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Abstract. Acetyl‑CoA carboxylase 2 plays a crucial role 
in regulating mitochondrial fatty acid oxidation in cardio‑
myocytes. Lithium, a monovalent cation known for its 
cardioprotective potential, has been investigated for its influence 
on mitochondrial bioenergetics. The present study explored 
whether lithium modulated acetyl‑CoA carboxylase 2 and 
mitochondrial fatty acid metabolism in cardiomyocytes and 
the potential therapeutic applications of lithium in alleviating 
metabolic stress. Mitochondrial bioenergetic function, fatty 
acid oxidation, reactive oxygen species production, membrane 
potential and the expression of proteins involved in fatty acid 
metabolism in H9c2 cardiomyocytes treated with LiCl for 48 h 
was measured by using a Seahorse extracellular flux analyzer, 
fluorescence microscopy and western blotting. Small inter‑
fering RNA against glucose transporter type 4 was transfected 

into H9c2 cardiomyocytes for 48 h to induce metabolic stress 
mimicking insulin resistance. The results revealed that LiCl 
at a concentration of 0.3 mM (but not at a concentration of 
0.1 or 1.0 mM) upregulated the expression of phosphorylated 
(p‑)glycogen synthase kinase‑3 beta and downregulated the 
expression of p‑acetyl‑CoA carboxylase 2 but did not affect 
the expression of adenosine monophosphate‑activated protein 
kinase or calcineurin. Cotreatment with TWS119 (8 µM) and 
LiCl (0.3 mM) downregulated p‑acetyl‑CoA carboxylase 2 
expression to a similar extent as did treatment with TWS119 
(8 µM) alone. Moreover, LiCl (0.3 mM) inhibited mitochon‑
drial fatty acid oxidation, improved coupling efficiency and 
the cellular respiratory control ratio, hindered reactive oxygen 
species production and proton leakage and restored mito‑
chondrial membrane potential in glucose transporter type 4 
knockdown‑H9c2 cardiomyocytes. These findings suggested 
that low therapeutic levels of lithium can downregulate 
p‑acetyl‑CoA carboxylase 2, thus reducing mitochondrial 
fatty acid oxidation and oxidative stress in cardiomyocytes.

Introduction

Growing evidence suggests that disruptions in mitochondrial 
energy metabolism can contribute to the development of various 
cardiac diseases (1‑5). Among the fuel sources utilized by the 
myocardium, increased fatty acid oxidation plays a pivotal 
role in driving the pathogenesis of cardiomyopathy (1‑7). The 
inhibition of fatty acid oxidation has been demonstrated to 
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alleviate cardiac dysfunction (2,4,6,8). Acetyl‑CoA carbox‑
ylases (ACCs) are key enzymes responsible for catalyzing 
the carboxylation of acetyl‑CoA into malonyl‑CoA (9). 
Mammalian cells contain two isoforms of ACC, namely ACC1 
and ACC2. ACC1 serves as the rate‑limiting enzyme respon‑
sible for fatty acid biosynthesis in the cytoplasm of adipocytes 
and hepatocytes. ACC2 is located in the outer mitochondrial 
membrane of cardiomyocytes and governs mitochondrial 
fatty acid oxidation (9,10). Therapeutics targeting ACC2 have 
the potential to regulate mitochondrial fatty acid utilization, 
reduce oxidative stress and confer cardioprotective benefits.

For the preceding five decades, lithium has served as the 
first‑line medication for treating bipolar disorder (11). Human 
and preclinical studies have both demonstrated that in addi‑
tion to its mood‑stabilizing effects, lithium can enhance 
the activity of mitochondrial complex I while hindering the 
formation of free radicals and reducing lipid peroxidation 
and DNA damage (12‑14). Furthermore, low‑dose lithium has 
been shown to promote longevity (15,16) and reduce the risk 
of heart failure (17,18). These findings suggest that low‑dose 
lithium may possess cytoprotective properties and thus may 
play an essential role in regulating metabolic stress. However, 
whether lithium exerts cardioprotective effects through the 
modulation of cardiac metabolism remains unclear. Laboratory 
evidence has indicated that lithium directly targets glycogen 
synthase kinase‑3 beta (GSK‑3β) (19), a crucial protein 
kinase that inhibits the activity of ACC (20,21). The present 
study investigated whether lithium can regulate the activity 
of ACC2 and modulate mitochondrial fatty acid oxidation in 
cardiomyocytes, with a focus on the potential of lithium for 
mitigating metabolic stress. The results revealed that at a low 
physiological concentration (0.3 mM), LiCl upregulated the 
expression of phosphorylated (p‑)GSK‑3β and downregulated 
the level of p‑ACC2 in H9c2 cardiomyocytes. Additionally, 
when used in combination with the GSK‑3β inhibitor TWS119, 
LiCl (0.3 mM) downregulated the expression of p‑ACC2, 
an effect comparable to treatment with TWS119 alone. 
Furthermore, LiCl (0.3 mM) inhibited mitochondrial fatty 
acid oxidation, enhanced coupling efficiency and the cellular 
respiratory control ratio, suppressed reactive oxygen species 
(ROS) production and proton leakage and restored mito‑
chondrial membrane potential in glucose transporter type 4 
(GLUT4)‑knockdown H9c2 cardiomyocytes. Taken together, 
these findings suggest that at a low physiological concentra‑
tion, lithium can inhibit mitochondrial fatty acid utilization 
and mitigate oxidative stress in cardiomyocytes, potentially 
through its upregulation of p‑GSK‑3β and downregulation of 
p‑ACC2.

Materials and methods

Cell culture and treatment. The H9c2 cell line (cat. no. 60096) 
was purchased from the Bioresource Collection and Research 
Center and cultured in Dulbecco's modified Eagle's medium 
(DMEM; Sigma‑Aldrich; Merck KGaA) supplemented with 
10% fetal bovine serum (FBS; Sigma‑Aldrich; Merck KGaA) 
at 37˚C in a humidified atmosphere with 5% CO2. To retain the 
differentiation capacity and mitochondrial respiratory activity, 
a subculture was performed when the cells reached 80% conflu‑
ence. The culture medium was changed every 2‑3 days. H9c2 

cells were treated with LiCl (Sigma‑Aldrich; Merck KGaA) 
at concentrations of 0.1 mM (i.e., subtherapeutic), 0.3 mM 
(i.e., low therapeutic), or 1.0 mM (i.e., high therapeutic) for 
48 h. Additionally, these cells were cotreated with LiCl and 
a GSK‑3β inhibitor, namely TWS119 (Sigma‑Aldrich; Merck 
KGaA), at a concentration of 8 µM for 48 h to evaluate whether 
lithium downregulated p‑ACC2 by modulating GSK‑3β 
activity. Each experiment was performed at least three times.

GLUT4‑knockdown cellular model. To simulate insulin resis‑
tance and induce metabolic stress in H9c2 cardiomyocytes, 
a GLUT4‑knockdown cellular model was established. H9c2 
cardiomyocytes were seeded at a density of 2x105 cells per 
well on a 6‑well plate and transfected when reaching ~80% 
confluence. Transfection was performed with either 50 nM 
GLUT4 small interfering (si)RNA (sense 5'‑GCU GUU UUC 
UAC UAU UCAAtt‑3', antisense 5'‑UUG AAU AGU AGA 
AAA CAG Cat‑3'; cat. no. s73928; Thermo Fisher Scientific, 
Inc.) or 50 nM negative control siRNA (sense 5'‑UAA CGA 
CGC GAC GAC GUAAtt‑3', antisense 5'‑UUA CGU CGU CGC 
GUC GUUAtt‑3'; cat. no. 4390843; Thermo Fisher Scientific, 
Inc.) using Lipofectamine® RNAiMax Transfection Reagent 
(Thermo Fisher Scientific, Inc.) for 48 h at 37˚C. The protein 
knockdown efficiency of GLUT4 and protein expression 
levels of carnitine palmitoyl transferase 1, the mitochondrial 
enzyme responsible for the translocation of fatty acids from 
the cytosol to the mitochondrial matrix, were assessed 48 h 
after siRNA transfection (Fig. S1). LiCl was administered 
24 h post‑initiation of transfection. For experiments in which 
GLUT4‑knockdown was combined with LiCl administra‑
tion, cells were incubated for an additional 48 h. In groups 
without LiCl treatment, cells were incubated for an equivalent 
48 h period, matching the incubation time of the LiCl‑treated 
groups.

Measurement of mitochondrial bioenergetic function. 
Mitochondrial bioenergetic function was assessed using the 
XFe24 Extracellular Flux Analyzer (Seahorse Bioscience) 
and Seahorse XF Cell Mito Stress Test kit (Seahorse 
Bioscience). H9c2 cells were initially seeded at a density of 
7,000 cells per well on a Seahorse XFe24 culture plate and 
cultured with DMEM supplemented with 10% FBS for 48 h. 
On the day of the assay, the culture medium was substituted 
with Seahorse assay medium supplemented with 25 mM 
glucose, 1 mM pyruvate and 2 mM glutamine. Subsequently, 
a series of injections was administered, including 1.5 µM 
oligomycin, 3 µM carbonyl cyanide p‑trif luoromethoxy 
phenylhydrazone (FCCP) and 0.5 µM rotenone/anti‑
mycin A. Basal respiration (last rate measurement before 
oligomycin injection‑minimum rate measurement after 
rotenone/antimycin A injection), adenosine triphosphate 
(ATP) production (last rate measurement before oligomycin 
injection‑minimum rate measurement after oligomycin 
injection), proton leakage (minimum rate measurement 
after oligomycin injection‑minimum rate measurement after 
rotenone/antimycin A injection) and maximal respiration 
(maximum rate measurement after FCCP injection‑minimum 
rate measurement after rotenone/antimycin A injection) were 
determined using our previously described methods (22). In 
addition, coupling efficiency and the cell respiratory control 
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ratio were analyzed as these measures are internally normal‑
ized bioenergetic parameters used to assess the proportion 
of mitochondrial respiratory activity contributing to ATP 
generation (i.e., coupling efficiency) and the degree of 
change in mitochondrial respiratory activity attributable to 
proton leakage (i.e., the cell respiratory control ratio) (23,24). 
Coupling efficiency was calculated by dividing ATP produc‑
tion by basal respiration. The cell respiratory control ratio 
was calculated by dividing maximal respiration by proton 
leakage.

Measurement of mitochondrial fatty acid oxidation. 
Mitochondrial fatty acid oxidation was assessed using the 
XFe24 Extracellular Flux Analyzer (Seahorse Bioscience) 
and Seahorse XF substrate oxidation stress test kit (Seahorse 
Bioscience). H9c2 cells were initially seeded at a density of 
7,000 cells per well on a Seahorse XFe24 culture plate and 
cultured with DMEM supplemented with 10% FBS for 48 h. 
On the day of the assay, the culture medium was substituted 
with Seahorse assay medium containing 25 mM glucose, 
1 mM pyruvate and 2 mM glutamine. During the substrate 
oxidation stress test, etomoxir was injected at a concentration 
of 40 µM. Mitochondrial fatty acid oxidation was estimated 
by monitoring the change in the oxygen consumption rate 
following etomoxir injection.

Measurement of mitochondrial ROS. Mitochondrial ROS 
levels were assessed using MitoSox Red dye (Invitrogen; 
Thermo Fisher Scientific, Inc.) and a fluorescence microscopy 
system (EVOS M5000 Imaging System; Thermo Fisher 
Scientific, Inc.) in accordance with our previously described 
methods (22). In brief, H9c2 cells were seeded at a density 
of 5,000 cells per well on a 96‑well plate and cultured with 
DMEM supplemented with 10% FBS for 48 h. Prior to 
fluorescence microscopy, the H9c2 cells were loaded with 
MitoSox Red at a concentration of 5 µM and Hoechst 33423 
(Sigma‑Aldrich; Merck KGaA) at a concentration of 1 µg/ml 
for a 30‑min incubation period at 37˚C. Fluorescence intensity 
was then measured in four randomly selected fields in each 
well and quantified using ImageJ 1.52a software (National 
Institutes of Health).

Measurement of mitochondrial membrane potential. 
Mitochondrial membrane potential was assessed using the 
TMRE Mitochondrial Membrane Potential Assay Kit (Cayman 
Chemical Company) and fluorescence microscopy (EVOS 
M5000 Imaging System; Thermo Fisher Scientific, Inc.). In 
brief, H9c2 cells were seeded at a density of 5,000 cells per 
well on a 96‑well plate and cultured with DMEM supplemented 
with 10% FBS for 48 h. Prior to fluorescence microscopy, 
the H9c2 cells were loaded with tetramethylrhodamine ethyl 
ester at a concentration of 125 nM and HOECHST 33423 at 
a concentration of 1 µg/ml for a 30‑min incubation period 
at 37˚C in accordance with the manufacturer's instructions. 
Fluorescence intensity was measured in four randomly 
selected fields within each well and quantified using ImageJ 
1.52a software (National Institutes of Health).

Western blot analysis. Western blotting was performed as 
previously described (25). Briefly, H9c2 cells were lysed using 

protein extraction reagent (cat. no. 78501; Thermo Fisher 
Scientific, Inc.). Protein concentrations were determined using 
Qubit™ Protein Assay Kits (Thermo Fisher Scientific, Inc.). 
Subsequently, 30 µg protein/lane was separated using 8% 
sodium dodecyl sulfate‑polyacrylamide gel electrophoresis. 
This process was followed by the electrophoretic transfer 
of the separated proteins onto equilibrated polyvinylidene 
difluoride membranes. These membranes were then blocked 
with 5% skimmed milk for 1 h at room temperature. Following 
this blocking procedure, the membranes were incubated 
overnight at 4˚C with specific antibodies against total ACC2 
(1:2,000; monoclonal; cat. no. ab45174; Abcam), p‑(p‑)
ACC2 (1:500; polyclonal; cat. no. 07303; Millipore), total 
AMP‑activated protein kinase (AMPK; 1:500; monoclonal; 
cat. no. 5831; Cell Signaling), p‑AMPK (1:1,000; polyclonal; 
cat. no. 07681; Millipore), calcineurin (1:10,000; monoclonal; 
cat. no. ab109412; Abcam), total GSK‑3β (1:1,000; mono‑
clonal; cat. no. 9315; Cell Signaling), p‑GSK‑3β (1:1,000; 
polyclonal; cat. no. 9336; Cell Signaling) and GLUT4 (1:500; 
monoclonal; cat. no. sc‑53566; Santa Cruz). After washing 
with PBS containing Tween 20 (0.1%) for 15 min at room 
temperature, a peroxidase‑conjugated secondary antibody 
(anti‑rabbit IgG; 1:1,000; cat. no. HAF008; or anti‑mouse IgG; 
1:500; cat. no. HAF007; R&D Systems, Inc.) was added for 
incubation for 1 h at room temperature. Bound antibodies were 
detected using an enhanced chemiluminescence detection 
system (MilliporeSigma) and the results were analyzed using 
AlphaEaseFC 4.0.0.34 software (ProteinSimple). Targeted 
bands were normalized to glyceraldehyde 3‑phosphate dehy‑
drogenase (1:50,000; monoclonal; cat. no. M171‑1; MBL) 
or β‑actin (1:10,000; polyclonal; cat. no. ab6274; Abcam) to 
confirm equal protein loading.

Statistical analysis. Quantitative data are presented as 
mean ± standard error of the mean. Statistical significance 
in H9c2 cells exposed to various conditions was determined 
using a one‑way analysis of variance followed by Tukey's post 
hoc test. Statistical analysis was performed using SigmaPlot 
12.3 software (Systat Software, Inc.). P<0.05 was considered 
to indicate a statistically significant difference.

Results

Effects of lithium on ACC2 in H9c2 cardiomyocytes. In H9c2 
cardiomyocytes treated with 0.3 mM LiCl for 48 h, the expres‑
sion of p‑ACC2 was significantly downregulated compared 
with the control (Fig. 1A). However, LiCl at concentrations of 
0.1 and 1.0 mM had only a minimal effect on the expression 
of p‑ACC2. Notably, no significant differences were observed 
in the expression of total ACC2 between the control group and 
H9c2 cardiomyocytes treated with LiCl at concentrations of 
0.1, 0.3 and 1 mM.

Effects of lithium on GSK‑3β in H9c2 cardiomyocytes. 
As GSK‑3β is a potential regulator of ACC2, it was inves‑
tigated whether lithium regulated GSK‑3β activity in H9c2 
cardiomyocytes. Compared with the control, LiCl at a concen‑
tration of 0.3 mM upregulated the expression of p‑GSK‑3β 
by 55.4% (Fig. 1B). By contrast, LiCl at concentrations of 
0.1 and 1.0 mM did not significantly affect the expression 
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of p‑GSK‑3β in H9c2 cardiomyocytes. No significant differ‑
ences in the expression of total GSK‑3β were observed 
between the control group and H9c2 cardiomyocytes treated 
with LiCl at concentrations of 0.1, 0.3 and 1 mM. To confirm 
whether lithium downregulated the expression of p‑ACC2 
by modulating GSK‑3β activity, H9c2 cardiomyocytes were 
treated with TWS119, a GSK‑3β inhibitor. The expression of 
p‑ACC2 in H9c2 cardiomyocytes was downregulated to a 
similar extent in cells subjected to combined treatment with 
TWS119 (8 µM) and LiCl (0.3 mM) and in those treated with 
TWS119 (8 µM) alone (Fig. 2). These findings suggest that 
lithium downregulated the expression of p‑ACC2 through 
the modulation of GSK‑3β activity. As the activities of ACC1 
and ACC2 are regulated by numerous protein kinases and 
phosphatases, the present study also examined the effects of 
lithium on AMPK and calcineurin, the two principal protein 

kinases involved in the regulation of ACC2 activity in H9c2 
cardiomyocytes. It was observed that LiCl did not significantly 
affect the expression level of total or p‑AMPK or calcineurin 
in H9c2 cardiomyocytes (Fig. S2).

Effects of lithium on mitochondrial bioenergetic function 
in GLUT4‑knockdown H9c2 cardiomyocytes. To explore 
the therapeutic potential of lithium for mitigating meta‑
bolic stress, mitochondrial bioenergetic function was 
evaluated in GLUT4‑knockdown H9c2 cardiomyocytes 
treated with lithium. Compared with the control cells, 
the GLUT4‑knockdown H9c2 cardiomyocytes exhib‑
ited greater proton leakage (Fig. 3). Additionally, the 
GLUT4‑knockdown H9c2 cardiomyocytes exhibited greater 
reductions in coupling efficiency and the cell respiratory 
control ratio compared with the control cells. Furthermore, 

Figure 1. Expression ACC2 and GSK‑3β in H9c2 cardiomyocytes treated with LiCl. (A) Compared with control cells (n=5), H9c2 cells treated with LiCl 
at 0.3 mM (n=5) for 48 h exhibited downregulated expression of p‑ACC2. However, LiCl at 0.1 (n=5) or 1.0 mM (n=5) had no significant effect on the expres‑
sion of p‑ACC2. Additionally, the expression of total ACC2 did not significantly differ between the control cells and those treated with LiCl at concentrations 
of 0.1, 0.3 and 1 mM. (B) H9c2 cells treated with LiCl at 0.3 mM (n=5) for 48 h exhibited upregulated expression of p‑GSK‑3β relative to the control cells (n=5). 
However, LiCl at 0.1 (n=5) and 1.0 mM (n=5) did not significantly affect the expression of p‑GSK‑3β. The expression of total GSK‑3β did not significantly differ 
between the control cells and those treated with LiCl at concentrations of 0.1, 0.3 and 1 mM. *P<0.05. ACC2, acetyl‑CoA carboxylase 2; GSK‑3β, glycogen 
synthase kinase‑3 beta; p‑, phosphorylated; CON, control.
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GLUT4‑knockdown H9c2 cardiomyocytes treated with 
LiCl (0.3 mM) exhibited a reduction in proton leakage and 
improvement in coupling efficiency and cell respiratory 
control ratio compared with cells not treated with LiCl. 
These findings indicated that LiCl at a concentration of 
0.3 mM enhanced mitochondrial bioenergetic function in 
GLUT4‑knockdown H9c2 cardiomyocytes.

Effects of lithium on mitochondrial ROS and membrane 
potential in GLUT4‑knockdown H9c2 cardiomyocytes. The 
effects of lithium on mitochondrial ROS and membrane 
potential in GLUT4‑knockdown H9c2 cardiomyocytes 
are illustrated in Fig. 4. Compared with the control cells, 
the GLUT4‑knockdown H9c2 cardiomyocytes exhibited 
higher levels of mitochondrial ROS. By contrast, the 
GLUT4‑knockdown cells treated with LiCl (0.3 mM) had 
mitochondrial ROS levels similar to those in the control 
cells. Furthermore, the GLUT4‑knockdown H9c2 cardio‑
myocytes exhibited reduced mitochondrial membrane 
potential in contrast to both the control cells and the LiCl 
(0.3 mM)‑treated GLUT4‑knockdown cells. These findings 

suggested that LiCl at a concentration of 0.3 mM attenu‑
ated mitochondrial ROS and restored the mitochondrial 
membrane potential in GLUT4‑knockdown H9c2 cardio‑
myocytes.

Effects of lithium on mitochondrial fatty acid oxida‑
tion in GLUT4‑knockdown H9c2 cardiomyocytes. The 
effects of lithium on mitochondrial fatty acid oxida‑
tion in GLUT4‑knockdown H9c2 cardiomyocytes are 
depicted in Fig. 5. Compared with the control cells, the 
GLUT4‑knockdown H9c2 cardiomyocytes exhibited a 
greater elevation in mitochondrial fatty acid oxidation. 
Additionally, when GLUT4‑knockdown H9c2 cardiomyo‑
cytes were treated with LiCl (0.3 mM), they exhibited a 
greater reduction in mitochondrial fatty acid oxidation 
compared with GLUT4‑knockdown H9c2 cardiomyocytes 
not treated with LiCl. These findings suggested that LiCl at 
a concentration of 0.3 mM attenuated the increase in mito‑
chondrial fatty acid oxidation in GLUT4‑knockdown H9c2 
cardiomyocytes.

Discussion

Studies have suggested that ACC2 can be inactivated through 
phosphorylation (9,10). In the present study, for the first time 
to the best of the authors' knowledge, LiCl at a concentra‑
tion of 0.3 mM, representing a low therapeutic level but not 
a supraphysiological level, was observed to downregulate 
the expression of p‑ACC2 in H9c2 cardiomyocytes but not 
to affect the expression of total ACC2. The downregula‑
tion of p‑ACC2 induced by lithium may activate ACC2 and 
subsequently elevate the level of malonyl‑CoA (9). Such an 
increase in malonyl‑CoA levels can inhibit carnitine palmito‑
yltransferase 1, which is crucial for the transport of long‑chain 
fatty acyl‑CoAs into the mitochondria for β‑oxidation (26,27). 
Additionally, the present study also revealed that LiCl at a low 
therapeutic level attenuated mitochondrial fatty acid oxidation 
in H9c2 cardiomyocytes.

The inhibition of fatty acid oxidation has been demon‑
strated to have beneficial effects related to heart failure 
associated with diabetes mellitus (2,4,8,28,29). In patients 
with diabetes, heart failure often presents a shift in cardiac 
fuel substrate utilization toward an increased reliance 
on more mitochondrial fatty acid oxidation, a change 
driven by insulin resistance (1,6). Such an increase in fatty 
acid oxidation can overwhelm mitochondria, resulting 
in oxidative stress (6). The subsequent generation of 
ROS from lipid‑overburdened mitochondria may worsen 
insulin resistance and accelerate the progression of heart 
failure (6). Thus, inhibiting fatty acid oxidation in patients 
with diabetic cardiomyopathy may offer cardioprotection 
by reducing oxidative stress, promoting glucose utilization 
and enhancing cardiac efficiency (6,30‑32). Supporting 
this hypothesis, a previous study found that a low dose of 
lithium (0.36±0.03 mM) mitigated cardiac dysfunction in 
an experimental animal model to investigate sleep depriva‑
tion (33). The current study corroborated the cardioprotective 
potential of lithium in a GLUT4‑knockdown cellular model 
designed to simulate insulin resistance (34‑36). This finding 
agrees with previous findings on the benefits of lithium on 

Figure 2. Expression of ACC2 in H9c2 cardiomyocytes treated with a glycogen 
synthase kinase‑3 beta GSK‑3β inhibitor. Cotreatment with TWS119 (8 µM) 
and LiCl (0.3 mM) downregulated the expression of p‑ACC2 in H9c2 cells 
to a similar extent as did treatment with TWS119 (8 µM) alone. The expres‑
sion of total ACC2 did not significantly differ between the control cells and 
those treated with TWS119 (8 µM alone or cotreatment with TWS119 [8 µM] 
and LiCl [0.3 mM]). ***P<0.001. ACC2, acetyl‑CoA carboxylase 2; GSK‑3β, 
glycogen synthase kinase‑3 beta; p‑, phosphorylated; CON, control.
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Figure 3. Mitochondrial bioenergetic function in GLUT4‑knockdown H9c2 cardiomyocytes treated with LiCl. (A) Schematic and representative tracing of 
oxygen consumption rates, following the sequential injection of oligomycin (1.5 µM), carbonyl cyanide p‑trifluoromethoxy phenylhydrazone (3 µM) and 
rotenone/antimycin A (0.5 µM). The derived bioenergetic parameters are indicated as a, basal respiration; b, ATP production; c, proton leakage; d, maximal 
respiration; b/a: coupling efficiency; d/c: cell respiratory control ratio. (B) The knockdown of GLUT4 with small interfering RNA at 50 nM in H9c2 cardio‑
myocytes for 48 h (n=5) resulted in elevated proton leakage, impaired mitochondrial coupling efficiency and a reduced cell respiratory control ratio compared 
with the control cells (n=5). Treatment with LiCl at a concentration of 0.3 mM (n=5) attenuated proton leakage and enhanced mitochondrial coupling efficiency 
and the cell respiratory control ratio in GLUT4‑knockdown H9c2 cardiomyocytes. *P<0.05, **P<0.01, ***P<0.001. GLUT4, glucose transporter type 4; KD, 
knockdown; CON, control.
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cardiac metabolism (12‑14,37). Nonetheless, failing hearts 
show varying mitochondrial fatty acid oxidation patterns, 
which could increase or decrease depending on the heart 
failure type (4). For example, in heart failure associated with 
conditions such as hypertension and ischemia, myocardial 
fatty acid oxidation tends to decline. Hence, the implications 

of the present findings might not extend to all types of heart 
failure given the variability in underlying disease processes.

ROS‑induced proton leakage is mediated by adenine nucle‑
otide translocase (38,39), a protein that is a central component 
of the mitochondrial permeability transition pore (40). The 
opening of the mitochondrial permeability transition pore, 

Figure 4. Mitochondrial ROS and membrane potential in GLUT4‑knockdown H9c2 cardiomyocytes treated with LiCl. (A) Compared with control cells (n=5), 
knockdown of GLUT4 with small interfering RNA at 50 nM in H9c2 cardiomyocytes for 48 h (n=5) resulted in an elevation of mitochondrial ROS. Treatment 
with LiCl at 0.3 mM (n=5) reduced the levels of mitochondrial ROS in GLUT4‑knockdown H9c2 cells. (B) Compared with the control cells (n=5), knockdown 
of GLUT4 with siRNA at 50 nM in H9c2 cardiomyocytes for 48 h (n=5) led to the suppression of mitochondrial membrane potential. LiCl at 0.3 mM (n=5) 
restored the mitochondrial membrane potential in GLUT4‑knockdown H9c2 cells. *P<0.05, **P<0.01, ***P<0.001. ROS, reactive oxygen species; GLUT4, 
glucose transporter type 4; CON, control.
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particularly under pathological conditions, leads to the dissi‑
pation of mitochondrial membrane potential, which in turn 
triggers the mitochondrial pathway of apoptosis (41). Studies 
have demonstrated that lithium exerts a cardioprotective 

effect by enhancing the threshold at which the mitochondrial 
permeability transition pore is activated by ROS (42,43). 
The present study demonstrated that low‑dose lithium 
hinders ROS generation and proton leakage while restoring 

Figure 5. Mitochondrial fatty acid oxidation in GLUT4‑knockdown H9c2 cardiomyocytes treated with LiCl. (A) Schematic and representative tracing of OCRs 
following the acute injection of etomoxir at 40 µM. Mitochondrial fatty acid oxidation was estimated by measuring the change in the OCR after etomoxir 
injection. (B) Knockdown of GLUT4 with small interfering RNA at 50 nM for 48 h induced mitochondrial fatty acid oxidation to a greater extent in H9c2 
cardiomyocytes (n=5) than in control cells (n=5). LiCl at 0.3 mM (n=5) inhibited mitochondrial fatty acid oxidation in GLUT4‑knockdown H9c2 cardiomyo‑
cytes. *P<0.05, **P<0.01. GLUT4, glucose transporter type 4; OCR, oxygen consumption rate; KD, knockdown; CON, control.

Figure 6. Illustration of the proposed mechanisms underlying lithium's effects on mitochondrial fatty acid oxidation and oxidative stress in cardiomyocytes. 
Low‑dose lithium downregulates GSK‑3β activity in cardiomyocytes and activates ACC2, thereby upregulating malonyl‑CoA expression, which in turn leads 
to the inhibition on CPT1 activity, transportation of fatty acyl‑CoAs into mitochondria for β‑oxidation and generation of ROS and proton leakage. GLUT4, 
glucose transporter type 4; ACC2, acetyl‑CoA carboxylase 2; CPT1, carnitine palmitoyltransferase 1; ROS, reactive oxygen species.
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mitochondrial membrane potential in GLUT4‑knockdown 
H9c2 cardiomyocytes.

GSK‑3β signaling plays a pivotal role in the regula‑
tion of multiple mitochondrial functions, including energy 
bioenergetics, biogenesis and apoptosis (44). The inhibi‑
tion of GSK‑3β has been shown to reduce the apoptosis of 
cardiomyocytes and alleviate cardiac dysfunction (45‑48). In 
the present study, LiCl at a concentration of 0.3 mM inhib‑
ited GSK‑3β and activated ACC2 in H9c2 cardiomyocytes. 
Although studies have reported that lithium may regulate 
the activity of AMPK and calcineurin (49‑52), the present 
study revealed that lithium at a concentration of 0.3 mM 
had no significant effect on the expression of p‑AMPK or 
that of calcineurin in H9c2 cardiomyocytes. These findings 
suggested that the biological effects of lithium may be concen‑
tration dependent. As summarized in Fig. 6, the results of the 
present study suggested that at a low therapeutic concentra‑
tion, lithium inhibits mitochondrial fatty acid utilization and 
mitigates oxidative stress in cardiomyocytes. These effects 
are probably achieved through the inhibition of GSK‑3β and 
the activation of ACC2.

In the present study, lithium had a biphasic dose‑response 
effect on ACC2 and GSK‑3β activities. This phenomenon may 
stem from interactions among multiple signaling pathways 
targeted by lithium (53), resulting in dose‑response curves 
that significantly differ from the monotonic curves typically 
seen in pharmaceuticals acting on specific receptors (54). 
Numerous studies have identified the biphasic dose‑response 
effects of lithium on a wide range of signaling pathways in 
multiple cell types (55‑58). To gain a comprehensive under‑
standing of the mechanisms underlying the effects of lithium 
on mitochondrial energy metabolism in cardiomyocytes at the 
system level, future research involving large‑scale multiomics 
data is warranted.

In conclusion, the findings of the present study indicate 
that lithium directly regulated mitochondrial fatty acid utiliza‑
tion and mitigated oxidative stress in cardiomyocytes at low 
therapeutic concentrations. These findings suggest that lithium 
possessed cardioprotective properties and may attenuate 
metabolic stress in the myocardium. Considering the inherent 
limitations of in vitro research, future in vivo studies are 
necessary to confirm the cardioprotective effects of lithium in 
metabolic stress.
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