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Abstract: Health forecasting forewarns the health community about future health situations and 

disease episodes so that health systems can better allocate resources and manage demand. The 

tools used for developing and measuring the accuracy and validity of health forecasts commonly 

are not defined although they are usually adapted forms of statistical procedures. This review 

identifies previous typologies used in classifying the forecasting methods commonly used in 

forecasting health conditions or situations. It then discusses the strengths and weaknesses of 

these methods and presents the choices available for measuring the accuracy of health-forecasting 

models, including a note on the discrepancies in the modes of validation.
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Introduction
Forecasting is the process of predicting future events based on foreknowledge acquired 

through a systematic process or intuition.1,2 It requires data, information, and advanced 

knowledge. Forecasting has evolved over the years and now has wide applications in 

many fields, including economics and commerce,1,3 sports,4,5 the environment (includ-

ing meteorology),6,7 technology and politics,8–10 and health.11–14

Health forecasting predicts health situations or disease episodes and forewarns 

about future events. It is also a form of preventive medicine or preventive care 

engaged in public health planning, and it is aimed at facilitating health care service 

provision in populations.12,14–16 One of the least developed branches of forecasting, 

health forecasting is a useful tool for decision making in health services provision. 

Health forecasting has been commonly applied to emergency department visits, daily 

hospital attendance, and admissions.17–20

Various methods and approaches have been applied in forecasting events, but some 

outstanding issues are yet to be addressed. Even though a comprehensive classification 

of all forecasting approaches and methods would serve as a useful guide to forecasters 

searching for appropriate forecasting methods, there have been limited discussions and 

debates around this need.21 Health forecasting studies have often adapted statistical 

techniques used by other well-established areas of forecasting, such as econometrics 

and finance. However, little has been said about the strengths and weaknesses of these 

techniques when they are applied to health forecasting.22 Another important issue 

that has not been explicitly presented in the literature relates to approaches used to 

determine the accuracy and validity of health-forecasting models. The applications 
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available for measuring and determining the validity and 

accuracy of health forecasts have not been compared or 

presented as guides for health forecasting or even used to 

stimulate discussions that can contribute to improve health 

forecasting. This paper therefore aims at presenting a brief 

overview of the evolution of forecasting classifications 

and methods. It discusses the strengths and weaknesses of 

various health-forecasting techniques and methods, and then 

presents the choices available for validating and measur-

ing the accuracy of health-forecasting models. Because of 

the new approach it brings to medical and health sciences, 

health forecasting is important for practices in these fields. 

Advances in health-forecasting research will facilitate the 

decision-making processes that are associated with health-

care planning and management.

In preparing this review, a search of the literature on 

health forecasting and statistical methods used in the analy-

sis of health conditions was conducted in popular medical 

databases, such as PubMed (Medline) and Google Scholar. 

Additional literature searches were done through citation 

mapping of key papers. The selected papers and documents 

were synthesized and summarized according to the objec-

tives of this paper.

An enumeration of forecasting typologies
Although several authors have made attempts to schemati-

cally classify the wide variety of forecasting techniques, 

many have not been adequately exclusivea or both concise 

and exhaustiveb enough to meet the needs of forecasters 

across all fields.21 A good classification system for fore-

casting methods can facilitate the process of choosing an 

appropriate method for forecasting, in addition to provid-

ing a better understanding and organization of the methods 

involved in designing a forecasting system. The enumera-

tion of forecasting classifications presented below reveals 

the typologies and methods that have been involved. These 

classifications also justify the need for further research 

involving health-forecasting methodologies, since the latter 

have played a minimal role in shaping contemporary theory 

and methods in this area.

In 1971, Cetron and Ralph developed one of the earli-

est classifications of forecasting methods and approaches. 

It consisted of five categories, including intuitive meth-

ods, trend extrapolation, trend correlation, analogy, and 

dynamic predictive models.23 Generally, intuitive methods 

in forecasting are based on individual opinion, whether 

structured or unstructured. Trend extrapolation is an 

approach that uses known existing trends, whereas trend 

correlation forecasts are based on the causal links between 

a dependent factor and another factor or factors. Cetron 

and Ralph also used the category, Analogy, to describe 

forecasting approaches that used similarity in patterns 

for forecasting. They also classified dynamic predictive 

models (also later known as structural models), which 

describe simulation procedures that involve high impact 

causal factors. Although Cetron and Ralph’s classification 

is concise, it has been criticized for being neither exhaus-

tive nor exclusive enough.21

Similarly, in 1972, in his classification of forecasting 

methods, Martino provided a five-category scheme consisting 

of the following: intuitive, consensus (ie, obtaining results 

from several experts), analogy, trend extrapolation, and 

structural models.24 Although Martino’s classification was 

concise and exclusive, it was not sufficiently exhaustive to 

meet the needs of forecasters. In 1978, another classification 

of forecasting methods by Bright considered as many as 

eight different categories, some of which were later thought 

contentious.21,25 His classification included intuitive forecast-

ing, trend extrapolation, dynamic modeling, morphological 

analysis, normative forecasting, monitoring, cross-impact 

analysis, and scenarios.25 The key strength of Bright’s 

classification was that it added an entirely new concept 

of scenarios, and could be viewed liberally as exhaustive. 

 However, it was neither exclusive nor concise. Furthermore, 

as mentioned earlier, some categories, such as monitoring, 

have been challenged because they are inappropriate as 

forecasting methods or approaches.21

In 1985, Armstrong published his first “forecasting 

methodology tree,” which was based on three assump-

tions or decisions. More recently, his Methodology Tree 

for  Forecasting (2010) assumed that before arriving at an 

appropriate choice of analytical forecasting method, it is first 

necessary to decide on whether to use intuitive (judgmental) 

or objective (statistical) methods. Second, if the choice of 

approach is statistical, then a choice between causal and 

noncausal approaches is required. After a causal approach 

is chosen, the final decision is whether to select either 

linear or nonlinear (classification) statistical approaches.26 

Hence, Armstrong introduced five categories in his maiden 

classification: judgmental, bootstrapping, extrapolation, 

econometric, and segmentation. Armstrong’s classification 

was concise and contributed new approaches to forecasting 

a Exclusive means that anything belonging in one category should clearly 
not belong in another category.

b Exhaustive means that the classification system should cover every poten-
tial option.
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(ie, naïve/causal continuum), as well as providing guidance 

on the selection of forecasting approaches, which previous 

classifications lacked. However, Armstrong’s classification 

was neither exhaustive nor exclusive.

In 2001, Armstrong revised the classification of his 

forecasting methods and provided eleven categories of 

methods that could be derived from the Methodology Tree 

(including role playing, intentions, conjoint analysis, expert 

opinions, judgmental bootstrapping, analogies, extrapolation 

methods, rule-based forecasting, expert systems, econometric 

models and multivariate models).1 His classification further 

illustrated the primary distinction between methods that rely 

on judgmentc and those that estimate relationships using 

statisticald approaches or quantitative data.1 The classifica-

tion was however not concise because there were too many 

categories (eleven in all). It was also not exclusive because of 

the subclassification extrapolation, which has a much wider 

application in statistical forecasting.

In 2006, Gentry et al proposed an entirely new form 

of categorizing forecasting approaches and methods in the 

form of a grid. In Forecasting Classification Grid,21 argue 

that two independent dimensions can determine forecast-

ing approaches, which are on the continuums of Opinion 

and Empirical and Causal and Naïve. This classification 

helps to distinguish between opinions and ideas that can be 

empirically verified, and it is also simpler and more logical 

compared with earlier descriptions.21 The Grid has just four 

classifications and is therefore a concise scheme. It also is 

exhaustive because it is designed to fit in as many forecasting 

methods as are available. Even though the authors believed 

that the classifications were exclusive, grey boundaries could 

exist between the continuums. The key challenge in this 

classification is that the grid appears to be an uncompleted 

template, so the exact relative positioning of a forecasting 

method could be the subject of debate.

In a 2010 revision of the Methodology Tree for 

Forecasting,e Armstrong and Green further extend the list 

of forecasting methods. The authors differentiated between 

structured and unstructured approaches related to judgmental 

forecasting and further classified the theory-based approaches 

of forecasting into the categories, linear and classification.27 

Armstrong and Green provided guidance on choosing 

 suitable forecasting approaches and methods based on 

 specific contexts. However, there are still flaws in their classi-

fication because some methods that had multiple applications 

were not explicitly illustrated in the  Methodology Tree. For 

instance, both univariate and multivariate approaches can be 

applied in data mining or causal modeling.28 Furthermore, 

noncausal (black box) approaches, such as those involving 

data mining and neural nets, are equally applicable to causal 

modeling and share similar methods and techniques (eg, 

regressions and segmentation).

All the classifications of forecasting approaches and 

methods discussed above have significantly contributed to 

the organization of forecasting. Even though most of these 

developments have taken place in nonhealth-related areas 

(eg, marketing, management and finance/econometrics), they 

have direct applications to health forecasting. For instance, 

health forecasting has used neural networks,29–31 and many 

emergency department forecasts use one or more forms of 

regression analysis. It is therefore imperative that the les-

sons learned from previous forecasting topologies should 

inform any development of a typology of health-forecasting 

approaches and methods. Some related health-forecasting 

methods involved in the typologies listed above are exem-

plified in subsequent sections of this essay, which considers 

their strengths and limitations, their accuracy, and their 

validation procedures.

Health data and forecasting
Although data is vital in forecasting, what constitutes “health 

data” is poorly defined in the literature. Health data can be 

defined as: records of health conditions and situations that 

refer to individuals or populations and carry information 

about disease prevalence, incidence, diagnoses, treatments, 

prognosis, preventive strategies, and health systems. More-

over, these records are categorized by demographics and 

factors that directly affect health and are collected systemati-

cally or otherwise. For example, this definition could apply 

to hospital attendance or admission records that contain 

a variety of measures that are recorded in their respective 

units – age in complete years, for example.

In the practice of medicine, the diagnosis of disease is 

focused on determining the presence or absence of a condi-

tion so that the appropriate treatment can be given. However, 

the measures taken to facilitate this process are selected from 

a continuum. For example, diastolic blood pressure and pulse 

rate are taken to help determine whether a person is hyperten-

sive or not (ie, more than or equal to 90 mmHg). Other factors 

that may have an effect on health status and whose levels 

c Judgmental forecasting techniques include prediction markets, Delphi, 
structured analogies, game theory, decomposition, judgmental bootstrap-
ping, and expert systems.

d Statistical forecasting approaches include causal models and 
segmentation.

eAlso available at www.forecastingprinciples.com.
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are measured to generate health data include environmental 

exposure (eg, weather and air quality). At the point of measure 

or use, health data could be classified as either continuous 

(ratio or interval scales) or categorical (ordinal, nominal, or 

dichotomous scales).32 The definition and classification of 

health data determine how data are accumulated over time 

in addition to the method or methods of analyses that can be 

employed in analyzing this information.

An emerging form of health data – electronic health 

records (EHR) – refers to digital health data that is stored 

in secured repositories and shared only among authorized 

users.33 Hayrinen and colleagues identified the following 

as components of electronic health records: daily charting, 

medication administration, physical assessment, admission 

nursing notes, nursing care plan, referral, present complaint 

(eg, symptoms), past medical history, life style, physical 

examination, diagnoses, tests, procedures, treatment, medi-

cation, discharge, history, diaries, problems, findings, and 

immunization.34 These kinds of structured records have 

applications beyond health forecasting because they can 

be used to make predictions about the occurrence of future 

health events.

Strengths and limitations of  
health-forecasting techniques
Many reported studies on health forecasting adopted 

 statistical techniques and methods, the theories of which are 

described in the standard literature. The choice of method 

depends on the purpose of forecasting and the nature of the 

data that are available. The strengths and limitations of these 

methods pertaining to health forecasting are discussed in the 

following paragraphs.

Linear regression methods are commonly used because 

they provide reasonably accurate results, are easy to inter-

pret, and have wide applications in modeling trends and 

seasonality. However, like most regression methods, linear 

regression uses the method of ordinary least squares to derive 

estimates, which may wrongly assume that but for the depen-

dent variable, the independent variables or regressors have 

no error.35,36 Hence, to account for this problem in modeling, 

there is always a need to factor in an error component. Linear 

regressions also require large amounts of data on all variables 

for parameter estimations.35

Logistic regressions provide a means for analyzing binary 

or categorical dependent variables, but they are not useful 

for count data.37 Logistic regressions can thus be applied to 

forecast the presence or absence of an event in a dichoto-

mous (categorical) state. Poisson and negative binomial 

 regressions are generally used for analyzing count data, 

and the latter is particularly suitable for analyzing count 

data that have a skewed distribution with a considerable 

number of zero entries.38–42 For instance, Negative Binomial 

Models (NBMs) were used in previous work to investigate 

the determinants of asthma in the length of stay in hospitals, 

for which the dependent variable bore the aforementioned 

characteristics.43,44 NBMs were also used to compare various 

statistical forecasting models for predicting the number of 

daily admissions of asthmatic patients in London (personal 

work yet to be published).

Moving average methods, which include autore-

gressive-integrated moving average (ARIMA), seasonal 

 autoregressive-integrated moving average (SARIMA), and 

exponential smoothing (eg, Holt–Winters) are widely used 

forecasting approaches. They have the advantage of model-

ing trend and seasonal variations, as well as accommodating 

multivariable models.45,46 The exponential smoothing meth-

ods used in health forecasting are effective with data that 

change over time.22 However, the main challenge in using 

these complicated methods is that they require specialist 

knowledge and expertise.

Time series regressions generally have a much wider 

application and capabilities in forecasting than all the other 

nontime-series approaches mentioned here. Time series 

regressions provide easily interpretable outputs that can be 

more consistent than ordinary linear regressions.45,46 The 

use of time series approaches in forecasting ideally requires 

sufficient data for not only the dependent variables, but also 

the matching independent variables.

Quantile regressions and fractional polynomials are 

rarely mentioned in the health-forecasting literature, but 

they provide a means for predicting and forecasting peculiar 

events.47,48 For instance quantile regression models allow the 

modeling and forecasting of anticipated extreme events based 

on data distributions that are outside the normal range, which 

is more useful than linear regressions whose forecasts are 

based on the overall mean distribution. One major limitation 

of these approaches is that they deal with only the relevant 

or specific category of the data, and hence some information 

that could affect the accuracy and statistical power of the 

analysis is lost.48,49

Artificial neural network (ANN) is a black box modeling 

procedure known to provide more reliable results than the 

traditional causal approach.50 ANN is capable of modeling 

complex and random systems by automatically controlling 

adjustments to the changes in time series based on the design 

of the experiment.22,51 The major challenge of these models 
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is that they are difficult to interpret and, unlike the other 

approaches described earlier, very few statistical software 

packages are available.52–54

Measuring forecast accuracy and validation
Forecasting is generally aimed at predicting future events in 

order to inform and guide precautionary measures. It is an art in 

as much as it is a science, and therefore the degree of certainty 

of every forecast is imperative. A number of techniques and 

approaches are used to determine the accuracy or validation 

of a forecast. The main purpose of measuring the accuracy of 

a forecast model is to assist in choosing the best model.55 This 

can be done in several ways: traditional forecasting accuracy 

measures; model discrimination approaches like receiver-

operating characteristic (ROC) curves; and the use of model 

fit statistics, eg, R-square, Akaike information criterion (AIC), 

Schwarz information criteria (SIC) and Bayesian information 

criteria, which are discussed below.

Forecast accuracy
Forecast accuracy is a quantitative measure of the effi-

ciency of the forecasting process, and it is performed by 

comparing the forecast to the actual situation. Forecast 

accuracy measures and parameters are usually supplied 

alongside the forecast as constituent elements to aid in 

decision making.

The accuracy of any forecast depends on objective fea-

tures of the environment, such as the nature of the variable 

being forecast, or the length of the forecast horizon. Accu-

racy also depends on attributes of the forecast relating to the 

theories involved.56 Hence, the choice of accuracy measures 

may depend on the method of forecasting. However, there has 

been considerable discussion about appropriate measures of 

forecasting accuracy, which have a wide range.55,57–61

Measures of forecasting accuracy have three main cat-

egories: (a) scale-dependent measures (ie, accuracy measures 

whose scale depends on the scale of the data); (b) percentage 

error measures (ie, independent measures that can compare 

forecast performance across different datasets); and (c) rela-

tive error measures (ie, scaled errors based on error measured 

from a reference standard forecast), including the relative 

measures of each type of error measure.59 Examples of these 

measures are listed in Table 1.

Subsequent discussion focuses on selected scale-

dependent and percentage error measures (Table 2), which 

are commonly used in health-forecasting studies. Scale-

dependent error measures have been recommended for the 

comparison of different methods that are applied to the same 

set of data and scales.59 For example, the root-mean-square 

error (RMSE) has traditionally been widely used for fore-

casting evaluation62 and specifically for comparing models 

of the same series.61,63 Even though some scale-dependent 

error measures, such as the MSE and RMSE, have been 

theoretically more relevant in statistical modeling, they 

have also been found more sensitive in detecting outliers 

than the mean absolute error (MAE) or median absolute 

error (MdAE).59 Mean absolute scaled error (MASE) is also 

another scaled error approach recommended for compar-

ing forecast accuracy across series on different scales.59,64 

According to Hyndman and Koehler, MASE provides the 

Table 1 List of forecast accuracy measures

B. Scale-dependent measures

   I. Mean square error (MSE)
    II. Root mean squared error (RMSE)
  III. Mean absolute error (MAE)
 IV. Median absolute error (MdAE)
C. Percentage error measures
   I. Mean absolute percentage error (MAPE)
    II. Median absolute percentage error (MdAPE)
  III. Root mean square percentage error (RMSPE)
 IV. Root median square percentage error (RMdSPE)
D. Relative error measuresa

   I. Mean relative absolute error (MRAE)
    II. Median relative absolute error (MdRAE)
  III. Geometric mean relative absolute error (GMRAE)

Notes: aThe relative error measures are obtained by dividing each forecast error 
by the error obtained using a benchmark procedure, such as the grand mean 
(ie, a reference or benchmark average, which could be determined by taking the 
average of all averages of several subsamples). The accuracy measures of GMRAE 
and MDRAE, for instance, were presented by Armstrong and Collopy (1992)61 and 
Fildes (1992).86 Even though both reports recommend the use of forecast accuracy 
measures based on relative errors, they express these measures in different and 
complicated forms. Hyndman and Koehler (2006)59 have however noted that these 
relative error methods could have some deficiencies that are associated with the 
difficulty of dealing with extremely small benchmark forecast error measures, 
resulting in the relative error measures having infinite variances.

Table 2 A comparison of scale-dependent error measures

Scale-dependent 
measures

Definition Error 
spread

Error 
weights

Mean square error (MSE) Mean(Ot-Ft)
2 Yes Yes

Root mean squared  
error (RMSE)

√MSE Yes Yes

Mean absolute error 
(MAE)

Mean|(Ot-Ft)| Yes No

Median absolute error 
(MdAE)

Median|(Ot-Ft)| – –

Mean absolute scaled 
error (MASE)

Mean|(Qt)| Yes Yes

Notes: Error spread refers to the ability of the measure to capture an error that is 
not localized and not widely distributed in the dataset. Error weights refers to the 
ability of the measure to differentiate the error at different points in history.
Abbreviations: t, at a time; O, observation; F, forecast; Q:A, scaled error 
independent of scale of data.59
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most reliable approach because compared to others, it has 

a meaningful scale, is widely applicable, and is not subject 

to “degeneracy” problems.59 Moreover, MASE is seen less 

sensitive to outliers and is more easily interpreted. It shows 

smaller variations, even with small samples, than other 

measures in the same category.59,65

Measures based on percentage errors are not dependent on 

the scales of data and hence can be used to compare forecast 

errors across different datasets. However, their results tend 

to be infinite or undefined if a given forecast result equates 

0 at any given time or has an extremely skewed distribution 

when the forecast is close to 0.59 A further challenge in this 

category of error measures, particularly for mean absolute 

percentage error (MAPE), is that they tend to over penalize 

positive errors compared to negative ones and thereby create 

an unbalanced symmetry in the measures.66

Model discrimination test (ROC curve)
The ROC curve is another measure of forecast error that is 

associated with discrimination and has been used in health 

related forecasting studies. ROC provides a means of measur-

ing and comparing the accuracy of predictive models. It is a 

graphical plot of Sensitivity versus 1-Specificity in a binary 

classifier system, and it is constructed to assess the varying 

thresholds for discrimination of comparable statistical predic-

tive models.67–70 The accuracy of prediction is measured by 

comparing the true positives against false positives.67,68 The 

ROC curve has very wide applications in many fields, and 

its use in forecasting has been described by many authors. It 

was for example used by Classen and Hokayem to compare 

various econometric models and to select a suitable model for 

forecasting “Childhood influences on youth obesity.”71

Model fit statistics
Widely used statistical model fitness tests include R-square, 

adjusted R-square, AIC and SIC. These model parameters 

are defined and estimated as follows:
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where RSS is the residual sum of squares; TSS is the total 

sum of squares; n is the sample size; k is the number of 

parameters in the fitted model.

The use of R2 as a measure of fit or model variability 

in health-forecasting-related studies is very common in the 

literature.20,72–75 A higher value of a model’s R2 could be 

interpreted as having a better fit, which tends to increase with 

the addition of every extra explanatory variable. However, 

using R2 as a measure of fit can be unreliable in forecasting 

because the R2 of a model can be high or equal to 1 and yet 

be consistently wrong.57 Like the R2, the adjusted R2 also 

increases with every additional explanatory variable, but this 

test is more reliable because it tends to penalize the model 

for every additional explanatory variable as long as the new 

addition does not significantly reduce the RSS (Equation 2). 

The AIC is superior to the adjusted R2 because it has a 

harsher penalty and is preferred in forecasting models as a 

measure of fit.62,76,77 This technique is based on the maxi-

mum likelihood and the number of independently adjusted 

parameters within a predictive model.76 Compared with 

AIC and R2, SIC gives the best model diagnostic fit because 

it imposes the highest penalty on the model.45 However, 

in forecasting, given the balance between the need for a 

predictive model that has a good fit and a high explanatory 

power, AIC is currently the most popular and recommended 

technique for model fit statistics,78 and it is commonly used 

in model selection.43,63,79–81

Forecast validation
Forecast predictions are rarely perfect, so validation or cross-

validation is an essential process that allows estimation of 

the extent to which a predictive model emulates the natural 

phenomenon that produces the data.50,60,82 Validating a forecast 

requires appropriate techniques and reliable measures. In devel-

oping a health-forecasting predictive model, two types of valid-

ity can be examined: model validity and predictive  validity. 

Both are important and can be used to generate a useful and 

reliable forecast. Model validity represents the extent to which 

the model fits the data that was used for the model development 

(ie, the fit of the model to the experimental sample). This type 

of validity test is also referred to in the literature as internal 

validity. The second type, predictive validity (also known as 

external validity), represents the extent to which the predicted 

forecast values fit the observed values (ie, the fit of the model 
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to the test sample).61 Predictive validity is usually carried out 

through a process described as cross validation.

Cross validation is a statistical technique commonly used 

in forecasting for estimating the performance of a predictive 

model. It is usually carried out using a similar, but separate, 

sample of the data that was used in developing the forecast 

model. The health-forecasting literature does not provide 

standard procedures for conducting cross validation. Hence, 

the proportion of an evaluating sample (compared to the test 

or model development sample of data) that is suitable and 

sufficient for validating a health-forecasting model remains 

unclear. A scan of the literature revealed a wide range of 

arbitrary choices. As illustrated in Table 3, the relative 

proportion of a data sample used for cross validation of 

health-forecasting models could range from 1:1 to 12:1. 

For example, studies conducted by McCarthy et al18 and 

Hoot et al17 on forecasting emergency department visits used 

 similar proportions of data for a cross validation of their out-

put. However, other researchers have done this differently. To 

develop and to test their forecasts, Wargon et al83 and Rotstein 

et al74 used three quarters of their data as a training sample 

and the other one quarter as an evaluating sample.

Currently, there are no common scales for validating 

health forecasts based on a particular forecasting horizon, and 

the information available suggests that any appropriate cross 

validation strategy should be considered case by case. Thus, 

further research is necessary to help define and streamline the 

process of validating health-forecasting models.

Conclusion
The review identifies a number of knowledge gaps in health 

forecasting, which presents a challenge for further studies. 

These gaps include the following:

1. Typologies that classify health-forecasting approaches 

and methods;

2. A clear definition for health data, which nonetheless is 

an important ingredient for health forecasting;

3. Discussions on the strengths and limitations of  statistical 

methods that are applicable to health forecasting, 

 particularly for extreme health events;

4. A classification and ranking of various accuracy measures 

applicable to health forecasting; and

5. A clearly defined approach to cross validation of health-

forecasting models.

The classifications of forecasting approaches have evolved over 

time. Several researchers have attempted to classify forecast-

ing methods into typologies that are concise, exclusive, and 

exhaustive for all purposes. Lessons learned from these attempts 

will serve as useful guides in developing health-forecasting 

classification topologies and schemes, which are currently 

nonexistent. Few statistical methods have been identified to 

forecast extreme health events. Compared with percentage 

and relative error measures, scale-dependent error measures 

are easier and more frequently used in health forecasting. 

Because no common guidelines are available for cross valida-

tion in health forecasting, the current practice is quite irregular. 

Therefore, detailed studies are needed to help define standard 

classifications and applications for health forecasting.
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Table 3 Varying ratios of period of training to period of evaluation 
of health forecasting models

Author Ratio of period  
of training: 
evaluation

Analytical techniques 
used in forecasting and 
study purpose

Hoot et al 
200817

1:1 ARIMA; to predict ED 
operation conditions within 
8 hours

McCarthy 200818 1:1 Poisson regression; 
to predict hourly ED 
presentations

Boyle 201119 1:1/2:1/3:1/4:1 ARIMA, regression, ESM; 
to predict ED presentation 
and admission

Hoot et al 
200751

2:1 Logistic regression and 
ANN; to predict ED 
overcrowding

Wargon et al 
201083

3:1 Regression model; 
to predict daily ED 
presentation

Reis and Mandl, 
200384

4:1/5:1 ARIMA models; to 
predict daily pediatric ED 
presentation

Schweigler et al 
200985

7:1/14:1 SARIMA, hourly historical 
averages; to predict hourly 
ED bed occupancy

Jones et al 
200822

8:1 SARIMA, regression, ESM, 
and ANN; to predict daily 
presentation

Batal et al 200175 9:1 Stepwise linear regression; 
to predict daily 
presentation

Champion et al 
200720

12:1 ARIMA, ESM; to predict 
aggregate monthly ED 
presentations

Abbreviations: ANN, Artificial Neural Networks; ARIMA, autoregressive-
integrated moving average; SARIMA, seasonal autoregressive-integrated moving 
average; ESM, exponential smoothing; ED, emergency department.
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