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Abstract

Background: Cisplatin-based chemoradiation (CCRT) offers locally advanced head and 
neck squamous cell carcinoma (LAHNSCC) patients high local control rate, however, 
relapses are frequent. Our goal was to evaluate if association of valproic acid (VPA), a 
histone deacetylase (HDAC) inhibitor, with CCRT improved response rate (RR) and asso-
ciated biomarkers. 

Methods: This phase II trial included patients with unresectable locally advanced (LA) 
oropharynx (OP) squamous cell carcinoma. CCRT began after 2 weeks of VPA (P1). Primary 
goal was RR at 8 weeks after chemoradiation (CRT)+VPA (P2). Biomarkers included 
microRNA (miR) polymerase chain reaction (PCR)-array profiling in plasma compared to 
healthy controls by two-sample t-test. Distribution of p-values was analysed by beta-
uniform mixture. Findings were validated by real-time PCR quantitative polymerase 
chain reaction (qPCR) for selected miRs in plasma and saliva. p16, HDAC2 and RAD23 
Homolog B, Nucleotide Excision Repair Protein (HR23B) tumour immunohistochemistry 
were evaluated.

Results: Given significant toxicities, accrual was interrupted after inclusion of ten LA p16 
negative OP patients. All were male, smokers/ex-smokers, aged 41–65 and with previous 
moderate/high alcohol intake. Nine evaluable patients yielded a RR of 88%. At false dis-
covery rate of 5%, 169 miRs were differentially expressed between patients and controls, 
including lower expression of tumour suppressors (TSs) such as miR-31, -222, -let-7a/b/e 
and -145. miR-let-7a/e expression was validated by qPCR using saliva. A HDAC2 H-score 
above 170 was 90% accurate in predicting 6-month disease-free survival.
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Conclusions: VPA and CRT offered high RR; however, with prohibitive toxicities, which led to early trial termination. Patients and controls had 
a distinct pattern of miR expression, mainly with low levels of TS miRs targeting Tumor protein P53 (TP53). miR-let-7a/e levels were lower in 
patients compared to controls, which reinforces the aggressive nature of such tumours (NCT01695122).
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Background

The mainstay treatment for inoperable locally advanced head and neck squamous cell carcinoma (LAHNSCC) has been cisplatin-based chemo-
radiation (CCRT) for decades [1]. Although it provides adequate local control, relapses are frequent, especially in human papillomavirusIcesp: 
Instituto do Cancer do Estado de Sao Paulo (HPV)-negative oropharynx (OP) squamous cell carcinoma and with burdensome acute and late 
toxicities [2]. Over the years, newer strategies, such as neoadjuvant chemotherapy, altered fractionation radiation schemes and incorporation of 
targeted therapy drugs, such as cetuximab, have proven little to no improvement in long-term disease control or survival rates [3–5].

The association of HPV and OP squamous cell carcinoma is widely known to carry a better prognosis [6]. However, globally, disparities are 
seen regarding the incidence of HPV-associated LAHNSCC [7], and in developing countries, such as Brazil, most of these tumours are associ-
ated with high intake of alcohol and tobacco.

Epigenetic regulation plays a pivotal role in tumour progression and therapy response. Histone deacetylase inhibitors (HDACis), such as 
vorinostat, have already proven therapeutic efficacy in leukaemia and are currently in use for the treatment of cutaneous T-cell lymphoma 
[8]. Valproic acid (VPA) has long been used as an anti-epileptic drug and mood stabilizer and has a well-known toxicity profile [9]. It is widely 
available and with an accessible cost, which makes it attractive to study as therapeutic repurposing. VPA is a pan-HDACi, and encouraging 
pre-clinical data have demonstrated its anticancer potential [10–13]. Numerous small clinical trials have evaluated VPA in combination with 
other epigenetic regulators such as 2′-deoxy-5-azacytidine (AZA) or standard treatment as chemotherapy or radiation both in haematological 
and solid tumours, with conflicting results (Table 1) [14–22].

The therapeutic activity of HDACi has been associated with altered expression of HDAC2 and HR23B [23–25]. Moreover, other associated 
biomarkers, such as microRNAs (miRs) are also under study [26, 27]. Previous research has shown that miRs are also trafficked through exo-
somes, exerting oncogenic potential with increase in invasiveness and phenotypic changes in cancer cell lines [28]. Secretion of exosomes by 
cancerous tissue can be identified in numerous biofluids, such as saliva, which can be easily collected from patients.

This phase II trial was designed to evaluate the efficacy of the association of VPA to standard CCRT in patients with OP LAHNSCC and asso-
ciated biomarkers. 

Methods

Study design and patients

This single-arm phase II trial included locally advanced (LA) OP cancer patients treated at a single institution (ICESP). Eligible patients were 
under 65 years-old, had unresectable LA OP cancer and were candidates to definitive CCRT. Patients had an Eastern Cooperative Oncology 
Group (ECOG) performance status of 0–2 and adequate renal, haematological and liver functions as specified in the study protocol. Measur-
able radiological disease as defined by the Response Evaluation Criteria in Solid Tumours (RECIST) 1.1 was mandatory. Patients treated with 
anti-epileptic drugs, previous use of VPA, with hypoalbuminaemia, positivity for human immunodeficiency virus or active hepatitis B, C were 
excluded.

Our primary goal was to evaluate CCRT combination with VPA response rate (RR) at 8 weeks post-treatment as assessed by RECIST v1.1. 
Secondary goals were to evaluate treatment related toxicities per National Cancer Institute’s Common Terminology Criteria for Adverse 
Events v.4.0, disease-free survival (DFS), evaluated as time from the beginning of treatment until progression or death from any cause, overall 
survival (OS) and quality of life.
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Table 1. Phase I and phase II studies of VPA.

Phase I/II studies

Author Malignancy; N Combination Dosage Response rate (RR)

Garcia-Manero et al [53] AML/ myelodysplastic 
syndrome (MDS) (54)

5AZA 50 mg/kg/day per os (PO) RR 22%

Soriano et al, [44] AML/MDS (53) All-Trans Retinoic AcidIV: 
intravenous (ATRA) + 
5AZA

50 mg/kg/day PO 7 days RR 47%

Daud et al [54] Melanoma (39) Karenitecine 75 mg/kg/day IV d1 to d5 47% stable disease

Rocca et al [45] Melanoma (29) Dacarbazine + interferon Serum level of 50 to 125 mg/dL 5% CR; 11% PR; 16% stable disease

Munster et al [25] Solid tumours(44) Epirrubicine/ 
5-fluorouracil, epirrubicin, 
cyclophosphamide (FEC)

120 mg/kg IV RR 22% (phase I)
RR 68% phase II (breast cancer)

Iwahashi et al [17] Pancreas/biliary(12) S-1 15 mg kg 2xd PO 8% PR; 83% stable disease

Phase II studies

Author Malignancy; N Combination Dosage Response rate

Kuendgen et al [55] AML/MDS (75) ATRA Serum levels 50 to 100 mcg/mL RR 5% (AML), 16% (MDS)

Pilatrino et al [56] AML/MDS (20) ATRA Serum levels 45 to 100 mcg/mL Clinical benefit 30%

Candelaria et al [57] Solid tumours (17) Hidralazine + 
chemotherapy

40 mg/kg/day 0% CR, 27% PR, 53% stable disease

Raffoux et al [58] AML/MDS (65) 5-AZA + ATRA 35–50 mg/kg for 7 days RR 26%

Mohammed et al [22] Neuroendocrine 
tumours (8)

- 500 mg 2xd PO; non significant 
(NS) 50–100 mcg/mL

12% PR, 50% stable disease

Krauze et al [16] Glioblastoma 
multiforme (37)

Temozolomide + 
radiotherapy

25 mg/kg/day 81% stable disease

Issa et al [15] AML/MDS (149) ± Decitabine 50 mg/kg 7 days RR 51% versus 58% combination

Study treatment

Eligible patients were given VPA from 2 weeks before starting CCRT until the last fraction of Radiotherapy (RT). VPA was started at 15 mg/
kg/day orally and adjusted to a therapeutic plasma level of 40–100 mcg/mL. CCRT consisted of cisplatin 100 mg/m2 d1, d22 and d43 and 
definitive 70 Gy 3D RT in 30 fractions. After the inclusion of the first ten patients, given the toxicity profile, the protocol was amended, and 
patients were given cisplatin on d1 and d22 and VPA was omitted on the first and third weeks of RT.

Biopsy tissue was analysed for p16, HPV, HDAC2 and HR23B. Plasma H3 and H4 histone acetylation in peripheral monocytes was evaluated 
at baseline (P0), 2 weeks after VPA (P1) and at the end of RT (P2). miR profiling was performed in plasma samples from P0, P1 and at the time 
of response evaluation, P3. Saliva was analysed at P0, P1 and P3 to validate relevant miRs found in plasma. Extracellular vesicles (EVs) were 
extracted from patients and healthy volunteers (HV) plasma. HV comprised by smokers and former smokers were submitted to miR plasma 
profiling and saliva analysis. EV from patients and HV were added to HNSCC cell lines to evaluate cisplatin sensitivity and cell migration.

Statistical design

This trial was a two-step phase II Simon design. Given a RR of 60% in the historical control group [29] and 80% for the experimental group, 
the inclusion of 40 patients was foreseen, with alpha = 5% and beta = 20%. The study would continue to the second step if 8 of 13 responses 
were found in the first step and would be considered positive if 25 of 35 responses were found overall. DFS and OS were estimated by 
Kaplan–Meier (IBM Statistical Package for the Social Sciences (SPSS) Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.). Efficacy 
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analyses were intention-to-treat based and safety analysed for all patients that received at least 1 week of concurrent VPA and radiotherapy. 
A safety interim analysis was planned after the first stage (13 patients).

This study was approved by the local ethics committee and registered in ClinicalTrials.gov (NCT number): NCT01695122. Informed written 
consent was obtained from all trial participants.

Tissue p16, HR23B and HDAC2 immunohistochemistry and HPV testing

Patients’ archival tissue from initial diagnosis was analysed to determine p16, HR23B, HDAC2 immunohistochemistry expression. p16 status 
was determined by anti-p16 antibody clone 6175-405 (Zeta, 1:400). Positive expression required over 70% of cells with strong and dif-
fuse nuclear and cytoplasmic expression. Nuclear positivity for anti-HR23B (clone Ab 88503; Abcam®) and anti-HDAC2 (clone Ab 16032; 
Abcam®, MA, USA) antibodies was quantified with an H-score. Correlation with disease control rate at 6 months was determined by receiver 
operating characteristic (ROC) curve performed by XLSTAT™ version 2016.05.34949 software. HPV testing was performed by a polymerase 
chain reaction (PCR) multiplex assay (Luminex, Luminex Corp., Austin, TX, USA).

Peripheral monocytes H3 and H4 acetylation

Peripheral monocytes acetylation was analysed in patients’ plasma samples at baseline, 2 weeks after VPA and at the end of chemoradiation. 
Samples were not collected when VPA was discontinued. EpiQuik™ Global Histone H3 Acetylation Assay Kit (Epigentek Group Inc., NY, USA) 
was utilized. Samples were processed as per package instructions. Total protein expression was determined by Molecular Probes—Qubit® 
Protein Assay Kits (Invitrogen, CA, USA). The ratio between samples and blanks adjusted by the angular coefficient was used to determine 
the acetylation index. Assays were performed in triplicates.

miR profiling

Unstimulated saliva was collected from patients and HV. Plasma samples were collected at the designated time points (P0, P1 and P3). Pro-
cessing was done through successive cold centrifugation and total RNA was extracted with miRNeasy Mini Kit (Qiagen, Hilden, Germany) 
following package instructions. RNA concentration was determined through spectrophotometry with NanoDrop 1000 (Thermo Fisher Scien-
tific, CA, USA). Plasma miR profiling was done by qPCR with TaqMan® Human microRNA Array v2.0 (Applied Biosystems, CA, USA). To anal-
yse results, cycle threshold (Ct) values were determined with Real Time SDS® Software (Applied Biosystems, CA, USA). Statistical analysis 
was performed using R (https://www.r-project.org/), a publicly available statistical computing software. Data was normalised and analysed 
by the comparative Ct method [30]. A two-sample t-test was applied to each of the miRs. To correct for multiple hypotheses testing, the 
resulting p-values were modelled by a beta-uniform mixture (BUM) model. To identify differentially expressed miRs, cutoffs were determined 
by controlling the false discovery rate (FDR) [31–33].

Selected miRs were assayed in triplicate by RT-qPCR with miRNA TaqMan® Advanced (Life Technologies Corporation, CA, USA) assay. Ct 
values were determined with StepOne v2.3 (Applied Biosystems, CA, USA) software. Samples were normalised with Normfinder algorithm 
and the most stable miRs were selected to normalise samples. miR-26b-5p was the internal normaliser for plasma samples and miR-21 for 
saliva samples and final values were expressed as 2−∆∆Ct.

Top differentially expressed miRs were evaluated by pathway analysis with Diana miRPath_v3 [34]. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis was performed with validated miR targets (DIANA-TarBase miRPath v.3).

EVs extraction and cell-line functional assays

EVs were isolated from cells and debris with serial centrifugation. Quantification and size distribution were determined with Malvern Nano-
Sight LM14 (Malvern Panalytical, Malvern, UK) and EV denomination was done by sizing. Head and neck cell-lines SCC-4 (CRL-1624), SCC-9 
(CRL-1629) and SCC-25 (CRL-1628) originated from the American Type Culture Collection. Cells were cultured with Dulbecco’s modified 
Eagle and HamF12 (1:1) medium. To determine cisplatin sensitivity (IC50) MTT assays were performed at 24 and 48 hours with increasing 
cisplatin concentrations (5 to 100 µM), in triplicates. Next, EVs were added at a ratio of 108 particles/ml for each 104 cells. Fetal bovine serum 
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was depleted from EV. A pool of EV from each group (HV, responders at P0 and non-responders at P0) was added to each cell line, and the 
half maximal inhibitory concentration (IC50) doses of cisplatin were evaluated after 24 and 48 hours.Cell-line migration (SCC-9) was assessed 
by wound healing assay. Cells were cultured in an EV-free medium up to 90% confluence. EV from HV and responders and non-responders 
at different time points was added. Hourly photos were taken with InvitrogenTM EVOSTM FL Auto Imaging System (Thermo Fisher Scientific, 
CA, USA). Image J was used to quantify cell migration rate.

Statistical analysis comprised of parametric T-test and Analysis of variance (ANOVA) was performed with IBM SPSS Statistics for Windows, 
Version 20.0. Armonk, NY: IBM Corp.

Results

Fourteen patients were included in this study from September 2012 to June 2014. There were three screening failures and 11 were included 
and treated. One patient was withdrawn given performance status deterioration before CCRT, and one patient was unevaluable at the time 
of response assessment (Figure 1).

Patient characteristics are summarised in Table 2. All patients were male, had LA OP cancer, were current or ex-smokers and former alcohol-
ics. Median age was 55 years-old and half the patients had a weight loss above 10% in the 6 months before inclusion. Although all patients 
were p16 negative, high-risk HPV was detected in three patients (one HPV18, one HPV18 and HPV16 and one HPV56).

After the inclusion of the first ten patients, an interim safety analysis was performed. Three patients had been hospitalised, two in critical 
care units due to renal failure, respiratory infection and syncope. The protocol was emended and VPA was omitted on the week that cisplatin 
was administered and only two cycles of cisplatin were given concurrently with radiotherapy (d1 and d22). Two more patients were included 
and experienced grade 3 and 4 adverse events (disseminated herpes zoster and radiodermitis, respectively). Given the high rate of grade 3/4 
adverse events (8 out of 9 patients), we interrupted the trial to preserve participants’ safety (Table 3).

In the intention-to-treat population a median of 230 mg/m2 of cisplatin was administered and all patients received 70 Gy (Table 2). VPA mean 
plasma concentration was of 42 mcg/mL and 80% of the patients achieved the target concentration of 40–100 mcg/mL. The primary goal 
of the phase II first step analysis was reached. A total of eight patients had a complete response (CR) or partial response (PR) (five and three 
patients, respectively) as seen in Table 4. Most patients reported improvement in quality of life (Supplementary Figure 1). At a median follow-
up of 52 months, six patients experienced treatment failure, with two systemic progressions. Currently, five patients are alive and without 
evidence of disease, with a median OS of 44 months (Table 4).

Figure 1. Consort diagram. Consort diagram of patients included in the study from 2012 to 2014. One patient was withdrawn due to performance status 
deterioration before CCRT.
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Table 2. Patients’ characteristics.
N = 10 (%)

Median age 55 (41–65)
Male 10 (100)
Race
White 8 (80)
Black 2 (20)
Smoking history
Current 4 (40)
Former 6 (60)
Pack-years (median) 51 (15–80)
Former alcoholic 10 (100)
Weight loss
0%–10% 5 (50)
10%–20% 4 (40)
>20% 1 (10)
ECOG
0 4 (40)
1 6 (60)
OP 10 (100)
Stage
III 1 (10)
IVA 8 (80)
IVB 1 (10)
p16 immunohistochemistry
Negative 10 (100)
High-risk HPV 3 (30)
Cisplatin dose
Cycles (median) 2.5 (1–3)
Median dose (mg/m2) 230 (100-300)
Radiotherapy
70 Gy 10 (100)
Treatment weeks (median) 7.4 (6.9–8.6)
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Table 3. Treatment related toxicities.

Adverse events N (%)

Grade 3 and 4 8 (89)

Serious adverse events 4 (44)

Event Grade 1 Grade 2 Grade 3 Grade 4 Total

Anaemia 4 (44) 4 (44) 1 (11) 0 9 (100)

Dysgeusia 2 (22) 2 (22) 0 0 4 (44)

Creatinine elevation 3 (33) 2 (22) 1 (11) 0 6 (67)

Weight loss 3 (33) 4 (44) 0 0 7 (78)

Infection 1 (11) 2 (22) 3 (33) 0 6 (67)

Lymphopenia 2 (22) 0 4 (44) 2 (22) 8 (89)

Oral moniliasis 0 3 (33) 2 (22) 0 5 (56)

Mucositis 1 (11) 6 (67) 0 0 7 (78)

Nausea 3 (33) 1 (11) 2 (22) 0 6 (67)

Neutropenia 2 (22) 0 2 (22) 0 4 (44)

Radiodermitis 5 (56) 1 (11) 0 1 (12) 7 (78)

Somnolence 3 (33) 2 (22) 1 (11) 0 6 (67)

Vomiting 4 (44) 1 (11) 0 0 5 (55)

Xerostomia 5 (56) 0 0 0 5 (56)

Table 4. Patients’ outcomes.

N (%)

RR 8 (89)

Complete response 5 (56)

Parcial response 3 (33)

Progressive disease 1 (12)

Non-evaluable 1

Treatment failure 5 (50)

Recurrence/local progression 4 (40)

Systemic progression 2 (20)

Death 5 (50)

Disease 4 (40)

Others 1 (10)

Current living and without disease 5 (50)

Median follow-up (months) 52 (11.2–71.9)

Median OS 44 months
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Exploratory results

HDAC2 immunohistochemistry (IHC) expression is related to prognosis

HDAC2 mean H-score was 164 (80–230) and HR23B 176.5 (95–240). A ROC curve analysis was performed correlating the expression levels 
with DFS at 6 months (DFS6). An HDAC2 H-score higher than 170 had a 90% accuracy at predicting DFS6 with an area under the curve of 
0.958. HR23B H-score was non-informative (Supplementary Figure 2).

miR profiling differs in patients and HV

In order to determine possible diagnostic and prognostic miRs in this group of patients, miR profiling analysis was performed. A cohort of seven 
smokers or ex-smokers HV was used as a control group. We considered responders as patients who were disease free at 6 months. Patients’ 
pre-treatment plasma profiling (P0) was compared to control, after 2 weeks of VPA (P1) and post-treatment (8 weeks after CCRT+VPA, P3). We 
also compared the profile of responders versus non-responders at baseline, responders at P0 versus P3 and non-responders at P0 versus P3.

Patients at baseline compared to controls had several differentially expressed miRs. At an FDR of 5%, 169 miRs had a statistically significant 
difference in expression (p = 0.065). Notably, several tumour suppressor (TS) miRs were underexpressed, such as miR-31, -let-7b/e -145 (Fig-
ure 2, Table 5). At baseline, responders and non-responders also had different miR pattern expression. At an FDR of 5%, 19 miRs were found 
to be statistically significant, as seen in Figure 3. Top miR was miR-200b, which had a higher expression in responders (p = 0.002). Other 
downregulated miRs in non-responders included tumour suppressive miRs-103, -374b, -let-7a and epithelial-to-mesenchymal transition-
related miR-205 [35–37]. Pathway analysis showed enrichment in pathways related to cell adhesion and migration, with ‘Proteoglycans in 
cancer’ and ‘Hippo signaling pathway’ being the top KEGG pathways identified (Supplementary Figure 3).

Patterns of miR expression profiles were not significantly different in the other analysis performed.

Next, we sought to validate the miR profiling findings with RT-PCR using plasma and saliva. Relevant miRs were selected through annotation. 
Plasma median expression of miRs throughout the different groups was compared. Undetermined readings were excluded. Unexpectedly, 
miR-1-3p and -let-7e, were found to have a higher median expression in patients than in HV (Supplementary Table 1). Seeking to evaluate 
a different methodology to assess miR expression, we determined median expression of miRs-1-3p, -let-7a-5p, -7e-5p, -32-5p, 660-5p in 
saliva. End-of-treatment samples were not evaluated, since intense xerostomia precluded most of the patients from providing adequate 
samples. In agreement with taqman low density array (TLDA) profiling, miR-let-7e and -let-7a also had a higher expression in controls to 
patients at baseline (Table 6).

Patient derived EVs increase cell migration

We sought to evaluate patient derived EVs impact on head and neck cancer cell lines sensitivity to cisplatin and migration. When analysing 
cell lines’ (SCC4, SCC9 and SCC25) sensitivity to cisplatin, no effect was observed with the addition of EV derived from HV, responders at 
baseline or non-responders at baseline (Figure 4a). Scratch migration assay with SCC-9 demonstrated an increased migration rate with the 
addition of EV from non-responders after 2 weeks of VPA compared to control (p < 0.001) (Figure 4b).

Discussion

In this phase II trial of the role of epigenetic regulation in the standard treatment of cisplatin-based CRT in LAHNSCC, we were able to show 
an apparent increase in RR, since our goal of eight responses in the first stage of Simon’s design was met. Unfortunately, given the unaccept-
able toxicity encountered, we were not able to complete the trial. Patients submitted to CCRT and VPA experienced a higher rate of medul-
lary toxicity and infection than reported in the literature and historical control data from our institution [29]. A possible synergistic effect of 
VPA and CCRT in the observed lymphopenia might have occurred, leading to the exacerbated toxicity in this trial [38, 39]. Somnolence was 
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frequent, however, manageable and there was no apparent compromise in quality of life. Toxicity and efficacy results found in our study are 
similar to that reported in a phase I trial of HDACi vorinostat combination with CCRT in LAHNSCC patients. Although a high RR of 96.2% 
was found, 65% of patients experienced grade 3/4 lymphopenia [40].

Figure 2. miR expression differs between controls and patients at baseline. (a): BUM analysis showed that a great number of miR were differentially 
expressed between patients and HV. At an FDR of 5%, 169 miRs were found to be relevant, p cutoff of 0.065. (b): Heat map of top differentially expressed 
miRs by two-way hierarchical clustering (miRs correlation by Pearson). Cancer patients underexpressed several miRs compared to HV. (c): Top miRs which 
were underexpressed in patients compared to volunteers are TS miRs.

Table 5. Main validated deregulated miRs targets related to carcinogenesis in squamous cell carcinoma patients.

miR Carcinogenesis related targets

miR-31 TP53, Forkhead Box P3 (FOXP3), Ret Proto-Oncogene (RET), ADP Ribosylation Factor 1 (ARF1), MET

miR-let-7b Myc regulation

miR-222 TP53

miR-145 CCND2, Neurotrophic Receptor Tyrosine Kinase 2 (NTRK2), HDAC2, EGFR, TGFB, VEGFA, CDK6

https://doi.org/10.3332/ecancer.2020.1155
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One interesting finding is the detection of high-risk HPV DNA in three patients, even though none presented positivity for p16. Epidemio-
logical research has shown a low-prevalence of HPV-related OP cancer in Brazil [7]. Moreover, the high exposure of other risk factors in 
this population (smoking and drinking habits) might explain the negativity of p16. This suggests an alternate carcinogenesis in these patients 
other than inactivation of p53 and pRb HPVs E6 and E7 oncoproteins, respectively, and explains a prognosis similar to the rest of the patients 
included in this trial. Furthermore, as HPV mRNA was not accessed, we are unable to ascribe these tumours as HPV-induced.

Figure 3. Heat map of hierarchical clustering analysis of miR expression (Pearson correlation) of responders and non-responders.

Table 6. miR validation in saliva. Median expression of selected miRs by qPCR.

HV (N) Baseline(N) p

miR-1-3p 4.57 (8) 3.29 (11) 0.90

miR-let-7a-5p 1.05 (8) 0.69 (11) 0.05

miR-let-7e-5p 5.28 (5) 1.64 (11) 0.04

miR-32-5p 0.04 (3) 0.67 (7) 0.32

miR-660-5p 0.66 (8) 0.91(11) 0.90

miR-26b-5p 1.09 (7) 0.54(11) 0.10

miR-425-5p 0.10 (8) 0.40(11) 0.03
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An HDAC2 H-score above 170 had an apparent correlation with DFS in this population, suggesting its prognostic role. Although overexpression 
of this marker has been previously correlated with poorer survival in other tumour types [23, 25], the use of VPA in this population might have 
had an influence in the observed data. However, given the small sample size, conclusions are limited.

We were unable to evaluate the in vivo effect of VPA through the assays performed to evaluate peripheral monocytes acetylation (PMAC). 
PMAC was assessed at baseline (P0), 2 weeks after VPA (P1) and at the end of CCRT (P2). Considering a fold-change cutoff of two, only one 
patient demonstrated a change in H3 and H4 acetylation through the assay employed (data not shown). However, patients had adequate 
serum levels of VPA and experienced increased local toxicities such as radiodermitis and mucositis, suggesting that a possible radiosensitising 
effect with the association of VPA to CCRT did occur. Previous studies have also failed to demonstrate differences in PMAC with VPA [41], 
given its major effect in HDAC2 [25]. Moreover, the methodology employed might also have an effect in the evaluation of PMAC, given dif-
ferent results obtained in other studies with the use of Western blotting and immunofluorescence [25, 42, 43]. Finally, other studies showed 
that PMAC has no apparent correlation with responses to VPA, given its broad mechanism in histone deacetylase inhibition [44, 45].

The miR profiling demonstrated a marked difference in the pattern of miR expression in patients and HV. LAHNSCC patients underexpressed vari-
ous TS miRs at baseline compared to HV, suggesting that miR regulation might be lost during cancer progression. Some of the miRs that were iden-
tified (miRs-31, -let-7b/e, -222, -145) target known deregulated genes either by mutation or epigenetic regulation (such as promoter methylation) 
in alcohol and tobacco related HNSCC, such as TP53, MET Proto-Oncogene, Receptor Tyrosine Kinase (MET), Cyclin D2EGFR: epidermal growth factor 
receptor (CCND2), EGFR, transforming growth factor beta (TGFB), Cyclin Dependent Kinase 6 (CDK6) and Vascular Endothelial Growth Factor (VEGFA). 
Moreover, 19 miRs were differentially expressed between responders and non-responders at baseline, suggesting a prognostic role of miRs in this 
population, which could be validated in future studies. Interestingly miR-let-7a was also underexpressed in non-responders compared to respond-
ers at baseline in the miR baseline plasma profiling. Additionally, there was no apparent miR regulation with the use of VPA or during treatment.

Figure 4. Functional assays using EVs. (a): Cisplatin IC50 was determined for three HNSCC cell lines (SCC-4, SCC-25 and SCC-9). Control samples 
had a statistically significant decrease in cell viability with cisplatin in 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) assays. 
The addition of HV, responders and non-responders EVs did not alter significantly cisplatin cell sensitivity. Values are means ± SD of three separate 
experiments. (b): Scratch migration assay with SCC-9. Assays with EV from HV, responders at P0, P1 and P3 (hashed lines) and non-responders at P0, P1 
and P3 (straight lines) were compared to controls. EV from non-responders led to a significant increase in SCC-9 migration rate compared to control (p < 
0.001). Values are means ± SD of at least two separate experiments.
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We sought to validate our plasma miR profiling findings for selected miRs with RT-PCR using plasma and saliva. Although we were unable 
to do so in plasma samples, a concordant finding regarding differential expression of miR-let-7a/e in patients compared to HV in saliva was 
found. miR-let-7 family has been found to be underexpressed in dedifferentiated tumours and associated with epithelial-to-mesenchymal 
transition [46, 47]. Moreover, given its TS role, it is also underexpressed in larynx cancer [48, 49]. Finally, miR-let-7e expression has also been 
associated with a worse prognosis in tongue and lung cancer patients [50, 51]. Collectively, these observations suggest the diagnostic role of 
miR-let-7a/e, which can be evaluated in saliva as demonstrated here.

Functional assays with HV and patient-derived EVs suggested an increased aggressiveness profile in non-responders EV, given the higher 
migration rate found with the addition of EV from non-responders to head and neck cancer cell line SCC-9.

Conclusions

Our study suggests that incorporation of deacetylase inhibition in the standard treatment of LAHNSCC increases CCRT RR; however, given 
the toxicity observed here, the combination of VPA with CCRT is not recommended. We were able to characterise a distinct pattern of miR 
expression in patients and HV, as well as a differential expression in responders and non-responders, which further underscores miRs as diag-
nostic and prognostic biomarkers in LAHNSCC. Validation of miR-let-7a/e in saliva as a diagnostic marker poses an interesting assessment 
in the clinic, avoiding an uncomfortable puncture.Future studies addressing the role of histone acetylation inhibition are warranted to attain 
better results in the treatment of this LAHNSCC. Novel combinations with less toxic therapies, such as immunotherapy [52], may allow the 
incorporation of epigenetic regulation to a broader patient population.

Declarations

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of the Faculdade de Medicina da Universidade de São Paulo under number 
327/11. All participants provided written informed consent.

Consent for publication

Study participants signed informed consent to publish the results in peer reviewed journal. The team also has consent to publish study 
findings.

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available due to patients’ confidentiality but are available 
from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Acknowledgments

This study was supported by Fundacao de Amparo e Pesquisa (FAPESP): 2015/01584-1; 2014/26965-5.

https://doi.org/10.3332/ecancer.2020.1155


Re
se

ar
ch

ecancer 2020, 14:1155; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2020.1155 13

Funding

This study was funded by FAPESP: 2015/01584-1; 2014/26965-5. The funding source had no involvement in study design; in the collection, 
analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Authorship contributions

Study concepts: MPM, FSP, IMS, GCJ

Study design: MPM, FSP, IMS, GCJ

Data acquisition: MPM, FOTG, TKT, DN, REM, CMA, MAVK, EMN, ICS, MRTG, AVA

Quality control of data and algorithms: MPM, FSP, LD, SACS, LS

Data analysis and interpretation: MPM, FSP, LD, AVA, LS, JW

Statistical analysis: FSP, LD, JW

Manuscript preparation: MPM, FSP, LD, JW, GCJ

Manuscript editing and review: All authors have read and approved the manuscript.

References

 1. Pignon JP, le Maitre A, and Maillard E, et al (2009) Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 
93 randomised trials and 17,346 patients Radiother Oncol 92 4–14 https://doi.org/10.1016/j.radonc.2009.04.014 PMID: 19446902

 2. Rivelli TG, Mak MP, and Martins RE, et al (2015) Cisplatin based chemoradiation late toxicities in head and neck squamous cell carci-
noma patients Discov Med 20 57–66 PMID: 26321088

 3. Bonner JA, Harari PM, and Giralt J, et al (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year 
survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival Lancet Oncol 11 21–28 
https://doi.org/10.1016/S1470-2045(09)70311-0

 4. Vermorken JB, Remenar E, and van Herpen C, et al (2007) Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer 
N Engl J Med 357 1695–1704 https://doi.org/10.1056/NEJMoa071028 PMID: 17960012

 5. Baujat B, Bourhis J, and Blanchard P, et al (2010) Hyperfractionated or accelerated radiotherapy for head and neck cancer Cochrane 
Database Syst Rev CD002026

 6. Ang KK, Harris J, and Wheeler R, et al (2010) Human papillomavirus and survival of patients with oropharyngeal cancer N Engl J Med 
363 24–35 https://doi.org/10.1056/NEJMoa0912217 PMID: 20530316 PMCID: 2943767

 7. de Martel C, Ferlay J, and Franceschi S, et al (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic 
analysis Lancet Oncol 13 607–615 https://doi.org/10.1016/S1470-2045(12)70137-7 PMID: 22575588

 8. Mann BS, Johnson JR, and Cohen MH, et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous 
T-cell lymphoma Oncologist 12 1247–1252 https://doi.org/10.1634/theoncologist.12-10-1247 PMID: 17962618

 9. Depakene (valproic acid) capsules and oral solution FDA Approved Labeling Text dated October 7, 2011 [http://www.accessdata.fda.
gov/drugsatfda_docs/label/2011/018081s046_18082s031lbl.pdf] Date accessed 26/08/19

https://doi.org/10.3332/ecancer.2020.1155
https://doi.org/10.1016/j.radonc.2009.04.014
http://www.ncbi.nlm.nih.gov/pubmed/19446902
http://www.ncbi.nlm.nih.gov/pubmed/26321088
https://doi.org/10.1016/S1470-2045(09)70311-0
https://doi.org/10.1056/NEJMoa071028
http://www.ncbi.nlm.nih.gov/pubmed/17960012
https://doi.org/10.1056/NEJMoa0912217
http://www.ncbi.nlm.nih.gov/pubmed/20530316
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943767
https://doi.org/10.1016/S1470-2045(12)70137-7
http://www.ncbi.nlm.nih.gov/pubmed/22575588
https://doi.org/10.1634/theoncologist.12-10-1247
http://www.ncbi.nlm.nih.gov/pubmed/17962618
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/018081s046_18082s031lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/018081s046_18082s031lbl.pdf


Re
se

ar
ch

ecancer 2020, 14:1155; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2020.1155 14

 10. Gan CP, Hamid S, and Hor SY, et al (2011) Valproic acid: Growth inhibition of head and neck cancer by induction of terminal differentia-
tion and senescence Head Neck 34(3) 344–353 https://doi.org/10.1002/hed.21734 PMID: 21438066

 11. Chinnaiyan P, Cerna D, and Burgan WE, et al (2008) Postradiation sensitization of the histone deacetylase inhibitor valproic acid Clin 
Cancer Res 14 5410–5415 https://doi.org/10.1158/1078-0432.CCR-08-0643 PMID: 18765532 PMCID: 3393085

 12. Duenas-Gonzalez A, Candelaria M, and Perez-Plascencia C, et al (2008) Valproic acid as epigenetic cancer drug: preclinical, clinical and 
transcriptional effects on solid tumors Cancer Treat Rev 34 206–222 https://doi.org/10.1016/j.ctrv.2007.11.003 PMID: 18226465

 13. Chavez-Blanco A, Perez-Plasencia C, and Perez-Cardenas E, et al (2006) Antineoplastic effects of the DNA methylation inhibitor hydral-
azine and the histone deacetylase inhibitor valproic acid in cancer cell lines Cancer Cell Int 6 2 https://doi.org/10.1186/1475-2867-6-2 
PMID: 16448574 PMCID: 1408081

 14. Bilen MA, Fu S, and Falchook GS, et al (2015) Phase I trial of valproic acid and lenalidomide in patients with advanced cancer Cancer 
Chemother Pharmacol 75 869–874 https://doi.org/10.1007/s00280-015-2695-x PMID: 25666183

 15. Issa JP, Garcia-Manero G, and Huang X, et al (2015) Results of phase 2 randomized study of low-dose decitabine with or without val-
proic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia Cancer 121 556–561 https://doi.org/10.1002/
cncr.29085

 16. Krauze AV, Myrehaug SD, and Chang MG, et al (2015) A phase 2 study of concurrent radiation therapy, temozolomide, and the histone 
deacetylase inhibitor valproic acid for patients with glioblastoma Int J Radiat Oncol Biol Phys 92 986–992 https://doi.org/10.1016/j.
ijrobp.2015.04.038 PMID: 26194676 PMCID: 4510472

 17. Iwahashi S, Utsunomiya T, and Imura S, et al (2014) Effects of valproic acid in combination with s-1 on advanced pancreatobiliary tract 
cancers: clinical study phases I/II Anticancer Res 34 5187–5191 PMID: 25202113

 18. Tassara M, Dohner K, and Brossart P, Held G, Gotze K, Horst HA, et al (2014) Valproic acid in combination with all-trans retinoic acid 
and intensive therapy for acute myeloid leukemia in older patients Blood 123 4027–4036 https://doi.org/10.1182/blood-2013-12-
546283 PMID: 24797300

 19. Wheler JJ, Janku F, and Falchook GS, et al (2014) Phase I study of anti-VEGF monoclonal antibody bevacizumab and histone deacet-
ylase inhibitor valproic acid in patients with advanced cancers Cancer Chemother Pharmacol 73 495–501 https://doi.org/10.1007/
s00280-014-2384-1 PMID: 24435060 PMCID: 4148903

 20. Chu BF, Karpenko MJ, and Liu Z, et al (2013) Phase I study of 5-aza-2’-deoxycytidine in combination with valproic acid in non-small-cell 
lung cancer. Cancer Chemother Pharmacol 71 115–121 https://doi.org/10.1007/s00280-012-1986-8

 21. Falchook GS, Fu S, and Naing A, et al (2013) Methylation and histone deacetylase inhibition in combination with platinum treatment in 
patients with advanced malignancies Invest New Drugs 31 1192–1200 https://doi.org/10.1007/s10637-013-0003-3 PMID: 23907406 
PMCID: 3809091

 22. Mohammed TA, Holen KD, and Jaskula-Sztul R, et al (2011) A pilot phase II study of valproic acid for treatment of low-grade neuroen-
docrine carcinoma Oncologist 16 835–843 https://doi.org/10.1634/theoncologist.2011-0031 PMID: 21632454 PMCID: 3121900

 23. Chang HH, Chiang CP, and Hung HC, et al (2009) Histone deacetylase 2 expression predicts poorer prognosis in oral cancer patients 
Oral Oncol 45 610–614 https://doi.org/10.1016/j.oraloncology.2008.08.011

 24. Khan O, Fotheringham S, and Wood V, et al (2010) HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy Proc 
Natl Acad Sci USA 107 6532–6537 https://doi.org/10.1073/pnas.0913912107 PMID: 20308564 PMCID: 2851972

 25. Munster P, Marchion D, and Bicaku E, et al (2009) Clinical and biological effects of valproic acid as a histone deacetylase inhibi-
tor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC Clin Cancer Res 15 2488–2496 https://doi.
org/10.1158/1078-0432.CCR-08-1930 PMID: 19318486

https://doi.org/10.3332/ecancer.2020.1155
https://doi.org/10.1002/hed.21734
http://www.ncbi.nlm.nih.gov/pubmed/21438066
https://doi.org/10.1158/1078-0432.CCR-08-0643
http://www.ncbi.nlm.nih.gov/pubmed/18765532
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393085
https://doi.org/10.1016/j.ctrv.2007.11.003
http://www.ncbi.nlm.nih.gov/pubmed/18226465
https://doi.org/10.1186/1475-2867-6-2
http://www.ncbi.nlm.nih.gov/pubmed/16448574
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1408081
https://doi.org/10.1007/s00280-015-2695-x
http://www.ncbi.nlm.nih.gov/pubmed/25666183
https://doi.org/10.1002/cncr.29085
https://doi.org/10.1002/cncr.29085
https://doi.org/10.1016/j.ijrobp.2015.04.038
https://doi.org/10.1016/j.ijrobp.2015.04.038
http://www.ncbi.nlm.nih.gov/pubmed/26194676
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510472
http://www.ncbi.nlm.nih.gov/pubmed/25202113
https://doi.org/10.1182/blood-2013-12-546283
https://doi.org/10.1182/blood-2013-12-546283
http://www.ncbi.nlm.nih.gov/pubmed/24797300
https://doi.org/10.1007/s00280-014-2384-1
https://doi.org/10.1007/s00280-014-2384-1
http://www.ncbi.nlm.nih.gov/pubmed/24435060
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148903
https://doi.org/10.1007/s00280-012-1986-8
https://doi.org/10.1007/s10637-013-0003-3
http://www.ncbi.nlm.nih.gov/pubmed/23907406
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809091
https://doi.org/10.1634/theoncologist.2011-0031
http://www.ncbi.nlm.nih.gov/pubmed/21632454
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121900
https://doi.org/10.1016/j.oraloncology.2008.08.011
https://doi.org/10.1073/pnas.0913912107
http://www.ncbi.nlm.nih.gov/pubmed/20308564
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851972
https://doi.org/10.1158/1078-0432.CCR-08-1930
https://doi.org/10.1158/1078-0432.CCR-08-1930
http://www.ncbi.nlm.nih.gov/pubmed/19318486


Re
se

ar
ch

ecancer 2020, 14:1155; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2020.1155 15

 26. Cho JH, Dimri M, and Dimri GP (2015) MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cel-
lular senescence J Biol Chem 290 10555–10567 https://doi.org/10.1074/jbc.M114.624361 PMID: 25737447 PMCID: 4400362

 27. Hsieh TH, Hsu CY, and Tsai CF, et al (2015) HDAC inhibitors target HDAC5, upregulate microRNA-125a-5p, and induce apoptosis in 
breast cancer cells Mol Ther 23 656–666 https://doi.org/10.1038/mt.2014.247 PMCID: 4395776

 28. Bhome R, Del Vecchio F, and Lee GH, et al (2018) Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer Cancer Lett 
420 228–235 https://doi.org/10.1016/j.canlet.2018.02.002 PMID: 29425686 PMCID: 5831981

 29. de Castro G Jr, Snitcovsky IM, and Gebrim EM, et al (2007) High-dose cisplatin concurrent to conventionally delivered radiotherapy is 
associated with unacceptable toxicity in unresectable, non-metastatic stage IV head and neck squamous cell carcinoma Eur Arch Oto-
rhinolaryngol 264 1475–1482 https://doi.org/10.1007/s00405-007-0395-9 PMID: 17643256

 30. Schmittgen TD and Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method Nat Protoc 3 1101–1108 https://doi.
org/10.1038/nprot.2008.73 PMID: 18546601

 31. Benjamini Y and Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing J R Stat 
Soc Ser B (Methodological) 57 289–300

 32. Pounds S and Morris SW (2003) Estimating the occurrence of false positives and false negatives in microarray studies by approximating 
and partitioning the empirical distribution of p-values Bioinformatics 19 1236–1242 https://doi.org/10.1093/bioinformatics/btg148 
PMID: 12835267

 33. Efron B and Tibshirani R (2002) Empirical bayes methods and false discovery rates for microarrays Genet Epidemiol 23 70–86 https://
doi.org/10.1002/gepi.1124 PMID: 12112249

 34. Vlachos IS, Zagganas K, and Paraskevopoulou MD, et al (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimen-
tal support Nucleic Acids Res 43 W460–W466 https://doi.org/10.1093/nar/gkv403 PMID: 25977294 PMCID: 4489228

 35. Yang D, Wang JJ, and Li JS, et al (2018) miR-103 functions as a tumor suppressor by directly targeting programmed cell death 10 in 
NSCLC Oncol Res 26 519–528 https://doi.org/10.3727/096504017X15000757094686

 36. Schreiber R, Mezencev R, and Matyunina LV, et al (2016) Evidence for the role of microRNA 374b in acquired cisplatin resistance in 
pancreatic cancer cells Cancer Gene Ther 23 241–245 https://doi.org/10.1038/cgt.2016.23 PMID: 27229158 PMCID: 5007605

 37. De Cola A, Volpe S, and Budani MC, et al (2015) miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem 
cells results in targeted therapy resistance Cell Death Dis 6 e1823 https://doi.org/10.1038/cddis.2015.192

 38. Karp M, Kosior K, and Karczmarczyk A, et al (2015) Cytotoxic activity of valproic acid on primary chronic lymphocytic leukemia cells 
Adv Clin Exp Med 24 55–62 https://doi.org/10.17219/acem/29264 PMID: 25923087

 39. Wells AC, Daniels KA, and Angelou CC, et al (2017) Modulation of let-7 miRNAs controls the differentiation of effector CD8 T cells Elife 
6 e26398 https://doi.org/10.7554/eLife.26398 PMID: 28737488 PMCID: 5550279

 40. Teknos TN, Grecula J, and Agrawal A, et al (2018) A phase 1 trial of Vorinostat in combination with concurrent chemoradiation therapy 
in the treatment of advanced staged head and neck squamous cell carcinoma Invest New Drugs 37(4) 702–710 https://doi.org/10.1007/
s10637-018-0696-4 PMID: 30569244

 41. Blum W, Klisovic RB, and Hackanson B, et al (2007) Phase I study of decitabine alone or in combination with valproic acid in acute 
myeloid leukemia. J Clin Oncol 25 3884–3891 https://doi.org/10.1200/JCO.2006.09.4169 PMID: 17679729

 42. Atmaca A, Al-Batran SE, and Maurer A, et al (2007) Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating 
phase I clinical trial Br J Cancer 97 177–182 https://doi.org/10.1038/sj.bjc.6603851 PMID: 17579623 PMCID: 2360302

 43. Chavez-Blanco A, Segura-Pacheco B, and Perez-Cardenas E, et al (2005) Histone acetylation and histone deacetylase activity of 
magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study Mol Cancer 4 22 https://doi.
org/10.1186/1476-4598-4-22 PMID: 16001982 PMCID: 1198251

https://doi.org/10.3332/ecancer.2020.1155
https://doi.org/10.1074/jbc.M114.624361
http://www.ncbi.nlm.nih.gov/pubmed/25737447
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400362
https://doi.org/10.1038/mt.2014.247
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395776
https://doi.org/10.1016/j.canlet.2018.02.002
http://www.ncbi.nlm.nih.gov/pubmed/29425686
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831981
https://doi.org/10.1007/s00405-007-0395-9
http://www.ncbi.nlm.nih.gov/pubmed/17643256
https://doi.org/10.1038/nprot.2008.73
https://doi.org/10.1038/nprot.2008.73
http://www.ncbi.nlm.nih.gov/pubmed/18546601
https://doi.org/10.1093/bioinformatics/btg148
http://www.ncbi.nlm.nih.gov/pubmed/12835267
https://doi.org/10.1002/gepi.1124
https://doi.org/10.1002/gepi.1124
http://www.ncbi.nlm.nih.gov/pubmed/12112249
https://doi.org/10.1093/nar/gkv403
http://www.ncbi.nlm.nih.gov/pubmed/25977294
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489228
https://doi.org/10.3727/096504017X15000757094686
https://doi.org/10.1038/cgt.2016.23
http://www.ncbi.nlm.nih.gov/pubmed/27229158
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007605
https://doi.org/10.1038/cddis.2015.192
https://doi.org/10.17219/acem/29264
http://www.ncbi.nlm.nih.gov/pubmed/25923087
https://doi.org/10.7554/eLife.26398
http://www.ncbi.nlm.nih.gov/pubmed/28737488
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550279
https://doi.org/10.1007/s10637-018-0696-4
https://doi.org/10.1007/s10637-018-0696-4
http://www.ncbi.nlm.nih.gov/pubmed/30569244
https://doi.org/10.1200/JCO.2006.09.4169
http://www.ncbi.nlm.nih.gov/pubmed/17679729
https://doi.org/10.1038/sj.bjc.6603851
http://www.ncbi.nlm.nih.gov/pubmed/17579623
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360302
https://doi.org/10.1186/1476-4598-4-22
https://doi.org/10.1186/1476-4598-4-22
http://www.ncbi.nlm.nih.gov/pubmed/16001982
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1198251


Re
se

ar
ch

ecancer 2020, 14:1155; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2020.1155 16

 44. Soriano AO, Yang H, and Faderl S, et al (2007) Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans 
retinoic acid in acute myeloid leukemia and myelodysplastic syndrome Blood 110 2302–2308 https://doi.org/10.1182/blood-2007-
03-078576 PMID: 17596541

 45. Rocca A, Minucci S, and Tosti G, et al (2009) A phase I-II study of the histone deacetylase inhibitor valproic acid plus chemoimmuno-
therapy in patients with advanced melanoma Br J Cancer 100 28–36 https://doi.org/10.1038/sj.bjc.6604817 PMID: 19127265 PMCID: 
2634690

 46. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression Cell Cycle 8 843–852 https://
doi.org/10.4161/cc.8.6.7907 PMID: 19221491 PMCID: 2688687

 47. Li Y, VandenBoom TG, 2nd, and Kong D, et al (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the rever-
sal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells Cancer Res 69 6704–6712 https://doi.
org/10.1158/0008-5472.CAN-09-1298 PMID: 19654291 PMCID: 2727571

 48. Guo M, Zhao X, and Yuan X, et al (2017) MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in 
cervical cancer Oncotarget 8 28226–28236 https://doi.org/10.18632/oncotarget.15999 PMID: 28415668 PMCID: 5438645

 49. Re M, Magliulo G, and Gioacchini FM, et al (2017) Expression levels and clinical significance of miR-21-5p, miR-let-7a, and miR-34c-5p 
in laryngeal squamous cell carcinoma Biomed Res Int 2017 3921258 https://doi.org/10.1155/2017/3921258

 50. Hilly O, Pillar N, and Stern S, et al (2016) Distinctive pattern of let-7 family microRNAs in aggressive carcinoma of the oral tongue in 
young patients Oncol Lett 12 1729–1736 https://doi.org/10.3892/ol.2016.4892 PMID: 27602107 PMCID: 4998201

 51. Zhu WY, Luo B, and An JY, et al (2014) Differential expression of miR-125a-5p and let-7e predicts the progression and prognosis of 
non-small cell lung cancer Cancer Invest 32 394–401 https://doi.org/10.3109/07357907.2014.922569 PMID: 24945821

 52. Suraweera A, O’Byrne KJ, and Richard DJ (2018) Combination therapy with histone deacetylase inhibitors (hdaci) for the treatment of 
cancer: achieving the full therapeutic potential of HDACi Front Oncol 8 92 https://doi.org/10.3389/fonc.2018.00092 PMID: 29651407 
PMCID: 5884928

 53. Garcia-Manero G, Kantarjian HM, and Sanchez-Gonzalez B, et al (2006) Phase 1/2 study of the combination of 5-aza-2’-deoxycytidine 
with valproic acid in patients with leukemia Blood 108 3271–3279 https://doi.org/10.1182/blood-2006-03-009142 PMID: 16882711 
PMCID: 1895437

 54. Daud AI, Dawson J, and DeConti RC, et al (2009) Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacetylase 
inhibitor valproic acid in melanoma: translational and phase I/II clinical trial Clin Cancer Res 15 2479–2487 https://doi.org/10.1158/1078-
0432.CCR-08-1931 PMID: 19318485

 55. Kuendgen A, Knipp S, and Fox F, et al (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic 
acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia Ann Hematol 84(Suppl 1) 61–66 
https://doi.org/10.1007/s00277-005-0026-8 PMID: 16270213

 56. Pilatrino C, Cilloni D, and Messa E, et al (2005) Increase in platelet count in older, poor-risk patients with acute myeloid leukemia 
or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid Cancer 104 101–109 https://doi.org/10.1002/
cncr.21132 PMID: 15895376

 57. Candelaria M, Gallardo-Rincon D, and Arce C, et al (2007) A phase II study of epigenetic therapy with hydralazine and magnesium val-
proate to overcome chemotherapy resistance in refractory solid tumors Ann Oncol 18 1529–1538 https://doi.org/10.1093/annonc/
mdm204 PMID: 17761710

 58. Raffoux E, Cras A, and Recher C, et al (2010) Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients 
with high-risk acute myeloid leukemia or myelodysplastic syndrome Oncotarget 1 34–42 https://doi.org/10.18632/oncotarget.106

https://doi.org/10.3332/ecancer.2020.1155
https://doi.org/10.1182/blood-2007-03-078576
https://doi.org/10.1182/blood-2007-03-078576
http://www.ncbi.nlm.nih.gov/pubmed/17596541
https://doi.org/10.1038/sj.bjc.6604817
http://www.ncbi.nlm.nih.gov/pubmed/19127265
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634690
https://doi.org/10.4161/cc.8.6.7907
https://doi.org/10.4161/cc.8.6.7907
http://www.ncbi.nlm.nih.gov/pubmed/19221491
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688687
https://doi.org/10.1158/0008-5472.CAN-09-1298
https://doi.org/10.1158/0008-5472.CAN-09-1298
http://www.ncbi.nlm.nih.gov/pubmed/19654291
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727571
https://doi.org/10.18632/oncotarget.15999
http://www.ncbi.nlm.nih.gov/pubmed/28415668
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438645
https://doi.org/10.1155/2017/3921258
https://doi.org/10.3892/ol.2016.4892
http://www.ncbi.nlm.nih.gov/pubmed/27602107
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998201
https://doi.org/10.3109/07357907.2014.922569
http://www.ncbi.nlm.nih.gov/pubmed/24945821
https://doi.org/10.3389/fonc.2018.00092
http://www.ncbi.nlm.nih.gov/pubmed/29651407
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884928
https://doi.org/10.1182/blood-2006-03-009142
http://www.ncbi.nlm.nih.gov/pubmed/16882711
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895437
https://doi.org/10.1158/1078-0432.CCR-08-1931
https://doi.org/10.1158/1078-0432.CCR-08-1931
http://www.ncbi.nlm.nih.gov/pubmed/19318485
https://doi.org/10.1007/s00277-005-0026-8
http://www.ncbi.nlm.nih.gov/pubmed/16270213
https://doi.org/10.1002/cncr.21132
https://doi.org/10.1002/cncr.21132
http://www.ncbi.nlm.nih.gov/pubmed/15895376
https://doi.org/10.1093/annonc/mdm204
https://doi.org/10.1093/annonc/mdm204
http://www.ncbi.nlm.nih.gov/pubmed/17761710
https://doi.org/10.18632/oncotarget.106


Re
se

ar
ch

ecancer 2020, 14:1155; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2020.1155 17

Supplementary figures and tables

Supplementary Figure 1. Baseline versus end-of-treatment variation of the overall quality of life score. The majority of patients had an improvement in 
quality of life at the moment of response evaluation (>5 points). EORTC QLC-30.

Supplementary Figure 2. ROC curve analysis of HDAC2 H-score. Values over 170 correlated with DFS at 6 months with a sensitivity of 83% and specificity 
of 100%.
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Supplementary Figure 3. Pathway analysis of differentially expressed miRs between responders and non-responders at baseline. Diana miRPath version 3 
KEGG pathways of 19 differentially expressed miR targets.

Supplementary Table 1. Mean expression of selected microRNAs for qPCR plasma validation for each study group.

 Mean control 
(N)

P0 median 
(N)

P1 median (N) P3 median
(N)

p

miR-1-3p 0.25 (7) 10.73 (11) 11.66 (11) 20.87 (10) 0.001

miR-let-7a-5p 1.62 (7) 4.09 (11) 4.54 (11) 3.52 (10) 0.13

miR-let-7e-5p 0.67 (7) 11.66 (11) 9.47 (11) 13.40 (10) 0.003

miR-17-5p 2.30 (7) 1.00 (11) 2.06 (11) 1.87 (9) 0.77

miR-19a-3p 1.54 (7) 1.90 (11) 0.90 (10) 1.07 (7) 0.40

miR-31-5p 2.91 (7) 18.04 (11) 23.64 (11) 73.11 (10) 0.11

miR-32-5p 0.39 (7) 0.60 (7) 0.18 (7) 0.11 (4) 0.13

miR-99a-5p 2.31 (6) 5.48 (6) 14.35 (5) 3.42 (6) 0.19

miR-200b-3p 0.86 (6) 5.04 (9) 4.70 (6) 18.63 (6) 0.20

miR-215-5p 8.06 (6) 16.01 (6) 3.49 (5) 15.71 (5) 0.32

miR-331-3p 4.67 (7) 12.64 (10) 13.96 (9) 6.50 (4) 0.34

miR-374b-5p 0.88 (7) 0.84 (11) 0.46 (11) 0.51 (10) 0.37

miR-660-5p 4.18 (7) 5.87(11) 3.15 (10) 7.16 (6) 0.73
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