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Improving the accuracy 
and robustness of carotid‑femoral 
pulse wave velocity measurement 
using a simplified tube‑load model
Lisheng Xu1,2,3*, Shuran Zhou1, Lu Wang4, Yang Yao5, Liling Hao1, Lin Qi1, Yudong Yao1, 
Hongguang Han6*, Ramakrishna Mukkamala7 & Stephen E. Greenwald8

Arterial stiffness, as measured by pulse wave velocity, for the early non-invasive screening of 
cardiovascular disease is becoming ever more widely used and is an independent prognostic indicator 
for a variety of pathologies including arteriosclerosis. Carotid-femoral pulse wave velocity (cfPWV) is 
regarded as the gold standard for aortic stiffness. Existing algorithms for cfPWV estimation have been 
shown to have good repeatability and accuracy, however, further assessment is needed, especially 
when signal quality is compromised. We propose a method for calculating cfPWV based on a simplified 
tube-load model, which allows for the propagation and reflection of the pulse wave. In-vivo cfPWV 
measurements from 57 subjects and numerical cfPWV data based on a one-dimensional model were 
used to assess the method and its performance was compared to three other existing approaches 
(waveform matching, intersecting tangent, and cross-correlation). The cfPWV calculated using the 
simplified tube-load model had better repeatability than the other methods (Intra-group Correlation 
Coefficient, ICC = 0.985). The model was also more accurate than other methods (deviation, 0.13 ms−1) 
and was more robust when dealing with noisy signals. We conclude that the determination of cfPWV 
based on the proposed model can accurately and robustly evaluate arterial stiffness.

Cardiovascular Disease (CVD) is the world’s leading cause of death1. It has been estimated that by 2030, its global 
cost will reach $1440 billion2. From a pathophysiological point of view, the stiffness of the large elastic arteries 
near the heart is important as it determines the buffering ability of the arterial system to match the low output 
impedance of the heart to the higher input impedance of the peripheral circulation3. It is technically challenging 
to measure aortic stiffness locally by non-invasive approaches, but it is much easier to detect the pulse waveforms 
at peripheral sites.

Many studies have confirmed that arterial stiffness can be estimated non-invasively by measuring the pulse 
wave velocity (PWV)4–7. In these studies, the time delay between two arterial sites can be detected by relatively 
simple methods such as tonometry (pressure sensors), Doppler ultrasound or photoplethysmography8. By detect-
ing the pulse wave from two specified arterial sites, the target PWV can then be obtained by measuring the dis-
tance between two sites divided by the measured time delay. Thus, accurate measurements of pulse transit time 
and distance are required. The latter can be obtained by MRI9, although this is impracticable for routine clinical 
measurements. In practice, the propagation distance is estimated from the measured body surface distance. 
According to the 2012 expert consensus document on the measurement of carotid-femoral pulse wave velocity 
(cfPWV), the direct distance between the carotid and femoral artery measurement sites multiplied by a factor 
of 0.8 is suggested as the standard for daily practice10.
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The main methods for calculating arterial PWV are summarized in Table 1. They can be divided into three 
categories: point-based, waveform-based and model-based methods. In point-based methods, a particular fea-
ture of the wave serves as a fiducial or time-marker point to calculate the pulse transit time (PTT) between the 
two waves. The point-based method is less strongly affected by downstream reflections since the fiducial point 
is usually at or near to the start of systole or the “wave-foot”11. Various methods have been used to identify the 
wave-foot. These include finding the diastolic minimum, the maximum of the first derivative of the signal and 
the intersecting tangent algorithm12,13. The diastolic minimum method detects the minimum of each pulse wave 
and has been applied in commercial systems such as CAVI-Vasera VS-1000 (Fukuda Denshi, Tokyo, Japan)14 
and pOpmètre (Axelife SAS, Saint-Nicolas-de-Redon, France)15. The maxima of the first or second derivative 
have also been used since the time at which they occur is closely related to that of the wave-foot and the second 
derivative approach is used in the Complior device (Alam Medical, Vincennes, France)16 and the Vicorder 
device (Skidmore Medical, Bristol, UK)17. However, some reports have questioned the accuracy of the diastolic 
minimum and the maximum derivative methods since they are susceptible to errors in identifying the foot of 
noisy signals18–20. To overcome the above weaknesses, the intersecting tangent algorithm was proposed which 
combines the diastole minimum method and the maximum of the first derivative methods and defines the 
fiducial point as the intersection of the horizontal line passing through the minimum and the tangent to the 
pulse wave at the point of its maximum first derivative. The expert consensus document10 recommends the use 
of the intersecting tangent algorithm on the grounds that it is more repeatable. This algorithm is widely used in 
commercial equipment such as PulsePen (DiaTecne, Milan, Italy)21 and SphygmoCor (AtCor Meddical, Sydney, 
Australia)22. In 2021, Buraioli et al.23 developed a new noninvasive system (the Athos device) for clinical PWV 
assessment based on the intersecting tangent algorithm. However, Salvi et al.24 found that different devices all 
using the intersecting tangent algorithm produced various cfPWV values when measuring the same artery.

The waveform-based method is an alternative approach to the determination of PWV is based on matching 
specified segments of the waveforms from each arterial site. This avoids the problem of identifying a specific 
point such as the foot of the wave and was described by McDonald as early as 196826. A similar approach was 
described by Khir and Parker27. Recently, a modification of this this principle (termed ‘template matching’ and 
derived from image processing) has been adopted to extract repeated patterns in noisy pulse waveforms obtained 
by a non-contact optical technique (laser Doppler velocimetry), yielding promising results when applied to the 
problem of assessing signal quality and detecting artefacts34. In 2013, Vardoulis et al.25 proposed the diastolic 
patching method in which a section of the wave from one measurement site, taken from a region on either side 
of the diastolic minimum is correlated with a time-shifted window of the same length from the other measure-
ment site. In 2015, a similar algorithm based on a defined region of the waveform was proposed by Hu et al.28. 
In a study on 81 human subjects, they showed that their approach was more reliable than the intersecting tan-
gent method. Although these algorithms have good repeatability and accuracy, they do not consider whether 
and to what extent, the results are influenced by noise (i.e., robustness). Another waveform-based method is 
the cross-correlation algorithm29, which is less sensitive to noise and frequently applied to calculate the time 
delay and the similarity of two waveforms. Some studies have shown that the cross-correlation algorithm yields 
highly repeatable PWV measurements. However, the effect of differences in the waveform shape between the 
two measurement sites on the accuracy of PTT calculation is unknown30.

The tube-load model, a model-based method, has been proposed to obtain the PTT from measurement of 
pulse waveforms according to pulse wave transmission theory31,32,35–37. Such models consist of multiple parallel 
tubes with loads, which can represent the wave propagation and reflection phenomena of the arterial tree38,39. 
Each tube simulates the wave travel path between the aorta and peripheral arteries, while the load is the arterial 
bed distal to the peripheral artery. The tube-load model is often characterized by PTT, characteristic impedance, 
peripheral resistance and peripheral compliance38. The model parameters can be calculated by imposing the 
aortic and peripheral pressure waveforms as input and output of the model. PTT obtained in this way has been 

Table 1.   Summary of some methods for calculating arterial PWV.

Method Algorithm Definition Advantages Disadvantages

Point-based methods

Diastolic minimum The foot is the minimum of arterial 
pulse waveform Easy and simple to determine12 Susceptible to the noise and therefore of 

questionable accuracy12

Derivative maximum Marker point is the maximum of the first 
or second derivative Easy to calculate12,13 Underestimate the reference PWV25

Intersecting tangent
Fiducial point is the intersection of the 
first derivative maximum and a hori-
zontal line passing through the diastolic 
minimum

Less susceptible to noise19,24,26,27 Have moderate agreement compared 
with the reference PWV25

Waveform-based methods

Waveform matching
Time-shift is obtained by minimizing 
the sum of squares error between a 
defined region of proximal and distal 
sites

Estimates PWV with high precision and 
low variability25,28

Susceptible to errors when large differ-
ences occur between waveform shape at 
the two sites29

Cross- correlation
PTT is calculated by seeking the 
maximum of cross-correlation function 
between signals at two sites

Consider various frequency components 
of the pulse wave29

Effect on PTT of waveform differences 
between the two measurement sites not 
well characterized30

Model-based methods Tube-load model
PTT is a model parameter which is 
estimated from aortic and peripheral 
pulse waveforms

Effect of wave reflection can be elimi-
nated computationally31

Difficult to fully personalize model 
parameters32,33
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used to estimate PWV between the thoracic aorta and peripheral arteries40. Also, the relationship between PTT 
and blood pressure has been exploited to estimate blood pressure from proximal and distal pulse waveforms32. 
However, few studies have applied tube-load models to calculate cfPWV.

The purpose of this study is to investigate a simplified tube-load model for estimating the carotid-femoral 
pulse transit time (cfPTT) and to improve the accuracy and robustness of cfPWV measurement. Also, by com-
paring the results with several existing algorithms reported in recent years, the performance of the model is 
assessed for accuracy, repeatability, and robustness against signal noise. The contributions of this article are as 
follows. Firstly, the simplified tube-load model of arterial wave transmission and reflection is applied to calculate 
cfPWV. Secondly, considering the different direction of propagation of the carotid and femoral pulse waves, a 
dual tube and the single tube model are compared. Finally, the performance of the simplified tube-load model is 
evaluated by comparing experimental data from volunteers and numerical data generated by a one-dimensional 
(1D) arterial tree model.

Methods
Study subjects.  In this study, both experimental and numerical data were used for the evaluation of the 
proposed algorithm and comparison with others. The differences between the dual and single tube-load models 
and the accuracy analysis of the four methods were assessed using numerical data. The repeatability and robust-
ness analyses of the four methods were carried out using experimental data.

Experimental data.  57 subjects aged 30.8 ± 15.2 years (ranging in age from 21 to 78 years) were recruited. The 
experimental protocol was approved by the Ethics Committee of the Northeastern University (EC-2020B017). 
All authors confirm that the research was performed in accordance with relevant guidelines and regulations. All 
subjects gave their informed consent and their basic characteristics are summarized in Table 2. The subjects were 
asked to relax for 15 min in a quiet room after which their weight and height was measured. Systolic blood pres-
sure (SBP) and diastolic blood pressure (DBP) were measured three times using a sphygmomanometer and the 
average of the three measurements was used. Tonometric sensors SphygmoCor system (Model SCOR-Px, Atcor 
Medical, Sydney, Australia) and ECG electrodes were applied after the rest period and the carotid, femoral pulse 
wave and two-lead ECG signals were recorded using the SphymoCor PWV module.

Only the experimental data meeting the inbuilt quality control criteria (average pulse height, pulse height vari-
ation, diastolic variation, shape variation and operator index) of the SphygmoCor device were used. The operator 
index determined by its related quality control indices (built into the SphygmoCor system) is an indicator of the 
overall quality of the obtained waveform. It is calculated by assigning a weighting to the quality control indices 
(average pulse height, pulse height variation, diastolic variation and shape variation) and then adding them to 
give a number, expressed as a percentage. The higher the percentage, the higher is the quality of the waveforms 
obtained. (More details can be found in the SphymoCor XCEL operators manual41). In this study, we adopted 
the SphygmoCor quality criteria, based on the operator index value as follows: > 80%, Acceptable; 75–79%, 
Borderline; < 74%, Unacceptable. Pulse wave signals at the carotid and femoral sites were acquired sequentially, 
with simultaneous ECG recordings27,42,43.

Firstly, we put the right arm (RA) electrode of the ECG under the right clavicle, the left arm (LA) electrode 
under the left clavicle and the left leg (LL) electrode on the lower left abdomen. Finally, the pulse sensor was 
positioned on the neck over the right carotid artery. Simultaneous ECG and tonometer recordings were made 
for 30 s. Next, the pulse sensor was placed on the skin over the right femoral artery near the inguinal ligament 
and the ECG and tonometer recordings were made in the same way, again for 30 s. The ECG signals were used 
as a time reference for both recordings. The two recordings were deemed acceptable if the difference between the 
average heart rates calculated from them did not exceed 1 bpm. Three sets of valid data were collected sequentially 
by repeating the above steps three times. Finally, the straight-line distance between the carotid and femoral sites 
was measured to the nearest 2 mm with a tape over the body surface and the measured distance was corrected 
by multiplying by a factor of 0.828.

Additional signal processing involved the removal of baseline drift using the wavelet transform44 and up-
sampling of the raw signals collected at 128 Hz to 1 kHz by linear interpolation. The R peaks of the ECG signals 
were used to synchronise the carotid and femoral pulse waves, one beat at a time and the individual time delays 

Table 2.   Subject characteristics (n = 57) Mean values ± SD.

Male (n = 41) Female (n = 16)

Age (years) 31.3 ± 14.0 30.2 ± 16.8

cf-distance (cm) 64.4 ± 10.1 55.2 ± 11.2

Height (cm) 174.9 ± 5.7 164.6 ± 7.7

Weight (kg) 72.7 ± 11.0 52.2 ± 7.4

BMI (kg/m2) 23.7 ± 2.8 21.0 ± 2.4

SBP (mmHg) 128.2 ± 10.4 118.0 ± 10.1

DBP (mmHg) 74.8 ± 8.9 63.1 ± 7.8

HR (beats/min) 66.9 ± 10.0 69.7 ± 7.5
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were then averaged for all pairs of peaks obtained during the 30 s recording period. Finally, the cfPWV was 
calculated by dividing the measured distance between the two sites by the average time delay.

Numerical data.  Currently, it is difficult to obtain the reference PTT in vivo, therefore, in-vivo evaluation of 
different methods for PWV estimation is not feasible25. In many studies, in-vivo data has been used only to assess 
the reproducibility or variability of different methods for PTT estimation. However, in-vitro or in-silico arterial 
models can experimentally or numerically evaluate the accuracy of different methods for PTT estimation.

Assuming 1D models of the arterial tree can accurately simulate pulse wave propagation40,45–47, such simulated 
data can then be used to evaluate the efficacy of PTT algorithms operating on in-vivo data; and we have adopted 
this approach here. Pressure waveforms in the ascending aorta recorded in patients undergoing cardiac catheteri-
zation were used as the input to the 1D model48, more details (see Supplementary Information) of which can be 
found49–51. The model was used to generate a range of waveforms by changing its parameters (i.e., vessel radius 
and length) within the physiological range52. Given that the four algorithms in this study are all based on the 
morphology of the waveform, we used the parameters which have the greatest influence on the waveform shape.

As an example, the radii of all arteries in the model were varied in small steps (1%) around a starting value 
within a range of ± 20%25, in which the starting value was the measured radius of the subject adopted from a 
previous study49. For example, starting with a femoral artery radius of 7.9 mm, it was then varied between 6.32 
(7.9 × 80%) and 9.48 mm (7.9 × 120%), giving a total of 41 values. Figure 1a, b show the effect of changing the 
radii of the carotid and femoral arteries on their respective pulse waveforms.

cfPTT calculation algorithms.  Waveform matching.  The waveform matching or diastole patch method 
is based on a characteristic region of the arterial pulse waveform instead of a characteristic point25,28. A segment 
of the waveform is chosen as the region over which the matching is performed. This region is defined for each 
beat, as being centred on the diastolic minimum and having a duration of 2t, where t is defined as the time 
between the diastolic minimum and the maximum of the first derivative during systole. The segment from the 
proximal (in this case, carotid) waveform is shifted in time in small steps and for each step is compared to a 
region of the same time duration in the distal waveform. The cfPTT between carotid and femoral waveforms is 
taken as the time shift which gives the minimum least squares error between the two waveforms, as shown in 
Fig. 2.

Intersecting tangent.  The intersecting tangent algorithm is one of the commonly used “foot-to-foot” 
methods10,53. The algorithm locates a characteristic point, defined as the intersection of two lines on the arterial 
pulse waveform. The first is the tangent to the maximum of the first derivative of the recorded signal during the 
systolic upstroke. The second is the tangent to the minimum of the recorded signal and is therefore a horizontal 
line parallel to the x-axis. Figure 3 shows how the process is used to identify the notional foot of the wave. The 
cfPTT between the carotid and femoral waveforms is taken as the time delay between their feet and is calculated 
for each heartbeat.

Cross‑correlation.  Cross-correlation can be used to express the strength of association between two time series 
x (t) and y (t) at any two times t1 and t2

29. In this case, to start with, the correlation coefficient is calculated 
between each pair of points from the carotid (x1, x2,…,xn) and from the femoral (y1, y2,…,yn) in a window 

Figure 1.   Effect of varying the model vessel radii on the morphology of the pulse waveform: (a) Right carotid 
artery, (b) right femoral artery. 80%R, 100%R and 120%R denote the minimum, starting and maximum radius, 
respectively. The arrows indicate the effect of increasing vessel radius. The x-axis is normalised time.
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encompassing, for instance the middle 80% of the recordings from the two sites. The calculation is repeated 
between x2 and y1, x3 and y2…xn+1 and yn, in effect having shifted the femoral signal back in time by one sample 
point. The process is repeated, generating a correlation coefficient for each time shift, until a maximum is found. 
The time shift at which this maximum occurs is taken as the PTT, as shown in Figs. 4, 5.

Tube‑load model.  The tube-load model is composed of two main parts: tube and load54. It is assumed that the 
artery between the two measurement locations is a straight uniform tube, vessel curvature being ignored. It is 
also assumed that there is no energy dissipation along its length and therefore that there is no decay of the pulse 
wave within the tube. The system load mimics the load of all the small branches and micro-vessels47,55. The arte-
rial system is described as a parallel connection of m such uniform and lossless tubes with terminal loads42,56, as 
shown in Fig. 6. The wave travel path between the aorta and the i th peripheral artery is referred to as the i th tube 
(i = 1,…, m). Since the tube is lossless, each tube has constant characteristic impedance, as defined in (Eq. 1). 
The wave propagation time in the i th tube, Tdi from the aorta to the i th peripheral artery is given by (Eq. 2). 
The three-element Windkessel model, including characteristic impedance Zci, resistance Ri and compliance Ci, 
is used as the terminal load ZL Each pressure wave is considered as the summation of a forward and backward 
travelling component, the latter of which is due to reflections at the terminal load with a wave reflection coef-
ficient, Γi, for each tube, as defined in (Eq. 3).

Figure 2.   Graphical representation of the waveform matching method.

Figure 3.   Graphical representation of the intersecting tangent method. The intersection point is taken as the 
fiducial point for determining PTT.
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where ρ, Li, Ai, and Ci represent the blood density, length, area, and compliance of the i th tube, respectively.
The transfer function between the aortic and peripheral arterial sites based on the tube-load model is estab-

lished, as shown in Fig. 7. All model parameters (Tdi, RiCi, and ZciCi) are estimated by fitting the aortic Pa(t) 
and peripheral Ppi(t) pressure waveforms as input and output of the tube-load model. A nonlinear least squares 

(1)Zci =

√

ρLi

AiCi

(2)Tci =

√

ρLiCi

Ai

(3)Ŵi(w) =
ZLi(w)− Zci

ZLi(w)+ Zci
=

RiCi

RiCi + 2ZiCi + jw2RiCiZciCi

Figure 4.   Graphical representation of the cross-correlation method showing its effect on a single heart beat: (a) 
the original carotid and femoral waveforms; (b) the femoral waveform having been shifted back in time by an 
amount determined by the maximum cross-correlation coefficient.

Figure 5.   The cross-correlation coefficient against time shift.
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optimization method is applied to globally search for the optimal solution within the physiological range of each 
parameter. PTT from the aortic to peripheral arterial sites is obtained from the model parameter Tdi. PWV is 
calculated by dividing the distance Li between proximal and distal arterial sites by PTT.

Both the carotid and femoral arteries originate from the aorta; thus, it is reasonable to establish parallel dual 
tube models (ac-afTube). One tube represents the conduit from the aorta to the carotid artery (acTube) and the 
other, from the aorta to the femoral artery (afTube), as shown in Fig. 8. The pulse transit time from the aorta to 
the carotid arteries (acPTT) is calculated by fitting the aortic Pa(t) and carotid Pc(t) pressure waveforms. Similarly, 
the PTT from the aorta to the femoral arteries (afPTT) is calculated by fitting the aortic Pa(t) and femoral Pf(t) 
pressure waveforms. The difference between afPTT and acPTT (see Eq. 4) is the time delay between the carotid 
and femoral pulse waves, i.e., ac-afPTT. The ac-afPWV is calculated by dividing the distance between the carotid 
and femoral arterial sites with ac-afPTT.

Directly establishing a single tube model between the carotid and femoral arteries (cfTube) is a simplification 
of the above parallel dual tube model, although it is obviously not truly representative of the arterial system. 
Nevertheless, this simplified single tube model may be workable because the cfPWV is often considered as a 
substitute for the aortic PWV, given that the carotid artery pressure is a reasonable approximation of the aortic 
pressure. In the simplified model, Fig. 9, a single tube represents the passage from a carotid to a femoral artery. 
The PTT between the carotid and femoral arteries (cfPTT) is then obtained by fitting the carotid Pc(t) and femoral 
Pf(t) pressure waveforms and the cfPWV is calculated by dividing the distance between the carotid and femoral 
arterial sites by cfPTT.

Assessment of cfPWV calculation algorithms.  The performance of the dual and single tube models 
was compared using the aortic, carotid and femoral pressure waveforms generated from the 1D model, which 
established that the two models gave similar results, the single tube model was then compared with the three 

(4)ac − afPTT =

∣

∣afPTT − acPTT
∣

∣

Figure 6.   Arterial tube-load model for estimating PTT from the aorta to peripheral arteries. The i th tube 
(i = 1,…, m) represents the wave travel path between the aorta and the i th peripheral artery. The terminal load 
ZLi consists of characteristic impedance Zci, resistance Ri and compliance Ci. The PTT and the travel distance 
between the aortic Pa(t) and peripheral Ppi(t) pressure waveforms are defined as the time delay Tdi and the vessel 
length Li, respectively. Tdm, Lm and Ppm(t) represent the time delay, vessel length and peripheral pressure in the 
m th tube, respectively. Zcm, Cm and Rm represent the characteristic impedance, compliance and resistance in the 
mth terminal load, respectively.

Figure 7.   The transfer function between the aortic and peripheral pressure waveforms.
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existing methods described above, i.e., intersecting tangent, cross-correlation, and waveform matching. The 
evaluation analysis was carried out by comparing the repeatability, accuracy, and robustness of each method. The 
accuracy analysis was performed using carotid and femoral pressure waveforms from the 1D model while the in-
vivo measured carotid and femoral pressure waveforms were used for the repeatability and robustness analysis.

Comparison of dual and single tube‑load models.  To determine if the cfPWV values obtained from the parallel 
dual tube-load model differed from those derived from the simplified single tube-load model, 1D simulation 
data were used. The aortic, carotid, and femoral pressure waveforms generated from the 1D model were used for 
the cfPWV calculation of the dual tube-load model. The dual tube-load model parameters (Zc1, Zc2, C1, C2, R1, 
R2, acPTT, afPTT) were estimated from the aortic, carotid, and femoral pressure waveforms generated from the 
1D model using the system identification method. Similarly, the same carotid and femoral pressure waveforms 
of the 1D model were used for the cfPWV calculation of the single tube-load model. The single tube-load model 
parameters (Zc, C, R, cfPTT) were estimated from the carotid and femoral pressure waveforms using the system 
identification method. The agreement of the cfPWV values between the dual and single tube-load models was 
assessed by Bland–Altman analysis.

Repeatability analysis.  Repeatability refers to the degree of similarity in the results obtained from successive 
measurements on the same subject under the same conditions. In this study, the intra-class correlation coef-
ficient (ICC), a means of measuring and quantifying inter-observer and retest reliability57, was used to evaluate 
the repeatability of the four algorithms. The ICC is taken as the individual variability divided by the total vari-
ability to give a reliability coefficient. It is generally accepted that a value lower than 0.4 indicates poor reliability, 
and a value greater than 0.75 indicates good reliability57. In this study, the same operator collected three sets of 
data with duration of 30 s for each subject with a minimal delay between each run. Based on the three repeated 
measurements for each subject, the repeatability of the cfPWV calculated by the four algorithms was assessed. 
The in-vivo recordings of the carotid and femoral pressure pulse waves were used for the repeatability analysis.

Accuracy analysis.  The accuracy analyses of the four algorithms were carried out using the carotid and femoral 
pressure pulse waves from the 1D model. A Bland–Altman plot was used to assess the agreement between the 
reference cfPWV value obtained from the 1D model and the cfPWV value calculated by the four algorithms. 
Additionally, the absolute differences between the reference cfPWV value and the cfPWV value of the four algo-
rithms were expressed as mean ± SD.

Figure 8.   Parallel dual tube-load model for estimating PTT from the aorta to carotid and femoral arteries. The 
first tube represents the travel path between the aorta and carotid arteries. The second tube represents the travel 
path between the aorta and femoral arteries. The acPTT and vessel length Lac represent the time delay and travel 
distance between the aortic Pa(t) and carotid Pc(t) pressure waveforms, respectively. The afPTT and vessel length 
Laf represent the time delay and travel distance between the aortic Pa(t) and femoral Pf(t) pressure waveforms, 
respectively.

Figure 9.   Simplified single tube-load model for estimating PTT from the carotid to femoral arteries. The tube 
represents the travel path between the carotid and femoral arteries. The cfPTT and vessel length Lcf represent the 
time delay and travel distance between the carotid Pc(t) and femoral Pf(t) pressure waveforms, respectively.
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Robustness analysis.  Here, robustness, refers to the ability of the four algorithms to calculate cfPWV in the face 
of interference (in this case signal noise). Gaussian white noise was added to the in-vivo pulse wave signals42, 
to give signal-to-noise ratios (SNRs) of 20, 15, 10 and 5 (dB). The measured pulse wave signal was de-noised 
using the wavelet transform and this de-noised signal was considered as being effectively noiseless. The absolute 
errors between the noiseless and pulse wave signals with added noise were used to assess the robustness of each 
algorithm. The absolute errors of each SNR for the four algorithms were expressed in the form of bar-plots. 
Robustness analysis of the four algorithms was carried out using the carotid and femoral pressure pulse waves 
recorded in vivo.

Statistical analysis.  The results are expressed as mean ± SD. Bland–Altman plots were used to examine 
the agreement of the cfPWV values between the dual and single tube-load models. The agreement between the 
reference cfPWV by 1D model and estimated cfPWV by each algorithm was also assessed by Bland–Altman 
plots. Differences between the absolute errors of the various SNRs for each algorithm were assessed using the 
multi-sample non-parametric Friedman test. A linear regression analysis on the difference against the average 
cfPWV for the four algorithms was carried out. P < 0.05 was considered statistically significant. All statistical 
analysis was performed in SPSS Statistics 25 (IBM Corp., Armonk, NY, USA).

Results
Comparison of dual and single tube‑load models.  The results of the ac-afPWV and cfPWV estima-
tions from the parallel dual and simplified single tube-load models using the aortic, carotid and femoral pressure 
pulse waves from the 1D model are summarized in Table 3, and their comparison is shown as a Bland–Altman 
plot in Fig. 10. Table 3 shows that the ac-afPWV and cfPWV values from the two models are close (mean differ-
ence, 0.07 ms−1 and standard deviation, 0.05 ms−1). In Fig. 10, it is notable that most of the cfPWV values of the 
two models fall within the 95% confidence intervals and that the mean cfPWV difference is less than 0.1 ms−1, 
confirming that the two models are in good agreement.

Repeatability analysis.  The results of the repeatability analysis for the four methods using the experimen-
tally measured carotid and femoral pulse waveforms are summarized in Table 4. Although all four algorithms 
yielded highly repeatable results, the tube-load model gave the best performance (ICC = 0.99), followed by the 
waveform matching (ICC = 0.98), the cross-correlation (ICC = 0.95) and the intersecting tangent (ICC = 0.93) 
methods. Note that the mean values of cfPWV calculated by the four algorithms are different, ranging from 6.70 
to 7.61 ms−1.

Table 3.   Comparison of the single and dual tube models using the 1D model data. The central aortic pressure 
waveform of a single subject served as the input for running the simulation of the 1D model. The 41 groups 
of aortic, carotid and femoral pressure waveforms generated by changing the model parameters within the 
physiological range were used for calculating the means and SDs of PWV.

Tube-load model Mean (ms−1) SD (ms−1)

cfPWV (single tube) 7.29 0.31

ac-afPWV (dual tubes) 7.36 0.36

Figure 10.   Bland–Altman comparison of ac-afPWV and cfPWV using the aortic, carotid and femoral pressure 
pulse waves from the 1D model.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5147  | https://doi.org/10.1038/s41598-022-09256-z

www.nature.com/scientificreports/

Accuracy analysis.  Mean differences (± SDs) between the cfPWV values obtained by the 1D model and 
each of the four methods for deriving them using the carotid and femoral pressure pulse waves from the 1D 
model are shown in Table 5. In all cases, the deviation between the algorithms and the model was less than 
1.8 ms−1, with the tube-load estimation giving much the closest value to the 1D model. From the Bland–Altman 
plots of Fig. 11, it is notable that for each algorithm, the majority of the cfPWV values fall within the 95% con-
fidence intervals of the mean differences.

Table 4.   The repeatability analysis for the four algorithms using the experimentally measured carotid and 
femoral pulse waveforms.

Algorithm Mean (ms−1) SD (ms−1) ICC

Waveform matching 6.48 0.83 0.98

Intersecting tangent 6.70 0.74 0.93

Cross-correlation 7.61 1.51 0.95

Tube-load model 7.38 0.50 0.99

Table 5.   Differences between the reference cfPWV given by the 1D model and estimated cfPWV of each 
algorithm using the carotid and femoral pressure pulse waves from the 1D model.

Algorithm Mean (ms−1) SD (ms−1)

Waveform matching − 0.98 0.06

Intersecting tangent − 1.15 0.07

Cross-correlation 1.76 0.23

Tube-load model − 0.13 0.06

Figure 11.   Bland–Altman comparisons of the reference cfPWV from the 1D model and the estimated cfPWV 
values of the four algorithms operating on the carotid and femoral pressure pulse waves from the 1D model: (a) 
Waveform matching; (b) Intersecting tangent; (c) Cross-correlation; (d) Tube-load model. The red dotted lines 
represent ± 1.96 standard deviation; the black solid line represents the mean difference.
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Robustness analysis.  Figure 12 shows the performance of the four algorithms on data containing different 
levels of noise using the experimentally measured carotid and femoral pulse waveforms. In general, the wave-
form matching method showed the poorest noise tolerance whatever the SNR, whereas the tube-load model and 
cross-correlation methods were more robust than the two other methods in the face of added noise. It is notable 
that tube-load model and cross-correlation methods are similarly robust.

Table 6 summarizes the mean difference (± SD) between cfPWV values of the noiseless signal and the signal 
with added noise over four SNRs for each method using the experimentally measured carotid and femoral pulse 
waveforms. The tube-load model method shows the smallest mean difference and SD. The waveform matching 
method has the biggest mean difference and the intersecting tangent method has the biggest SD. It is notable 
that the P values of the four algorithms (derived from the multi-sample non-parametric Friedman test) are all 
less than 0.001, which shows that there are significant differences between cfPWV values of the noiseless signal 
and the signal with added noise over the four SNRs for each algorithm.

The analysis of the repeatability, accuracy, and robustness of the four algorithms is summarized in Table 7. 
Repeatability and robustness analysis were performed using the experimentally measured carotid and femoral 
pulse waveforms. Accuracy analysis was carried out using the carotid and femoral pressure pulse waves from the 
1D model. It is notable that the repeatability, accuracy, and robustness of cfPWV calculated by tube-load model 
algorithm are better than those derived from the other algorithms.

Figure 12.   The effect of noise added to the experimentally measured carotid and femoral pulse waveforms on 
cfPWV calculated by each algorithm: (a) SNR = 20; (b) SNR = 15; (c) SNR = 10; (d) SNR = 5. WM, IT, CC and 
TL represent the waveform matching, intersecting tangent, cross-correlation and tube-load model methods, 
respectively.

Table 6.   The mean difference between cfPWV values of the noiseless signal and the signal with added noise 
over the four levels of added noise for each algorithm using the experimentally measured carotid and femoral 
pulse waveforms. P < 0.001 indicates significant difference between cfPWV values of the noiseless signal and 
the signal with added noise over the different SNRs for each algorithm using the multi-sample non-parametric 
Friedman test.

Algorithm Mean (ms−1) SD (ms−1) P value

Waveform matching 0.50 0.08 P < 0.001

Intersecting tangent 0.24 0.16 P < 0.001

Cross-correlation 0.08 0.07 P < 0.001

Tube-load model 0.07 0.05 P < 0.001
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Discussion
In this study, we have compared several current methods for determining cfPWV in terms of repeatability and 
robustness using the carotid and femoral pulse waves measured in vivo and, in terms of accuracy, using carotid 
and femoral pulse waves generated from a 1D model. It was found that these existing methods can estimate 
cfPWV values, with varying degrees of accuracy, to within 86.8% of the reference value. With the aim of improv-
ing upon these existing methods we have proposed a simplified single tube-load model. The results show that 
the proposed approach has good repeatability, accuracy and robustness when compared to the other methods 
of cfPWV calculation investigated here (see Table 7).

Four studies were carried out using both experimental and numerical data. The two sets of data do not 
conflict but are complementary. We used numerical data to evaluate the difference between the dual and single 
tube-load models and the accuracy of the four cfPWV calculation methods. Experimental data were used to 
evaluate the repeatability and robustness analyses of these methods. This is because the PTT value in vivo cannot 
yet be obtained accurately. As others have found, there are substantial differences in PWV values calculated by 
the different methods8,25,46. Although, in-vivo evaluation of the accuracy of cfPWV calculation is not feasible, a 
1D arterial model of known vascular properties can be used to derive the true PWV analytically. Thus, in this 
study, numerical data were used to evaluate the difference between the two tube-load models and the accuracy 
of the four methods while at the same time the repeatability and robustness of these methods was evaluated.

The SphygmoCor system can be used to acquire signals simultaneously from two tonometric sensors. How-
ever, for this study, only one was available, so the pressure waveforms at each site were acquired sequentially. 
Although not ideal, this approach is commonly used22,58,59. To determine the cfPTT, two steps are required. The 
first is to simultaneously acquire the carotid pressure waveform and the ECG; and the second is the simultane-
ous acquisition of the femoral pressure waveform and ECG. In this way the ECG is used to synchronize the 
carotid and femoral pulse waves. A limitation of this approach is that the transit time may be influenced by heart 
rate differences between the two recordings resulting in errors. To minimize such errors, in this study the two 
recordings were considered acceptable only when the difference between the average heart rates calculated from 
them did not exceed 1 bpm. An ideal model of pulse wave propagation in the vascular system should include all 
vessels in the pathway under investigation. In this study, the aorta, carotid, and femoral arteries are involved so 
a dual parallel tube model, requiring the pressure waveforms from sites in these three vessels is a good starting 
point. However, since an accurate rendition of the aortic pressure waveform requires invasive measurements 
undergoing cardiac catheterization, a model based on a single tube (e.g., a notional carotid-femoral artery) 
needs only the carotid and femoral pressure waveforms, which can be obtained non-invasively, for instance by 
tonometry, and thus the aortic wave can be dispensed with. Here, using simulated input data, we have compared 
the outputs of the single and dual tube models and showed that they yield cfPWV values which agree closely 
(Table 3 and Fig. 10). We conclude therefore, that the simplified single tube model is an effective substitute for 
its more realistic dual tube counterpart.

In Fig. 10, there is a linear tendency for the difference between the ac-afPWV (parallel dual tube-load model) 
and cfPWV (simplified single tube-load model) estimations to increase as their average increases. A linear regres-
sion analysis gave the following relationship (y = − 1.09 + 0.16x, P < 0.05), showing that the difference between 
the ac-afPWV and cfPWV values increased significantly with the average of two values. Apart from speculating 
that the error arises because acPTT is calculated by fitting the aortic and carotid waveforms and afPTT by fitting 
the aortic and femoral waveforms, whereas the cfPTT is derived by fitting the carotid and femoral waves, (i.e. 
involving possible distance errors affecting the PWV values), we cannot offer a plausible explanation for this.

The cross-correlation (7.61 ms−1) and tube-load model (7.38 ms−1) methods gave higher estimates of PWV 
than the waveform matching (6.48 ms−1) and intersecting tangent (6.70 ms−1) methods as shown in Table 4. Var-
doulis et al.20 reported similar findings. Table 4 also shows that the waveform matching and tube-load model had 
high repeatability, with ICC values of 0.98 and 0.99, respectively; whereas the intersecting tangent (ICC = 0.93) 
and cross-correlation (ICC = 0.94) methods had lower, although still good, repeatability. Whatever signal pro-
cessing method is adopted, repeatability analysis, when used as a measure of reliability, implicitly assumes that 
the physiological state of the subject does not change between one set of measurements and the next. For this 
reason, it is generally found that measures of repeatability decrease with the time over which repeatability is 
assessed60,61. In this study, the repeatability was investigated over a period of minutes, thus the repeatability of all 
analysis methods was high. We note, though, that the tube-load model has the best performance. The margin-
ally inferior performance of the intersecting tangent method may be ascribed to its reliance on a single fiducial 

Table 7.   Summary of the performance of four methods. Repeatability and robustness analyses were 
performed using the experimentally measured carotid and femoral pulse waveforms. Accuracy analysis was 
carried out using the carotid and femoral pressure pulse waves from the 1D model.

Algorithm

Repeatability Accuracy Robustness

ICC Mean (ms−1) SD (ms−1)

Waveform matching 0.98 − 0.98 0.06

Intersecting tangent 0.93 − 1.15 0.07

Cross-correlation 0.95 1.76 0.23

Tube-load model 0.99 − 0.13 0.06
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point and that of the cross correlation, to the inherent problem of seeking a correlation between waveforms of 
different shape. It is notable that there is a linear tendency for the difference between the calculated methods and 
1D model to increase with increasing cfPWV in Fig. 11c (cross correlation) and (d) (tube-load model), but not 
in Fig. 11a (waveform matching) and (b) (intersecting tangent). A regression analysis on the difference against 
the average cfPWV showed that the relationship was significant for the cross-correlation and tube-load model 
methods (cross-correlation: y = − 3.45 + 0.63x, P < 0.05; tube-load model: y = − 2.01 + 0.26x, P < 0.05), signifying 
that the difference between the reference and measured values increased with their average value. This may be 
due to reflections of the pulse wave. These reflection effects are expected to be smaller in the waveform match-
ing and intersecting tangent methods because the position of the wave foot is determined primarily by the high 
frequency components of the wave and these high frequencies are less affected by reflections because they are 
more strongly attenuated by viscous damping than the lower frequencies62.

The waveform matching and intersecting tangent methods were more susceptible to noise than the cross 
correlation and tube-load model methods. Not surprisingly, these disparities suggest that, in addition to the 
timing of the pulses, the shape of the waveform will affect the measured PWV values. Similarly, the cfPWV 
calculation methods which rely on identifying a single point (intersecting tangent) and aligning sections of the 
pulse (waveform matching) rather than using entire pulses (cross correlation and tube-load model), are more 
sensitive to noise. Additionally, the tube-load model is based on a theory of the propagation and reflection of 
pulse waves. We can robustly obtain the cfPWV values even if the pulse waveforms are contaminated with noise 
(see Fig. 12 and Table 6).

The SD is larger than its mean in all 4 panels of Fig. 12, for the following possible reason. Gaussian white noise 
was added to the in-vivo pulse wave signals to assess the robustness of each algorithm. This follows a Gaussian 
distribution in amplitude and a uniform distribution in power spectral density63,64. Due to its random nature, the 
effect of the added noise on the cfPWV calculation is uncertain. In some subjects, this can lead to large absolute 
errors in cfPWV, which will result in comparatively large SDs. However, the overall mean is not greatly affected 
since there are only few large absolute errors and these large errors tend to be counterbalanced by comparable 
numbers of small values. Essentially, a large SD can result from the addition of a few outliers, whereas the overall 
mean would be largely unaffected.

Limitations
There are several limitations to this study. The accuracy analyses of the four methods for calculating cfPWV 
and the difference between single and dual tube-load models were tested against the numerical data from a 1D 
model to avoid the practical difficulties of measuring reference cfPWV values. Inevitably, the numerical data 
used here will not fully reflect the properties of the real cardiovascular system, possibly leading to errors when 
evaluating all the algorithms. In all experiments, the carotid and femoral waveforms were measured sequentially 
with simultaneous ECG recordings for synchronization. Although the sequential measurements could lead to 
errors in the cfPTT estimation, analysis was performed only on signals in which the heart rate difference between 
the two sequential recording periods was less than 1 b.p.m. Nevertheless, when using the R peaks of ECG to 
align the carotid and femoral waveforms, there were some time differences between the two recordings due to 
short-term heart rate variability. In future work, we aim to record pulse signals from two sites simultaneously.

Conclusion
In this study, we have applied a simplified single tube-load model to estimate cfPTT and therefore cfPWV. We 
found that the dual and single tube-load models gave consistent results, thus demonstrating that the single tube-
load model can be used in place of the dual tube version with no loss of accuracy. Following this, the repeatability, 
accuracy, and robustness of four algorithms for calculating cfPWV were evaluated. For the cfPWV calculation, 
the simplified tube-load model had better repeatability (ICC: 0.985) than the other methods. The tube-load model 
method showed the highest accuracy when compared to the calculated reference value (deviation: 0.13 ms−1). For 
various signal-to-noise ratios, the tube-load model method was more robust than the existing methods. There-
fore, it can be concluded that the overall performance of the tube-load model is superior to that of other methods 
assessed. The simplified single tube-load model can accurately and robustly provide a non-invasive approach to 
the measurement of cfPWV. In a future study we will investigate how well the method works when applied to 
signals obtained from a diverse range of subjects. The ideal way to evaluate any approach to the measurement of 
cfPWV is to test it against invasive measurements. In the absence of such a test, repeatability and resistance to 
noise are the most clinically useful way of judging the efficacy of any method.
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