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Successful applications of the gene ontology to the inference of functional relationships between gene products in recent years
have raised the need for computational methods to automatically calculate semantic similarity between gene products based
on semantic similarity of gene ontology terms. Nevertheless, existing methods, though having been widely used in a variety of
applications, may significantly overestimate semantic similarity between genes that are actually not functionally related, thereby
yielding misleading results in applications. To overcome this limitation, we propose to represent a gene product as a vector that is
composed of information contents of gene ontology terms annotated for the gene product, and we suggest calculating similarity
between two gene products as the relatedness of their corresponding vectors using three measures: Pearson’s correlation coefficient,
cosine similarity, and the Jaccard index. We focus on the biological process domain of the gene ontology and annotations of yeast
proteins to study the effectiveness of the proposed measures. Results show that semantic similarity scores calculated using the
proposed measures are more consistent with known biological knowledge than those derived using a list of existing methods,
suggesting the effectiveness of our method in characterizing functional relationships between gene products.

1. Introduction

Over the last few years, domain ontologies have been suc-
cessfully applied to describe entities within a variety of
biological domains, with examples including the derivation
of functional relationships between gene products based on
the gene ontology (GO) [1–3], the inference of phenotype
similarity between human diseases based on the human
phenotype ontology (HPO) [4, 5], the modeling of general
computational tasks in systems biology based on the systems
biology ontology (SBO) [6], and many others [7–9]. With
an ontology to provide controlled and structured vocabu-
laries in a specific biological domain and annotations to
characterize entities in the domain with the vocabularies,
relationships between the entities can be quantified by their
semantic similarities in the ontology, thereby providing a
convenient yet powerful means of profiling the entities and
their semantic relationships [1]. Nevertheless, the automated

derivation of semantic similarity between entities based on
their annotations in a domain specific ontology still remains
a great challenge, appealing for the development of effective
and convenient computational methods [10].

In general, a domain ontology provides a set of controlled
and relational vocabularies for describing domain specific
knowledge. The vocabularies, also referred to as concepts
or terms, are often organized as a directed acyclic graph
(DAG), in which vertices denote terms and edges represent
semantic relationships between the terms. It is also common
that an ontology has more than one semantic relationship.
For example, in the gene ontology, there are multiple types
of semantic relationships such as “𝐴 is a 𝐵” (any instance of
𝐴 is also an instance of 𝐵) and “𝐴 part of 𝐵” (an instance of
𝐴 is a component of some instances of 𝐵) [1]. Given such a
domain specific ontology and annotations that map entities
onto the terms, most existingmethods first calculate pairwise
semantic similarity between the terms using the structure
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of the ontology and annotations of entities and then derive
similarity between the entities based on similarity between
the terms [10–14].

Taking the gene ontology as an example, in order to
achieve the former objective, Resnik proposed to use the
information content (the negative logarithm of the relative
frequency of occurrence of a term in annotations for a
set of gene products) of the lowest common ancestor of
two query terms to measure their semantic similarity [11].
Lin modified this measure by taking information contents
of the query terms into consideration [12]. Schlicker et al.
further incorporated the relative frequency of occurrence of
the lowest common ancestor into the measure of Lin [14].
Jiang and Conrath proposed to incorporate the information
contents of the query terms by using a formula different from
that of Lin [13]. As another branch, Wang et al. proposed to
calculate semantic similarity between GO terms using only
the structural information of the underlying gene ontology,
with the consideration of two types of semantic relationships:
is a and part of [10].

With similarities between GO terms calculated, the
semantic similarity between two query gene products was
often calculated using a mean-max rule [10]. More specifi-
cally, given a singleGO term and a collection ofGO terms, the
similarity between the term and the collection was defined
as the maximum similarity between the term and every
term in the collection. Furthermore, the similarity between
two collections of GO terms was defined as the average of
similarity between every term in a collection and the other
collections. Finally, since a gene product was annotated by
a collection of GO terms, semantic similarity between two
gene products was defined as the similarity between the
corresponding two sets of GO terms.

The above methods have been successfully applied to
a variety of fields, with examples including the calculation
of functional similarity between proteins based on the gene
ontology (GO) for the inference of disease genes [2], the
characterization of phenotype similarity between human
diseases based on the human phenotype ontology (HPO) [5],
and many others [7]. Software packages implementing these
methods have also been released and publically available
in the community of bioinformatics and computational
biology, with examples includingGOSemSim [15], FuSSiMeG
[16], and OWLSim [4]. However, disadvantages of these
methods are also obvious. For example, although methods
such as those in [12–14] took efforts to modify the method
of Resnik [11], their methods often performed worse than
that of Resnik in real applications [10], suggesting that the
revision of information contents can hardly be effective. Also,
although Wang et al. systematically considered the structure
and multiple semantic relationships of the gene ontology
[10], they discarded the valuable resource of information
contents of GO terms, resulting in a method performing
worse than that of Resnik in many applications such as
the prioritization of candidate genes [2]. In addition, as we
shall see in the Results section, all of these methods tend to
overestimate similarity between proteins that are actually not
similar in their functions, thereby yielding misleading results
in applications.

With these understandings, we propose in this paper to
represent a gene product using a vector that is composed of
information contents of GO terms annotated for the product
in the gene ontology. Based on this notion, we suggest
calculating semantic similarity between gene products as
the relatedness of their corresponding vectors using three
measures: Pearson’s correlation coefficient, cosine similarity,
and the Jaccard index. We focus on the biological process
namespace of the gene ontology and annotations of proteins
of the budding yeast Saccharomyces cerevisiae to perform
a series of comprehensive studies on the effectiveness of
the proposed measures. We calculate semantic similarity
scores between yeast genes relying on the biological process
domain of the gene ontology, use the resulting semantic
similarity scores tomeasure functional relationships between
the proteins, and study the consistency between such rela-
tionships and known biological knowledge. Results on 141
yeast biochemical pathways, 1,022 protein families, and two
large-scale yeast protein-protein interaction networks show
that semantic similarity scores calculated using the proposed
measures aremore consistent with biological knowledge than
those derived using a list of existing methods, suggesting
the effectiveness of our method in characterizing semantic
similarity between gene products.

2. Methods

2.1. The Gene Ontology and Species Specific Annotations.
The gene ontology (GO) provides a controlled vocabulary
of terms for describing characteristics of gene products.
This ontology covers three domains: biological process (BP),
molecular function (MF), and cellular component (CC).
The biological process domain defines operations or sets
of molecular events with a defined beginning and end,
pertinent to the functioning of living cells, tissues, organs, and
organisms. The molecular function domain represents the
elemental activities of a gene product at the molecular level,
such as binding or catalysis. The cellular component domain
describes the parts of a cell or its extracellular environment
[1]. Each of these three domains is organized according to a
directed acyclic graph (DAG) structure, represented as 𝐺 =

(𝑉, 𝐸), where 𝑉 is a set of vertices denoting concepts and 𝐸

is a set of edges denoting semantic relationships between the
terms. In such a graph, we use 𝑃

𝑡
and 𝐶

𝑡
to denote the sets of

parents and children of term 𝑡, including 𝑡 itself, respectively,
and we use 𝐴

𝑡
and 𝐷

𝑡
to denote ancestors and descendants

of term 𝑡, including 𝑡 itself, respectively. Note that in the gene
ontology, there are multiple types of semantic relationships
such as “𝐴 is a 𝐵” (any instance of 𝐴 is also an instance of 𝐵)
and “𝐴 part of 𝐵” (an instance of 𝐴 is a component of some
instance of 𝐵).

A species specified annotation provides amapping from a
gene product of the species to a term in a domain (BP, MF, or
CC) of the gene ontology. Following common specifications,
the annotation of a gene product with term 𝑡 implies the
annotation of the gene product with all ancestors of 𝑡. With
this notion, we represent annotations of gene product 𝑔 using
a binary annotation vector a

𝑔
= (𝑎
𝑔𝑖
)
|𝑉|×1

, where 𝑎
𝑔𝑖

= 1 if 𝑔
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is annotated by the term indexed by 𝑖 or its descendants and
|𝑉| the total number of terms in a domain.

3. Semantic Similarity as Correlation of
Information Contents

Given a domain of the gene ontology and annotations for a
set of gene products, the probability that a product annotated
by term 𝑡 or its descendants is estimated using the relative
frequency of occurrence of term 𝑡 and its descendants in the
annotations is calculated by

Pr (𝑡) = 1

𝑁
∑

𝑖∈𝐷
𝑡

𝑛
𝑖
, (1)

where 𝑛
𝑖
is the number of annotations with term 𝑖 and𝑁 the

total number of annotations.The information content of term
𝑡 is then calculated as

IC (𝑡) = − log Pr (𝑡) . (2)

Moreover, information contents of all terms in the
domain can be represented as a vector q = (𝑞

𝑖
)
|𝑉|×1

with
𝑞
𝑖
being the information content of the term indexed by 𝑖.

Calculating the Hadamard (entrywise) product of a
𝑔
and q,

we obtain the vector of information contents for gene product
𝑔 as x

𝑔
= q ∘ a

𝑔
= (𝑥
𝑔𝑖
)
|𝑉|×1

, where 𝑥
𝑔𝑖

= 𝑞
𝑖
× 𝑎
𝑔𝑖

for
𝑖 = 1, . . . , |𝑉|. With such a vector calculated for every gene
product, we propose the following threemeasures to quantify
semantic similarity between two entities.

First, we propose to calculate the similarity as the absolute
value of Pearson’s correlation coefficient between the two
vectors x

𝑔
and x
ℎ
for two gene products 𝑔 and ℎ as

𝑆
(correlation)
𝑔ℎ

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
1≤𝑖≤|𝑉|

(𝑥
𝑔𝑖

− 𝑥
𝑔
) (𝑥
ℎ𝑖

− 𝑥
𝑔
)

√∑
1≤𝑖≤|𝑉|

(𝑥
𝑔𝑖

− 𝑥
𝑔
)
2

√∑
1≤𝑖≤|𝑉|

(𝑥
ℎ𝑖

− 𝑥
ℎ
)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(3)

In this measure, we assume that information contents for
the two gene products, x

𝑔
and x

ℎ
, have a linear relationship,

say,

x
𝑔
= 𝛼 + 𝛽x

ℎ
. (4)

Hence, it is natural to use the coefficient of determination (𝑟2)
thatmeasures how good the observations fit this linearmodel
to quantify the similarity between the two vectors. To ease
the computation, we simply calculate the absolute value of the
correlation coefficient instead of 𝑟2. Note that exchanging x

𝑔

and x
ℎ
in the linear model yields the same 𝑟

2.
Second, we calculate the similarity as the cosine of the

angle between the two vectors x
𝑔
and x

ℎ
for two gene

products 𝑔 and ℎ as

𝑆
(cosine)
𝑔ℎ

=

∑
1≤𝑖≤|𝑉|

𝑥
𝑔𝑖
𝑥
ℎ𝑖

√∑
1≤𝑖≤|𝑉|

𝑥
2

𝑔𝑖
√∑
1≤𝑖≤|𝑉|

𝑥
2

ℎ𝑖

. (5)

This is equivalent to calculating the uncentered correlation
coefficient of the two vectors. It is evident that the cosine
measure will yield similar results as those of the correlation
measure when the means of x

𝑔
and x
ℎ
are small.

Third, we calculate the similarity as the Jaccard index of
the two annotation vectors a

𝑔
and a
ℎ
for two gene products 𝑔

and ℎ as

𝑆
(Jaccard)
𝑔ℎ

=

∑
1≤𝑖≤|𝑉|

(𝑎
𝑔𝑖

∧ 𝑎
ℎ𝑖
)

∑
1≤𝑖≤|𝑉|

(𝑎
𝑔𝑖

∨ 𝑎
ℎ𝑖
)

. (6)

This is equivalent to calculating the ratio of the number of
elements in the intersection and union of the two annotation
sets for gene products 𝑔 and ℎ.

4. Existing Methods for Calculating
Semantic Similarity

Most existing methods first derive similarity scores between
terms and then calculate semantic similarity scores between
gene products as similarity scores between collections of
annotated terms for the products. More precisely, there
have been two main categories of methods for calculating
pairwise concept similarity scores: (1) approaches based on
information contents of terms in the gene ontology and (2)

methods based on the structure of the gent ontology.
The first group of approaches calculates similarity

between two terms𝑢 and V relying on the information content
of the most specific term 𝑚

𝑢V in their common ancestors.
Generally, a term with more specific meaning tends to have a
higher information content and hence

𝑚
𝑢V = arg max

𝑤∈𝐴
𝑢
∩𝐴V

IC (𝑤) . (7)

With this notion, Resnik [11] defined the similarity between
𝑢 and V as

𝑇
(Resnik)
𝑢V = IC (𝑚

𝑢V) = − log Pr (𝑚
𝑢V) . (8)

Lin [12] defined the similarity as

𝑇
(Lin)
𝑢V =

2 log Pr (𝑚
𝑢V)

log Pr (𝑢) + log Pr (𝑢)
. (9)

Schlicker et al. [14] define the similarity as

𝑇
(Schlicker)
𝑢V =

2 log Pr (𝑚
𝑢V)

log Pr (𝑢) + log Pr (𝑢)
(1 − Pr (𝑚

𝑢V)) . (10)

Jiang and Conrath [13] define the dissimilarity between two
terms as

𝐷
(Jiang)
𝑢V = log Pr (𝑢) + log Pr (𝑢) − 2 log Pr (𝑚

𝑢V) . (11)

This is equivalent to defining its reciprocal as the similarity as

𝑇
(Jiang)
𝑢V =

1

log Pr (𝑢) + log Pr (𝑢) − 2 log Pr (𝑚
𝑢V)

. (12)
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The second group of approaches calculates similarity
between GO terms depending on the structure of the gene
ontology. Briefly, given a term indexed by 𝑡, Wang et al.
iteratively calculate an 𝑠-value for every ancestor 𝑎 ∈ 𝐴

𝑡
to

measure the contribution of 𝑎 to the semantic of 𝑡 as

𝑠
𝑡
(𝑎) =

{

{

{

1 if 𝑎 = 𝑡,

max
𝑥∈𝐶
𝑎

𝑤
𝑒
𝑠
𝑡
(𝑥) if 𝑎 ̸= 𝑡,

(13)

where the weight𝑤
𝑒
= 0.8 if 𝑥 and 𝑡 have the is a relationship

and 𝑤
𝑒

= 0.6 if 𝑥 and 𝑡 have the part of relationship
[10]. Then, a semantic value for term 𝑡 is defined as 𝑠(𝑡) =

Σ
𝑥∈𝐴
𝑡

𝑠
𝑡
(𝑥). Finally, the semantic similarity score between two

terms 𝑢 and V is defined as

𝑇
(Wang)
𝑢V = ∑

𝑥∈𝐴
𝑢
∩𝐴V

𝑠
𝑢
(𝑥) + 𝑠V (𝑥)

𝑠 (𝑢) + 𝑠 (V)
. (14)

With pairwise semantic similarity scores between GO
terms being ready, the similarity between term 𝑡 and a set of
terms 𝑇 is defined as

Sim (𝑡, 𝑇) = max
𝑡
󸀠
∈𝑇

𝑇
𝑡𝑡
󸀠 , (15)

where 𝑇
𝑡𝑡
󸀠 is calculated using either of the above methods.

The similarity between two sets of terms 𝑆 and 𝑇 can then
be calculated as

Sim (𝑆, 𝑇) =
1

|𝑆| + |𝑇|
(∑

𝑠∈𝑆

Sim (𝑠, 𝑇) + ∑

𝑡∈𝑇

Sim (𝑡, 𝑆)) . (16)

Finally, for two gene products 𝑔 and ℎ annotated by two
sets of terms 𝐺 and 𝐻, respectively, the semantic similarity
between the two objects is then defined as

𝑆
𝑔ℎ

= Sim (𝐺,𝐻) . (17)

5. Results

5.1. Data Sources. There have been quite a few domain
specific ontologies available for characterizing entities in a
variety of biological domains. Particularly, the OBO (open
biological and biomedical ontologies) Foundry has released
eight ontologies to provide standard descriptions of entities in
biological domains [14]. Among these ontologies, biological
process (BP), molecular function (MF), and cellular compo-
nent (CC) are typically referred to as the gene ontology (GO),
which has been widely used to describe functions of genes.
The gene ontology also provides annotations of gene products
for several well-studied model organisms, including yeast,
fruit fly, and mouse [1]. In this paper, we focus on the biolog-
ical process domain of GO and annotations of the budding
yeast Saccharomyces cerevisiae to validate the effectiveness of
the proposed measures. We extract 22,688 terms from the
biological process domain of the gene ontology (released on
April 27, 2012) and obtain 22,798 annotations of 6,383 yeast
genes (released on April 28, 2012).

5.2. Distribution of Semantic Similarity Scores of RandomGene
Pairs. It is evident that a pair of genes selected at random can
hardly have similar functions, and thus the semantic similar-
ity score between such a pair of genes should be close to zero.
To validate this argument, we calculate semantic similarity
scores of 100,000 pairs of yeast genes selected at random,
and we summarize the distribution of the scores in Figure 1.
We can clearly see from the figure that the median similarity
score of the correlation measure (0.004894) is almost 0
so is that of the cosine measure (0.003196). The median
similarity score of the Jaccard measure (0.03846) is higher
than those for both the correlation and the cosine measures
but still lower than those for all the five existingmethods.The
method of Resnik generates the smallest median similarity
score (0.04395) among the existing methods, followed by the
methods of Schlicker et al. (0.04810), Lin (0.09115), andWang
et al. (0.2138). The method of Jiang et al. generates the largest
median similarity score (0.3460). From these observations,
we conclude that the existing methods tend to overestimate
semantic similarity between genes that are actually not related
in their functions. On the other hand, the proposedmeasures,
thoughmuch simpler than the existing methods, do not have
such a drawback and thus yieldmuchmore reasonable results
in assessing semantic similarity between randomly selected
gene pairs.

5.3. Consistency between Gene Semantic Similarity and Path-
way Data. It is known that most biological functions rise
from collaborative effects of several proteins that usually
involve in the same biological process and form a pathway
[17]. Hence, gene products (proteins) in the same pathway
should have similar annotations in the biological process
ontology and in turn own high semantic similarity scores
according this ontology. On the contrary, gene products
belonging to different pathways should own relatively low
semantic similarity scores. To assess whether the proposed
similarity measures are consistent with this knowledge, we
compare semantic similarity scores between proteins within
a pathway and those between proteins involved in different
pathways as follows.

We download from the Saccharomyces Genome database
(SGD) [18] 141 pathways, each including at least two proteins.
For each of these pathways, we calculate pairwise semantic
similarity scores of proteins involved in the pathway, and
we average these scores over all pairs of proteins to obtain
the mean semantic similarity score within the pathway (𝜇in).
Meanwhile, for each pathway, we further select at random
10 times the number of proteins as those in the pathway,
calculate semantic similarity scores between these proteins
and those in the pathway, and average over these scores
to obtain the mean semantic similarity score outside the
pathway (𝜇out). Then, we plot the distribution of mean
similarity scores within and outside all pathways in Figure 2.
From the figure, we observe that the mean similarity scores
within pathways are in general large, while those outside
pathways are typically small. Particularly, for all of the three
proposed measures (correlation, cosine, and the Jaccard),
the differences between the medians of the mean similarity
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Figure 1: Distributions of semantic similarity scores of 100,000
randomly selected pairs of yeast genes.
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Figure 2: Distributions of mean semantic similarity scores within
pathways (white) and outside pathways (gray).

scores within and outside pathways are much more obvious
than those of the five existing methods. For example, using
the correlation measure, we obtain the median 𝜇in over all
pathways as 0.6578 and the median 𝜇out as 0.02564. Using
the cosine measure, we obtain a median 𝜇in of 0.6600 and
a median 𝜇out of 0.02733. In contrast, the method of Wang
produces a median 𝜇in of 0.7405 and a median 𝜇out of 0.2489,
and the method of Resnik produces a median 𝜇in of 0.4662
and a median 𝜇out of 0.09956.

We further calculate for each pathway the ratio of the
mean semantic similarity scores within the pathway over
that outside the pathway (𝜇in/𝜇out), and we average such
ratios over all 141 pathways to obtain a criterion called fold
change of semantic similarity scores within pathways against
those outside pathways. We summarize the fold changes in
Figure 3, from which we can clearly see the effectiveness of
the proposed measures. For example, using the correlation
measure, we obtain a fold enhancement of 29.93. Using the
cosine measure, we obtain a fold change of 26.65. In contrast,
the method ofWang only produces a fold change of 3.03, and
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Figure 3: Fold change of semantic similarity scores within pathways
against those outside pathways.

the method of Resnik produces a slightly larger fold change
of 4.83.

These observations support the conclusion that the
proposed measures yield much more reasonable results in
assessing functional relationships between proteins within
pathways, and thus these measures are more consistent with
biological knowledge than existing methods.

5.4. Consistency between Gene Semantic Similarity and Pro-
tein Domain Data. Proteins are often composed of one or
more functional regions, commonly referred to as protein
domains [19]. Different domains typically account for differ-
ent functions of proteins containing them, and thus different
combinations of protein domains give rise to the diverse
range of proteins found in nature. Hence, proteins can be
classified into different families according to the domains
that the proteins contain. Moreover, proteins containing the
same domain, or say belonging to the same family, should
have some similar functions and thus share some similar
annotations in the biological domain of the gene ontology.
Consequently, proteins belonging to the same family should
have high semantic similarity scores according to the gene
ontology. On the contrary, proteins belonging to different
familiess should own relatively low semantic similarity scores.
To assess whether the proposed similarity measures are con-
sistent with this knowledge, we compare semantic similarity
scores between proteins within a protein family and those
between proteins belonging to different families as follows.

The Pfam database [20] provides a large collection of
both high quality protein families (Pfam-A) and low quality
protein families (Pfam-B). In version 26.0 of the Pfam-
A collection (released in November 2011), 13,672 protein
families are collected. From this data source, we extract 1,022
protein families, each including at least two yeast proteins.
For each of these families, we calculate pairwise semantic
similarity scores of proteins belonging to the family, and
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we average these scores over all pairs of proteins to obtain
the mean semantic similarity score within the family (]in).
Meanwhile, for each protein family, we further select at
random 10 times the number of proteins as those in the family,
calculate semantic similarity scores between these proteins
and those belonging to the family, and average over these
scores to obtain the mean semantic similarity score outside
the family (]out). Then, we calculate for each protein family
the ratio of the mean semantic similarity scores within the
family over that outside the family (]in/]out), and we average
such ratios over all 1,022 protein families to obtain a criterion
called fold change of semantic similarity scoreswithin protein
families against those outside families. We summarize the
fold changes in Figure 4, from which we can clearly see the
effectiveness of the proposed measures. For example, using
the correlation measure, we obtain a fold change of 6.915.
Using the cosine measure, we obtain a fold change of 6.511.
Using the Jaccard measure, we obtain a fold change of 3.267.
In contrast, the method ofWang only produces a fold change
of 1.856, and the method of Resnik produces a slightly larger
fold change of 2.370.

We further change the minimum number proteins
belonging to a protein family from 2 to 10, calculate the
fold change in each situation, and present the results in
Table 1. Briefly, the fold change varies with the minimum
number of proteins in a protein family, but the observation
that the fold changes of the proposed measures are greater
than those of the existing methods remains unchanged. For
example, when considering protein families containing at
least 10 proteins, we obtain fold changes of 9.273, 9.814, and
4.516 for the correlation, cosine, and the Jaccard measures,
respectively. In contrast, the fold change for the measures
of Wang, Resnik, and Schlicker are 2.090, 2.846, and 3.430,
respectively. From these results, we make the conjecture that
the proposed measures yield much more reasonable results
in assessing functional relationships between proteins that
belong to the same protein family. Hence, we conclude that
the proposed measures are more consistent with biological
knowledgethan existing methods.

5.5. Consistency between Gene Semantic Similarity and PPI
Data. Biological knowledge suggests that proteins often
interact with each other in the collaborative generation
of biological functions [21]. The collection of all physical
interactions in a living organism is typically referred to as the
protein-protein interaction (PPI) network, in which nodes
are proteins and edges are physical interactions between the
proteins. Interacting proteins are usually involved in similar
biological process and thus have similar annotations in the
biological process domain of the gene ontology and high
semantic similarity scores. To assess whether our similarity
measures are consistent with this knowledge, we assess
relationships between interacting proteins and their semantic
similarity scores as follows.

We download two manually curated PPI networks of
Saccharomyces cerevisiae. From BioGrid (biological generic
repository for interaction datasets) [22, 23], we extract a PPI
network composed of 3,529 nodes and 16,285 edges. From
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Figure 4: Fold change of semantic similarity scores within protein
families against those outside protein families.

DIP (database of interacting proteins) [24, 25], we extract a
relative small PPI network including 2,902 nodes and 7,005
edges. For each of these networks, we calculate semantic
similarity scores for interacting proteins and those for the
same number of randomly selected noninteracting pairs of
proteins, and we plot the distribution of these scores in
Figures 5(a) and 5(b). From the figure, we obviously see that
the semantic similarity scores for interacting proteins are in
general larger than those for noninteracting proteins, and
this observation exists for both the BioGrid and the DIP
networks.

Then, for each of these networks, we average over seman-
tic similarity scores between interacting proteins to obtain the
mean semantic similarity score of interacting proteins (𝜏int).
Meanwhile, we average over semantic similarity scores of
noninteracting pairs of proteins to obtain the mean semantic
similarity score of noninteracting proteins (𝜏non). Finally,
we calculate the fold change as 𝜏int/𝜏non to measure the
effectiveness of a method in distinguishing the functional
relationship between interacting proteins. We present the
results summarized in Figure 6, from which we can see
the effectiveness of the proposed measures. For example,
for the BioGrid network, we obtain a fold change of 6.15
when using the correlation measure. For the DIP network,
the fold change is 5.44 for the correlation measure. For
the cosine and the Jaccard measures, we observe similar
results. From these observations, we make the conjecture
that the semantic similarity scores calculated by the proposed
measures are consistent with biological knowledge about
interacting proteins.

It has also been shown that proteins closer in a PPI
network tend to have more similar functions [4]. With this
understanding, we use the length of the shortest path between
two proteins in a PPI network to measure the network
proximity of the proteins, use the semantic similarity score of
the two proteins to measure their functional similarity, and
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Table 1: Fold changes of semantic similarity scores within protein families against those outside families.

𝑚 𝑛
Semantic similarity measures

Correlation Cosine Jaccard Wang Resnik Schlicker Lin Jiang
2 1022 6.915 6.511 3.267 1.856 2.370 2.669 2.331 1.524
3 562 8.986 8.446 3.827 1.988 2.680 3.100 2.641 1.629
4 360 9.608 8.760 4.027 2.037 2.799 3.247 2.761 1.656
5 240 9.359 9.135 4.131 2.065 2.843 3.324 2.827 1.662
6 182 9.997 9.214 4.224 2.105 2.901 3.410 2.888 1.692
7 141 10.10 9.741 4.363 2.106 2.952 3.476 2.918 1.690
8 110 9.921 9.409 4.432 2.101 2.853 3.409 2.895 1.661
9 89 9.880 9.321 4.445 2.094 2.857 3.419 2.908 1.643
10 75 9.814 9.273 4.516 2.090 2.846 3.430 2.898 1.644
m: minimum number of proteins in a family. n: number of protein families, each containing at leastm proteins.
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Figure 5: Relationships between semantic similarity scores and protein-protein interaction data. (a) Distributions of similarity scores of
interacting proteins (white) against noninteracting proteins (gray) for the BioGrid dataset. (b) Distributions of similarity scores of interacting
proteins (white) against noninteracting proteins (gray) for the DIP dataset.

plot the change of the similarity score with the closeness of
proteins in Figure 6. From the figure, we can see that protein
pairs tend to have higher semantic similarity scores if they
are closer in the PPI network. For example, for the BioGrid
network and the cosine measure, the median semantic
similarity score is 0.2590 for direct interacting protein pairs,
0.0720 for protein pairs intermediated by another protein,
0.0372 for protein pairs intermediated by two other proteins,
and so forth. Similar results are observed for the other two
measures. These results suggest that protein similarity scores
are correlated with protein closeness in a PPI network, again
consistent with biological knowledge.

6. Conclusions and Discussion

In this paper, we have proposed an approach to repre-
sent annotations of a gene product in the gene ontology
using vectors that are composed of information contents
of terms in the ontology. Based on this notion, we have
proposed to calculate pairwise semantic similarity between
gene products by using three measures (Pearson’s correla-
tion coefficient, cosine similarity, and the Jaccard index) to
quantify the relatedness of the corresponding vectors. We
have performed a series of comprehensive studies on the
effectiveness of the proposed measures using the ontology
of biological process and annotations of the budding yeast



8 Computational and Mathematical Methods in Medicine

1.0

0.8

0.6

0.4

0.2

0.0

Se
m

an
tic

 si
m

ila
rit

y 
sc

or
e

1 2 3 4 5 6 7 8 9

Correlation
≥10

(a)

1.0

0.8

0.6

0.4

0.2

0.0

Se
m

an
tic

 si
m

ila
rit

y 
sc

or
e

1 2 3 4 5 6 7 8 9

Cosine
≥10

(b)

1.0

0.8

0.6

0.4

0.2

0.0

Se
m

an
tic

 si
m

ila
rit

y 
sc

or
e

1 2 3 4 5 6 7 8 9

Jaccard
≥10

(c)

Figure 6: Distributions of semantic similarity scores against the shortest path distance of interacting proteins for the BioGrid dataset. (a)
Results for the measure of correlation. (b) Results for the measure of cosine. (c) Results for the measure of Jaccard.

Saccharomyces cerevisiae. Comprehensive studies on the rela-
tionships between semantic similarity of gene products and
biochemical pathways, protein families, and protein-protein
interaction networks show that semantic similarity scores
calculated using the proposed measures are more consistent
with biological knowledge than those derived using a list
of five existing methods, suggesting the effectiveness of our
method in characterizing functional similarity between gene
products based on the gene ontology.

The main advantage of the proposed measures is the
simplicity in calculation and the effectiveness in charac-
terizing semantic similarity between gene products. The
representation of gene products as vectors of information

contents of ontology terms is straightforward, making the
followed computation easy to understand. The simplicity
in presentation also benefits the computation with a low
time complexity, thereby making our method suitable for
large scale calculation of semantic similarity for not only
applications based on the gene ontology but also those using
other ontologies.

Certainly, the proposed measures can be further
improved from the following aspects. First, although the
contribution of a term in a domain ontology has been
characterized by its information content, it is possible to
further refine such contribution by adjusting the information
contents with prior knowledge. For example, it is not hard



Computational and Mathematical Methods in Medicine 9

to combine annotations of different organisms to achieve a
more precise estimation of information contents for concepts
in the gene ontology. Another possibility is to develop a
Bayesian method to estimate the information contents, using
existing annotations to derive the prior distribution.

Second, although the presentation of domain entities as
vectors of concepts is simple yet effective, the incorporation of
the structure of the concepts in the underlying ontology may
further improve the performance of the proposed method.
Existing algorithms for calculating similarity between two
tree structures [26] might be a potential candidate along this
direction.
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