

To further illustrate the performance of GILncSig in our 

study, we recruited two recently published lncRNA 

signatures for survival prediction of HCC patient. Li’s 

study included 12-lncRNA signature (LilncSig) and 

Ma’s study included 4-lncRNA signature (MalncSig) 

[28, 29]. For LilncSig, Li et al. analyzed 12 pairs of 

HCC and adjacent normal mucosal tissues and 

identified 3900 differentially expressed lncRNAs as 

candidate biomarkers for the prognosis of HCC [28]. 

The 12-lncRNA signature was constructed using the 

least absolute shrinkage and selection operator 

(LASSO) cox regression method [8]. For MalncSig, the 

probe expression profiles of 225 HCC samples and 220 

paired non-tumor tissue samples were derived from 

Gene Expression Omnibus (GEO)-GSE14520 [29]. 

Univariate cox regression and LASSO model were 

applied to screen lncRNAs linking to the overall 

survival. Then the multivariate Cox regression model 

was implemented to construct the prognostic score 

model [20]. Comparison analysis was performed 

between GILncSig and two recruited lncRNA 

signatures. As shown in Figure 5, the AUC of overall 

survival (OS) for the GILncSig is 0.728, which is 

significantly higher than that of LilncSig (AUC = 

0.619) and MalncSig (AUC = 0.575). In addition, 

GILncSig consisted of 3 lncRNAs while MalncSig/ 

LilncSig included 4/12 lncRNA for outcome prediction. 

Based on the AUC and lncRNA number, our optimized 

GILncSig significantly outperformed the two recently 

published lncRNA signatures in the sense of prognostic 

performance. 

 

Comparison of the GILncSig with TP53 mutation 

status in prognosis value. 

 

It is reported that mutation of TP53 gene is associated 

with worse survival in cancer patients [30]. Statistic 

results suggested that patients in the high-risk group have 

a significantly higher percentage of TP53 mutations than 

patients in the low-risk group among the training  

set, testing set and all TCGA samples (Figure 6A)  

(P<0.001). The proportions of TP53 mutation in the 

high-risk group of the training set, testing set and 

TCGA set were 49%, 42% and 45% respectively. In 

the low-risk group of the training set, testing set and 

TCGA set, TP53 mutation proportions were 20%, 12% 

and 16% respectively. TP53 transcriptionally targets 

hundreds of genes and regulates the expression of gene 

contributed to cell cycle, apoptosis, DNA repair 

proteins and metabolic [31, 32]. Recent studies had 

demonstrated that mutation of TP53 increased 

genomic instability and served as an independent 

prognostic marker [33–37]. Therefore, we continued to 

compare the performance of the GILncSig and TP53 

mutation status in prognosis value. According to the 

 

 
 

Figure 5. The ROC analysis of overall survival (OS) for the LilncSig and MalncSig. The AUC of OS for the GILncSig, LilncSig and 

MalncSig is 0.728. 0.619 and 0.575, respectively. 
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GILncSig and TP53 mutation status, we classified all 

samples into TP53 Mutation/GS−like group, TP53 

Mutation/GU−like group, TP53 Wild/GS−like group 

and TP53 Wild/GU−like group. Figure 6B revealed the 

survival curve of four risk groups. With regard to 

GU−like patients, the survival of TP53 Mutation group 

was more closely resembles that of TP53 Wild group. 

However, for patients with TP53 mutation, the survival 

of GU−like group was not similar to the GS−like group. 

Moreover, the survival outcome of patients in both 

GU−like group and TP53 mutation group were 

significantly worse than that in both GS−like group and 

TP53 wild group, indicating that the GILncSig and 

TP53 mutation status exhibited better prognostic 

performance than TP53 mutation status alone. 

 

Unfavorable impact of AC145343.1 on HCC 

 

Of the GILncSig, AC145343.1 served as a risky factor 

and the most important lncRNA for prognostic 

prediction according to the regression coefficient. 

Hence, we further assessed the function of AC145343.1 

with regards to HCC. Firstly, we sought to characterize 

the potential prognostic ability of AC145343.1 

indicated by survival analysis using The Encyclopedia 

of RNA Interactomes (ENCORI) as described in our 

previous study [38]. A significant decline of survival 

time in high AC145343.1 set were observed (Figure 

7A). To evaluate the phenotype effect of AC145343.1 

in vitro, we transfected siRNA into HepG2 cell to 

establish AC145343.1-downregulated cell line. To 

assess the proliferation inhibitory potential of 

AC145343.1 in HCC, we employed CCK-8 and colony 

formation assay in HepG2 with/without AC145343.1 

downregulation. After AC145343.1 silencing, HepG2 

exhibited obviously lower cell viability and 

significantly decreased colony area compared to the 

control group (Figure 7B, 7C). Invasion and migration 

roles of AC145343.1 were further observed, manifested 

by transwell assays and wound healing array. Transwell 

assay indicated silencing AC145343.1 remarkably 

decreased the number of HepG2 that migrated across 

the transwell chamber (Figure 7D). Wound healing 

array also revealed that AC145343.1-downregulated 

HepG2 exerted a significant delay in wound healing 

when compared with the control group (Figure 7E). 

Taken together, these results supported AC145343.1 

knockdown repressed the proliferative, migratory and 

invasive abilities of HepG2 cells. 

 

DISCUSSION 
 

The onset is hidden, the early symptoms are not obvious 

and the clinical manifestations of HCC are quite different 

making early diagnosis and prognosis difficult. Imaging 

examination plays an important role in the diagnosis of 

HCC, but the diagnostic sensitivity is greatly reduced and 

restricted when the lesion is small [39]. AFP is currently 

the most widely used biomarker for the diagnosis of HCC 

with low sensitivity and specificity [13]. Therefore, it is 

necessary and urgent to look for the new prognostic 

evaluation indicators in order to improve the prognosis of 

HCC. With the rapid development of high-throughput 

sequencing technology, genomic instability-related 

lncRNA is gradually being discovered to be a potential 

biomarker of prognostic evaluation indicator [18, 19].

 

 
 

Figure 6. Comparison of the GILncSig with TP53 mutation status in prognosis value. (A) The proportion of TP53 mutation in high- 

and low-risk groups in the training set, testing set and the TCGA set. (B) Kaplan–Meier curve analysis of overall survival is shown for patients 
classified according to TP53 mutation status and the GILncSig. Statistical analysis was performed using the log-rank test. 
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LncRNA plays an important regulatory role in 

chromosome modification, nuclear transcription and 

cytoplasmic post-transcriptional processing, and can 

be used as a tissue factor of subcellular structure to 

regulate the location or activity of the protein [40, 41]. 

Abnormal expression of lncRNA is closely related to 

human diseases, especially in tumors. The abnormal 

expression of lncRNA has been found in HCC, and it 

is involved in tumor growth, infiltration, metastasis 

and recurrence suggesting that lncRNA may become a 

new prognostic marker in the occurrence and 

development of HCC [42, 43]. Studies have shown 

that lncRNA is an emerging regulator of genomic 

instability, such as BGL3 and NORAD [18, 44]. 

However, the identification of lncRNAs related to 

genomic instability and their prognosis and clinical 

significance for HCC are still unclear. Thus, we 

constructed the GILncSig with a computational frame-

work integrating somatic mutation information and 

lncRNA expression profiles to confirm the roles of 

lncRNAs related to genomic instability in prognosis 

for HCC.  
 

First, we integrated the lncRNA profile with the somatic 

mutation profile of HCC for a comprehensive analysis, 

and obtained 88 lncRNAs with |fold change| > 1.5 and 

FDR adjusted P<0.05 related to genome instability. 

Then, PCGs closely related to lncRNAs were screened 

out to perform Go and KEGG pathway analysis. We 

found that biological processes and biological pathways 

were mainly involved in various small molecule 

metabolic/catabolic process, a variety of metabolism 

pathway, HIF-1 signal pathway, biosynthesis of amino 

acids and so on. The normal cell cycle is the basic 

condition to ensure the correct sequence, integrity and 

fidelity of life activities and study suggests metabolic 

 

 
 

Figure 7. Unfavorable impact of AC145343.1 on HCC in vitro. (A) Kaplan–Meier curve of expression level of AC145343.1 on HCC 
patients using ENCORI. (B) Cell viability of HepG2 was significantly inhibited after AC145343.1 silencing. (C) Colony formation number was 
significantly decreased after AC145343.1 silencing compared to the control group. (D) Invasive ability of HepG2 was suppressed after 
AC145343.1 silencing manifested by transwell experiment. (E) Wound healing array demonstrated that AC145343.1-downregulated HepG2 
cell exhibited obviously delay in wound healing when compared with the control group. *P<0.05, **P<0.01, ***P<0. 01. 
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dysfunction linking to DNA damage causes 

dysregulated cell cycle, which will lead to genomic 

instability [45, 46]. In addition, research shows that 

metalloproteinase SPRTN involved in biosynthesis of 

amino acids and metabolism regulates covalent DNA-

protein crosslinks to prevent genome instability and 

carcinogenesis [47]. HIF, a major participant in sensing 

and adapting to hypoxia, is closely related to genome 

instability and cancer progression [48]. The results of 

Go and KEGG pathway analysis further proved PCGs 

closely related to lncRNAs were mainly involved in 

genome instability, which is an important feature of 

cancer pathogenesis [46]. We further explored the roles 

of GILncRNAs in the prognosis prediction of HCC 

patients and received 3 candidate GILncRNAs 

including AC145343.1, AC004862.1 and ZFPM2-AS1 

by using multivariate cox regression analysis. Patients 

was divided into two groups according to GILncSig 

score. The low risk group showed a longer survival time 

compared with high risk group with significance in the 

training set. The same result was validated in the testing 

set and TCGA set by using Kaplan–Meier and time-

dependent ROC curve analysis. It is worth noting that 

the AUC of ROC curve for GILncSig in the training set, 

testing set and TCGA set were respectively achieved 

0.781, 0.665 and 0.728 revealing outstanding 

performance of GILncSig for prognosis prediction. 

Meanwhile, multivariate cox regression analysis 

showed the predictive significance of GILncSig was 

independent of other clinical factors, further 

elaborating the reliability of GILncSig for HCC 

prognosis prediction. Moreover, we found the number 

of somatic mutation in high risk group was higher 

than low risk group with significant in testing set and 

TCGA set, demonstrating GILncSig was significantly 

associated with HCC mutator phenotype, which  

is important for assessing genome instability and 

prognosis. After systematically reviewing the 

literature, we found that ZFPM2-AS1 upregulated in 

HCC tissues and involved in cell cycle progression 

with miR-653 binding sites can reverse the inhibitory 

effect of miR-653 on the proliferation and metastasis 

of HCC cells by regulating the target gene GOLM1 of 

miR-653, and regulate the process of HCC by binding 

to miR-139 to regulate the expression of GDF10 [49, 

50]. However, no previous reports describing the 

function of AC145343.1 and AC004862.1 until now. 

We found that the lncRNA AC145343.1 is located in 

chromosome 17q24 [51]. Genetic variations in the 

region of chromosome 17q24 are predictors of 

prostate cancer and lung malignancy risk [52–54]. 

The AC004862.1 gene is localized in chromosome 

7q21.11. Previous studies showed frequent 

amplification of 7q21 was found in Barrett’ s and 

gastric cardia cancers and associated with early 

neoplastic lesions [55, 56]. The amplicon in the 7q21 

area is known for breast cancer metastasis-related 

susceptibility loci in previous genome wide analysis 

[57]. In this study, we first propose that lncRNA 

AC145343.1 has great potential to serve as a risk 

factor and lncRNA AC004862.1 is recognized as a 

protective factor for HCC prognosis performing 

crucial role in the development of HCC. However, 

further research is needed to understand the deeper 

mechanisms. The present results in our study and 

available published literatures reveal the GILncSig 

has great potential to perform prognosis prediction 

and are very likely to become indicators of genome 

instability for HCC patients at the same time. 

 

To further confirm the performance in prognosis 

prediction of GILncSig, we recruited two recently 

published lncRNA signatures of survival prediction 

for HCC patient [28, 29]. We found that the AUC for 

the GILncSig with lower number of lncRNA was 

higher than that of LilncSig and MalncSig, indicating 

our GILncSig possessed more optimized prognostic 

effect. Studies show that TP53 mutation increases 

genomic instability and serves as an independent 

prognostic marker [33–37]. Cells with DNA damage 

can avoid apoptosis then transform into cancer cells in 

the event of TP53 mutation. In HCC, TP53 alterations 

are found to be associated with serum AFP level, 

tumor stage, vascular invasion, tumor differentiation 

and Child-Pugh class [58–61]. Meanwhile, HCC 

patients with TP53 mutations have shorter OS and 

relapse-free survival times [62]. Consistent with 

previous research, patients in high risk group showed 

a higher TP53 mutation rate than those in low risk 

group in training set, testing set and TCGA set, 

strongly showing GILncSig can reflect the TP53 

mutation status. Then, we further compared the 

prognosis value of GILncSig and TP53 mutation. The 

survival curve of TP53 Mutation/GU−like group  

was more closely resembles that of TP53 

Wild/GU−like group but not that similar to the TP53 

Mutation/GS−like group, indicating that GILncSig 

rather TP53 mutation was more closely associated 

with the overall survival of HCC patients, suggesting 

TP53 mutation status alone does not perform well for 

predicting outcome of GU−like patients. Remarkably, 

patients in both GU−like group and TP53 mutation 

group had a shorter survival time compared to that in 

both GS−like group and TP53 wild group, indicating 

that the GILncSig and TP53 mutation status exhibited 

better prognostic performance than TP53 mutation 

status alone. Finally, AC145343.1 was regarded as  

the most relevant one for outcome prediction. A 

significant decline of survival time in patients with high 

AC145343.1 was observed, indicating AC145343.1 

exerts pro-cancer effect in human HCC among the 

lncRNAs in GILncSig. Therefore, we conducted the 
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molecular biology experiments in vitro to validate the 

effect of AC145343.1 on HCC. CCK-8 and colony 

formation assay showed that cell viability and colony 

area of HepG2 cells with AC145343.1 silencing were 

significantly reduced, which revealed that AC145343.1 

silencing contributed to inhibit the proliferative of 

HepG2 cells. Further, transwell assays and wound 

healing array showed that the migration ability  

of HepG2 cells with AC145343.1 silencing were 

significantly suppressed, which confirmed that 

AC145343.1 silencing repressed the migration and 

invasion of HepG2 cells. All in vitro results confirmed 

that AC145343.1 tended to be a critical risky factor for 

the survival of HCC patients. 

 

We have provided preliminary evidence for evaluating 

the relationship between GILncSig and the prognosis 

of HCC. GILncSig may be of great significance in 

predicting the degree of genome instability and 

prognosis of HCC patients. But it still has certain 

limitations for clinical purposes. Although the 

prognostic value and independence of lncRNA 

AC145343.1, ZFPM2-AS1 and lncRNA AC004862.1 

on HCC have been verify in the training set, testing 

set and TCGA set and we proved that AC145343.1 is 

a high risk factor for HCC in vitro, more data sets, in 

vivo experiments, in vitro experiments and clinical 

experiments are still necessary to verify the accuracy, 

repeatability and the mechanism in regulating genome 

instability of GILncSig in the future. 

 

MATERIALS AND METHODS 
 

Data collection 

 

Clinical characteristics, RNA sequencing (RNA-Seq) 

data and somatic mutation variation information of 

HCC patients were obtained from The Cancer Genome 

Atlas (TCGA) database (https://portal.gdc.cancer.gov/). 

377 samples with RNA expression profiles, survival 

information and common clinical characteristics were 

extracted for next analysis. Clinical and pathological 

characteristics of all samples were shown in 

Supplementary Data 1. Somatic mutation data of 364 

HCC patients were also downloaded from TCGA. After 

integration of 377 samples with their somatic mutation 

data, 343 patients remained. These patients were 

randomly separated into two groups according to 

previous study, named training set and testing set 

respectively [63]. The training set with 172 HCC 

patients was used to recognize clinical outcome-related 

lncRNA signature and establish prognostic risk model. 

The testing set with 171 HCC patients was used to 

evaluate the performance of prognostic risk model of 

training group. 

 

Genome instability-associated lncRNAs analysis 

 

Somatic acquired genomic instability is one of the 

hallmarks of malignancy cancer [64]. Aberrant lncRNA 

levels are contributed to abnormal mutation and 

expression of genes involved in both tumor initiation 

and progression [65]. To recognize genome instability-

associated lncRNAs (GILncRNAs), we constructed a 

computational frameworks integrating somatic mutator 

information and lncRNA expression profiles of tumor 

genome (Figure 8): (i) total cumulative somatic 

mutations of each sample was calculated; (ii) samples 

were ranked based on cumulative number of somatic 

mutations from high to low; (iii) The top 25% samples 

in the ranking list were set as genomic unstable (GU)-

like group while the last 25% were set as genomically 

stable (GS)-like group; (iv) lncRNA expression profiles 

between the GU group and GS group were filtered; (v) 

 

 
 

Figure 8. Computational overview of genomic instability-related lncRNAs. Somatic mutations of each HCC sample were counted. 

Samples were divided into two groups, GU group (patients’ mutator phenotype ranked in the top 25%) and GS group (patients’ mutator 
phenotype ranked in the last 25%). Genomic instability-related lncRNAs were examined according to the difference of lncRNA expression 
profile between GU group and GS group. 

https://portal.gdc.cancer.gov/
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GILncRNAs were identified according to the criteria: 

|fold change| > 1.5 and false discovery rate (FDR) 

adjusted P<0.05.  

 

Statistical analysis 

 

To identify GU group and GS group using profiles of 

differentially expressed lncRNAs, hierarchical cluster 

analyses were carried out based on Euclidean 

distances and Ward’s linkage method. Univariate and 

multivariate Cox proportional hazard regression 

analysis was performed to evaluate the prognostic 

value of the expression level of GILncRNAs. To 

obtain outcome prediction model using GILncRNAs, 

we combined the regression coefficients from the 

multivariate regression analysis with the expression 

data of identified prognostic lncRNAs and constructed 

the following equation of genome instability-derived 

lncRNA signature (GILncSig) according to previous 

study [63]:  
 

n

i i

i 1

GILncSig (sample) coef (lncRNA )*expr (lncRNA )
=

=

 

GILncSig (sample) in the formula is a risk score of the 

prognosis of HCC patient. lncRNAi indicates the ith 

prognostic lncRNA and expr (lncRNAi) represents the 

expression level of lncRNAi of HCC patient. coef 

(lncRNAi) is the contribution index of lncRNAi to 

prognostic risk score which was acquired from the 

regression coefficient of multivariate Cox analysis. 

Patients were further equally divided into high-risk group 

and low-risk group according the risk score. High-risk 

group of unfavorable prognosis with high GILncSig and 

low-risk group with low GILncSig were obtained to 

verified the performance of outcome prediction model. 

To demonstrate the survival rate and median survival  

of different group, we performed the Kaplan–Meier 

analysis and P<0.05 was considered to be meaningful. 

Independence validation among GILncSig and other 

important clinical factors were evaluated using 

multivariate Cox regression and stratified analysis. 

Hazard ratio (HR) and 95% confidence interval (CI) were 

obtained through Cox analysis. R-version 3.5.2 was used 

to compute ROC curves and ROC AUC to validate the 

performance of the constructed GILncSig.  
 

Functional enrichment analysis 
 

To unreal the co-expressed lncRNA-mRNA pairs, 

Pearson Correlation Coefficients were calculated based 

on the expression profile between every differentially 

expressed lncRNA and mRNA. The top 10 items were 

defined as significant co-expressed mRNAs of lncRNAs. 

To disclose the biological functional properties 

associated with the proposed GILncRNAs, functional 

enrichment analysis of significant co-expressed mRNAs 

including Gene Ontology (GO) terms and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

was applied. The enrichment analysis was performed 

using clusterProfiler software in R-version 3.5.2 [63]. 

 

Cell proliferation and colony formation assays 

 

Human liver cancer cell lines HepG2 were purchased 

from the Cell Bank of the Type Culture Collection of the 

Chinese Academy of Sciences, Shanghai Institute of 

Biochemistry and Cell Biology. Cells were cultured in 

Dulbecco’ s Modified Eagle Medium (DMEM) sup-

plemented with 10% fetal bovine serum (FBS),  

1% penicillin and 1% streptomycin (Gibco Life 

Technologies, Lofer, Austria), then incubated in a 

humidified incubator with settled parameters (37° C, 

5% CO2). AC145343.1 specific siRNA and negative 

control siRNA were obtained from Vigene Biosciences 

and transfected into HepG2 using X-tremegene siRNA 

transfection reagent (Roche Diagnostics, Shanghai, 

China) according to the standard guidelines. 

 

Cell proliferation ability of HepG2 with/without 

AC145343.1 downregulation was evaluated by the Cell 

Counting KIT-8 (CCK-8, KeyGEN BioTECH, Nanjing, 

China) according to manufacturer's guidelines. Briefly, 

3×103 cells suspended were seeded in each well of 96-

well plates and incubated overnight for cell attachment. 

The CCK-8 cell proliferation reagent (10 µl) was added 

to each well at 24 h, 48 h and 72 h. 4 h after CCK-8 

administration, cell proliferation ability is detected. For 

colony formation assay, 1×103 cells suspended were 

seeded in each well of 6-well plate and incubated for 2 

weeks. Cell colonies were fixed with 4% formaldehyde 

solution and stained with crystal violet for image 

visualization. 

 

Wound healing assay and transwell assay 

 

Migration ability of HepG2 with/without AC145343.1 

downregulation was observed by wound healing assay. 

5×105 cells suspended were seeded into a 6-well plate. 

When the cells permeated 90% of the plate, a ‘wound’ 

in cell monolayers was scratched using a 1 ml pipette 

tip. Then images of wounds were captured by an 

inverted microscope at 0 h, 24 h, 48 h and 72 h. 

Migration ability was calculated by calculating the 

wound confluence parameter. Invasive ability of cells 

was further accessed by transwell assay. The transwell 

chambers were placed in a 24-well plate which 

contained complete cultured medium (10% FBS), then 

added a layer of Matrigel before cell seeding. 8×104 

cells were seeded into upper transwell chambers and 

inserted into 300 μl serum-free medium. The cells of the 

upper surface were removed using a cotton swab 24 h 
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later. Then the cells on the bottom surface were fixed 

with 4% formaldehyde solution and stained with 0.5% 

hematoxylin solution for 20 min. Images of invaded 

cells were collected by an inverted microscope. 

 

Availability of data and materials 

 

The datasets used during the current study are available 

from TCGA database (https://cancergenome.nih.gov/), 

and Supplementary Materials. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

 

Supplementary Table 1. The common clinical features characteristic between 
the training set and testing set.  

Variables Type Total Test Train Pvalue 

Age 
<=65 216(62.97%) 107(62.57%) 109(63.37%) 

0.967 
>65 127(37.03%) 64(37.43%) 63(36.63%) 

Gender 
FEMALE 110(32.07%) 63(36.84%) 47(27.33%) 

0.0763 
MALE 233(67.93%) 108(63.16%) 125(72.67%) 

Grade 
G1-2 214(62.39%) 106(61.99%) 108(62.79%) 

1 
G3-4 124(36.15%) 61(35.67%) 63(36.63%) 

Stage 
Stage I-II 238(69.39%) 115(67.25%) 123(71.51%) 

0.9667 
Stage III-IV 83(24.2%) 41(23.98%) 42(24.42%) 

T 
T1-2 252(73.47%) 126(73.68%) 126(73.26%) 

0.9524 
T3-4 88(25.66%) 43(25.15%) 45(26.16%) 

M 
M0 245(71.43%) 113(66.08%) 132(76.74%) 

0.8991 
M1 3(0.87%) 2(1.17%) 1(0.58%) 

N 
N0 239(69.68%) 111(64.91%) 128(74.42%) 

0.9081 
N1-3 3(0.87%) 2(1.17%) 1(0.58%) 

 

Supplementary Table 2. Univariable Cox regression analysis.  

Gene symbol HR 95% CI P-value 

CASC9 1.068 1.012-1.126 0.017 

MIR210HG 1.157 1.062-1.261 9.90E-04 

LUCAT1 1.174 1.078-1.278 2.33E-04 

PRRT3-AS1 1.091 1.028-1.156 0.037 

KCNMB2-AS1 1.235 1.082-1.409 1.72E-03 

AC145343.1 1.378 1.072-1.772 0.012 

AL731684.1 1.141 1.037-1.255 0.007 

AC004862.1 0.811 0.683-0.964 0.017 

ZFPM2-AS1 1.148 1.095-1.204 1.14E-08 
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Supplementary Data 
 

Please browse Full Text version to see the data of Supplementary Data 1, 2. 

 

Supplementary Data 1. Clinical and pathological characteristics of all samples. 

 

Supplementary Data 2. 88 GILncRNAs. 

 

 


