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Asymmetric cell divisions combine 
cell division with fate specifica-

tion and one general model of how this 
is achieved was proposed already decades 
ago1,2: During interphase, the cell polarity 
axis is specified, followed by orientation 
of the spindle along the polarity axis and 
segregation of fate determinants along 
the polarity axis during mitosis. In most 
cells, the polarity axis and the spindle will 
usually align with the long axis that the 
cell had before division, also called Her-
twig’s rule3–6. In the C. elegans embryo, 
the first polarity axis also forms along the 
long axis of the embryo by enrichment 
of myosin in the anterior7 and formation 
of mutually exclusive anterior and poste-
rior cortical polarity domains, mediated 
through directional cortical contractile 
flow8–10. The directionality of this flow 
is determined by an extrinsic cue, the 
entry of the sperm, which inhibits Rho-
dependent myosin activation at the future 
posterior pole by bringing with it the 
Rho GTPase activating protein CYK-
411,12. Moreover, since there is no previous 
division ‘history’ before the first cleav-
age, mechanisms have to ensure that the 
nucleus-centrosome complex undergoes 
a 90 degree rotation so that the spindle 
can subsequently elongate along the long 
axis13–15. Additional mechanisms ensure 
that the site of cleavage is perpendicular 
to the long axis16,17. Hence, tight coupling 
of an extrinsic cue to intrinsic polarity 
formation and spindle elongation enables 
alignment of the division orientation with 
the long axis of the organism and success-
ful segregation of fate determinants.

The key event in dorsoventral axis for-
mation during the next division in the C. 

elegans embryo is a similar 90 degree rota-
tion of the nucleus-centrosome complex 
during prophase in the germline blasto-
mere onto the anteroposterior axis.14 In 
contrast to the first division, this rotation 
is an alignment along the short axis of the 
cell, a violation of Hertwig’s rule (Fig. 1A). 
Our recent work18 suggests that a combi-
nation of two previously proposed models 
might best explain the interplay between 
extrinsic and intrinsic polarity cues nec-
essary for this violation: The ‘cortical-site 
model’ suggested the existence of a special 
landmark at the cell membrane, the mid-
body remnant of the first division, which 
combined with the spatial constraints of 
the oblong egg, directs nucleus-centro-
some complex rotation.19-22 The midbody 
remnant is an organelle that forms at the 
end of cytoplasmic division when the fully 
constricted actomyosin furrow embraces 
the condensed material of the spindle mid-
zone.23 The role of the midbody remnant 
has been questioned by a differing model, 
in which the cortical protein LET-99, by 
its unique lateral localization pattern, 
reduces cortical pulling forces in two corti-
cal domains along the anteroposterior axis, 
thereby leading to spindle orientation vio-
lating the geometric rule.24-26 Our findings 
unify these two models by showing that 
although LET-99 will bias spindle rotation 
onto the anteroposterior axis, the spindle 
needs to be tethered to the midbody rem-
nant in order to become skewed ventrally 
during elongation (Fig. 1B). We find that 
tethering of the spindle to the midbody 
remnant requires formation of a transient, 
cortical, actin-rich structure at the site of 
the midbody remnant which depends on 
the germline blastomere having posterior 
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polarity. This tethering function of the 
midbody remnant does not require the core 
of the midbody remnant (the condensed 
‘remainder’ of the central spindle), neither 
does it require abscission or midbody rem-
nant internalization. Interestingly, it has 
been shown that the midbody ring com-
ponent of the midbody (the outer ‘shell’ 
derived from the actomyosin ring) is suf-
ficient to recruit the molecular machinery 
that will mediate cytokinetic abscission27 
(Fig. 1C). Additionally, a recent report 
shows that midbody remnant internaliza-
tion during C. elegans embryogenesis is not 
required for patterning, morphogenesis or 
development28 and most remnants seem 
to simply represent ‘junk’ after abscission 
since they become cleared by the phagocy-
tosis/engulfment machinery that usually 
takes care of cell corpses.28,29

Taking together these findings27,28 and 
our observations that midbody remnants 

are internalized by neighboring cells with 
low cortical tension that did not partici-
pate in the division that gave rise to the 
respective midbody remnant,18 allows us 
to propose the following sequence of pro-
cesses for the C. elegans embryo (Fig. 1D): 
(1) depending on cell polarity, nascent 
midbody remnants can organize asym-
metric cortical domains; (2) abscission 
seems to occur on both sides of the mid-
body remnant and only requires the mid-
body ring component; (3) remnants are 
internalized by cells in a stereotyped fash-
ion and are subsequently degraded; (3) the 
internalization mechanism is phagocyto-
sis/engulfment; (4) the stereotypy is prob-
ably explained by the fact that endocytosis 
and phagocytosis is facilitated in cells with 
low cortical tension.30

Although a common picture for 
midbody remnant inheritance seems to 
emerge from these recent studies of C. 

elegans embryogenesis, several mecha-
nisms have been discussed in other sys-
tems.31-33 Recent studies in Drosophila 
seem to reconcile apparent conflicts 
by suggesting that inheritance regula-
tion and developmental functions of 
midbody remnants seem to depend on 
tissue and cell type, cell polarity, regu-
lation of centrosome duplication and 
inheritance, as well as on the extracel-
lular environment.34-37 These findings 
very strongly disfavor a uniform inheri-
tance mechanism for midbody remnants 
and probably also a uniform function in 
development. One main reason for this 
is that cytokinesis itself has dramatically 
different outcomes depending on the cel-
lular and developmental context, e.g., 
instead of undergoing abscission, cells 
can also stabilize and remodel their mid-
bodies to form long-lasting intercellular 
bridges. Thus, although there is ample 

Figure 1. A. Hertwig’s rule and its violation during the division of the P1 blastomere in C. elegans. left: exerting a compressive force along the long 
axis of a cell can transform this axis into the short axis and the spindle will re-orient along the new long axis. right: long and short cell axes dur-
ing the first two cleavages in the C. elegans embryo. note that all cells except P1 obey Hertwig’s rule. B. Function of the midbody remnant during 
dorsoventral axis formation in C. elegans. See text for details. A = anterior; P = posterior; d = dorsal; V = ventral. C. midbody remnant internalization 
does not require the central spindle-derived part of the midbody. Schematic adapted from ref. 27. cPc = chromosomal passenger complex; eScrt 
= endosomal sorting complex required for transport. D. Hypothetical scheme for a midbody remnant ‘pathway’ in C. elegans early embryogenesis. 
Bottom: Protein factors required for the respective step. See text for details.
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evidence for developmental functions 
of cytokinesis, these functions have not 
been systematically analyzed and linked 
to alternative fates and functions of the 
midbody remnant. It will therefore be 
necessary to investigate how developmen-
tal programs differentially regulate cyto-
kinesis and modulate specific processes 

such as trafficking to the midbody, 
abscission, phagocytosis, and regulation 
of cortical dynamics to obtain a clearer 
picture of midbody remnant functions.
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