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a b s t r a c t

The cell cultivation process in a bioreactor is a high-value manufacturing process that requires excessive
monitoring and control compatibility. The specific cell growth rate is a crucial parameter that describes
the online quality of the cultivation process. Most methods and algorithms developed for online estima-
tions of the specific growth rate controls in batch and fed-batch microbial cultivation processes rely on
biomass growthmodels. In this paper, we present a soft sensor – a specific growth rate estimator that does
not require a particular bioprocess model. The approach for online estimation of the specific growth rate is
based on an online measurement of the oxygen uptake rate. The feasibility of the estimator developed in
this study was determined in two ways. First, we used numerical simulations on a virtual platform, where
the cell culture processes were theoretically modeled. Next, we performed experimental validation based
on laboratory-scale (7, 12, 15 L) bioreactor experiments with three different Escherichia coli BL21 cell
strains.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Currently, the production of therapeutic proteins, drugs, and
vaccines to treat diseases has been carried out in large-scale indus-
trial bioreactors [1]. The cultivation processes in large-scale reac-
tors are high-value manufacturing processes in which failure is
intolerable. Moreover, the efficiency of these processes must be
high and not compromised by their control simplicity. Monitoring
and control algorithms with feedback signals are necessary to
reduce errors and increase the efficiency of biotechnological pro-
cesses [2]. The real-timemonitoring and controlling tools for main-
taining production processes within certain boundaries [3] will
eventually become mandatory in upstream and downstream
development, scale-up and scale-down reiterations, and contract
development and manufacturing organization technology transfer
services.

In microbial cultivation processes, specifically with recombi-
nant Escherichia coli, one essential procedure is to monitor and con-
trol the growth characteristics of the culture. The specific growth
rate (SGR) is an essential cultivation process variable because it
represents a characteristic of the physiological state of the cell cul-
ture. The SGR is also related to the biosynthesis of the target pro-
duct [4,5]. In addition, the quality of the desired product and the
entire cultivation process can be defined by the specific growth
rate of the biomass [6–8]. The SGR value can be obtained in two
ways. The first method for calculating the SGR was based on the
rate of change in the dry biomass samples. This procedure can take
several hours or days. Hence, this method cannot be used as feed-
back for a control system. The second method to acquire the SGR is
to use soft sensors, that is, estimating the SGR value by using other
measurable online parameters such as the oxygen uptake rate.
Such a calculation approach of SGR provides real-time values that
serve as feedback to the control system.

This study explores the development of a specific growth rate
estimator based on the stoichiometric parameters (more specifi-
cally, on the single ratio of those parameters) of the cell culture
and oxygen uptake rate signal. Kinetics information does not vary
and does not depend on the environment or other growth process
conditions. Thus, constant stoichiometric parameters serve as
inputs for the SGR estimator. Furthermore, the constant coeffi-
cients a define the oxygen demand for biomass growth, and the
maintenance term b relates to the oxygen consumption by the bio-
mass. Consequently, the off-gas analyzer’s oxygen uptake rate
(OUR) signal is beneficial for determining the specific growth rate.

Section 2 reviews the literature related to this study. Section 3
describes the materials, strains, and operating conditions of the
bioreactor system. Section 4 outlines the developmental path of
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the SGR estimation algorithm. Section 5 provides an investigation
of the SGR estimator’s performance, detailing the estimator’s
advantages, and estimation results. The final section, Conclusions,
discusses the results, and provides the final statements of this
study.
Fig. 1. Principal scheme of the SGR control system.
2. Related work

Many important cultivation process variables, such as SGR and
biomass concentrations, cannot be directly measured in real time
because biotechnology processes have complex relationships
between the processes and variables. The best way to express
unmeasurable parameters in real time is to use appropriate soft
sensors/estimators [9].

One of the attractive ways to estimate SGR is the direct use of
biomass concentration measurements. However, this approach
faces difficulties in online measurements of biomass concentration,
which is a challenging state variable to measure accurately in a liq-
uid culture [10] noninvasively when various cultivation conditions
are to be tested online. This is particularly true for non-stationary
processes at the upstream bioprocess development stage. A dielec-
tric spectrometer was used to estimate the biomass concentration
and implement an observer-based estimator of the SGR [11]. How-
ever, the developed estimation algorithm requires an accurate tun-
ing of the estimator parameters. Moreover, oscillations and
instability in estimator performance occur at low biomass concen-
trations. An SGR estimation approach using biomass concentration
measurements obtained through dielectric spectroscopy was pre-
sented in [12]. However, the calculated SGR values suffered from
biomass measurement uncertainty, which could be reduced by
increasing the observation window. However, a large observation
window increased the SGR signal delay.

Because online analyzers of biomass concentration are often
unavailable or not sufficiently reliable, the SGR needs to be esti-
mated through directly measurable variables, such as the substrate
consumption, oxygen uptake rate, carbon dioxide production rate,
and base consumption rate [7,10]. For example, the successful
implementation of unscented Kalman filters (UKF) combined with
an artificial neural network for estimating the SGR based on cumu-
lative oxygen consumption and carbon dioxide production mea-
surements was reported by Simutis and Lübbert [13]. An
advanced Kalman filter (EKF) is also suitable for SGR and biomass
concentration estimations, where the oxygen uptake rate is one
of the input signals [14,15].

Rocha et al. [6] presented a biomass observer that involved the
development of an SGR estimator for the fed-batch bioprocess of
recombinant E. coli, for which online measurements of the dis-
solved oxygen, oxygen transfer rate, and culture weights were
used. The observer and estimator algorithms are based on the
asymptotic observer approach, a mathematical model, and the
assumption that the model parameters are known. The develop-
ment of a complex SGR estimation algorithm requires specific
knowledge and is a time-consuming task. For example, SGR esti-
mation, data-driven models such as artificial neural networks
(ANNs), and hybrid models can be employed, especially in indus-
trial processes. A large amount of data can be used to train and val-
idate ANN-based models [16,17]. However, the ANN and hybrid
model approaches entail considerable performance trade-offs and
design costs to select proper experimental data and training for
ANNs. In addition, each ANN-based estimator applies only to a
specific cultivation process. Therefore, the complex approaches
that result in complex algorithms are not attractive for developing
robust SGR estimators for industrial applications.

In this study, we developed a robust and straightforward esti-
mator of cell biomass SGR in batch and fed-batch cultivation pro-
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cesses based on online estimates of the oxygen uptake rate. The
algorithm is simple because it requires only two inputs: the OUR
and a tuning parameter that uses the stoichiometric parameter
ratio. The reliability and simplicity of the SGR estimator make it
easy to implement it into the control system as feedback (1).
3. Materials and methods

3.1. Medium and culture conditions

In this work, due to data availability, three types of Escherichia
coli cell-strain cultivation data were studied to verify the SGR esti-
mates and determine their reliability and versatility. The E. coli
BL21(DE3) pET9a-IdeS, E. coli BL21 (DE3) pET21-IFN-alfa-5,
and E. coli BL21(DE3) pLysS were chosen as the study subjects. All
three cell strains were cultivated in several independent R&D
laboratories.

The cell strain of E. coli BL21 (DE3) pET21-IFN-alfa-5 was culti-
vated in a 7 L bioreactor. The cultivation medium featured minimal
mineral concentrations, including 46.55 g potassium dihydrogen
phosphate, 14 g ammonium phosphate dibasic, 5.6 g citric acid
monohydrate, 3 ml of concentrated antifoam, 35 g magnesium sul-
fate heptahydrate, and 105 g D (+) glucose monohydrate. The initial
weight of themediumwas 3.7 kg. The environmental parameters of
the cultivation process remained constant throughout the experi-
ment. The temperature was set to 37 �C, the DOT was set to 20% of
air saturation, and the pH was maintained at pH 6.8 through the
addition of NaOH(aq). The stirrer speed ranged from 800 to
1200 rpm. The airflow scope ranged from 1.75 to 3.75 L/min. During
the cultivation process, pure oxygen flow from 0 to 7.5 L/min was
used to increase the oxygen transfer rate in the bioreactor.

E. coli BL21 (DE3) pET9a-IdeS cell strain was cultivated in a 15 L
bioreactor. The cultivation medium was introduced according to
the minimum requirements of a mineral medium. During the cul-
tivation process, the environmental parameters were as follows:
temperature, 37 �C; DOT, 30% of air saturation; and pH maintained
at 6.98 via the addition of NaOH(aq). The stirrer speed ranged from
300 to 750 rpm. The operating airflow range ranged from 0.3 to 15
L/min. Pure oxygen flow was provided to the bioreactor during the
cultivation process from 0 to 7.5 L/min. During cultivation of the
E. coli BL21 (DE3) pET21-IFN-alfa-5 and E. coli BL21 (DE3) pET9a-
IdeS cell strains. During the E. coli BL21 (DE3) pET21-IFN-alfa-5
and E. coli BL21 (DE3) pET9a-IdeS cell cultivation processes, the
oxygen concentration in the off-gas from the bioreactor was mea-
sured online using a BlueSens BlueInOne Ferm gas analyzer, which
had a measuring range from 0 to 100%.

The E. coli (BL21(DE3) pLysS) cell strain was cultivated in min-
imal mineral medium. This medium was composed of (NH4)2SO4,



Fig. 2. Block scheme of the SGR estimation algorithm (z�1 is the backward-shift
operator, Dt is the sampling time, and n is the number time discretization point).
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2.46 g/L; NH4Cl, 0.5 g/L; NaH2PO4 � H2O, 3.6 g/L; Na2SO4, 2 g/L;
K2HPO4, 14.6 g/L; (NH4)2-citrate, 1 g/L; 1 M MgSO4 solution,
5 mL/L; trace element solution, 2 mL/L; and no glucose. The initial
mass of all cultivations was 5 kg. The pH was kept constant at pH 7,
and the temperature was set to 30 �C. DO was set to 30% saturation.
The bioreactor had a working volume of 15 L (Biostat C, Sartorius
Stedim Biotech), and the stirrer speed varied from 100 to
1400 rpm. The oxygen uptake rate, OUR, was measured online with
a paramagnetic oxygen sensor placed in the reactor’s vent line
behind the offgas cooler (Sidor, Sick-Maihak, Hamburg).

4. Development of the SGR estimation algorithm

Cells are living organisms that breathe and consume food (glu-
cose), so respiratory data can express the state of the cell culture
in the bioreactor. The higher the biomass content, the more evident
is the respiration data. The main parameters of respiratory data are
the oxygen uptake rate (OUR) and carbon dioxide production rate
(CPR). In this study, the algorithm for the online estimation of SGR
during microbial cultivation processes relies upon reasonable esti-
mates of theOUR, as theOUR signal is less sensitive to cellularmeta-
bolism and other negative cell growth phenomena than the CPR
signal. The oxygen uptake rate can be calculated online from the dif-
ference between the oxygen concentration entering the bioreactor
and the oxygen concentration leaving the bioreactor [18,19]:

OURðtÞ ¼ Q � ðOin
2 � Oout

2 Þ; ð1Þ

where Oin
2 and Oout

2 are the oxygen concentrations at the inlet and
outlet gas streams, and Q is the gas flow rate. The relationship
between the OUR and biomass growth in microbial cultures can
be modeled using Luedeking/Piret-type relationships [20,21]:

OURðtÞ ¼ a � X0ðtÞ þ b � XðtÞ; ð2Þ

dX
dt

¼ l � XðtÞ; ð3Þ

where X is the amount of cell biomass in the bioreactor, l is the
SGR, t is time, and a and b are stoichiometry parameters.

The stoichiometric coefficients a and b define the cell metabo-
lism of oxygen consumption. Stoichiometry means that the same
cell strain has the same coefficients or forms. In Eq. (2), the coeffi-
cient a describes a specific cell’s oxygen consumption yield
(a � YO2=X) for growth, while b is a coefficient representing the oxy-
gen consumption for maintenance (b � mO2=X) [22,23,7].

Taking the derivative of Eq. (2) with respect to time and com-
bining it with Eq. (3), we obtain:

dOURðtÞ
dt

¼ a � dl
dt

� XðtÞ þ OURðtÞ � l: ð4Þ

Eq. (4) can then be reconstructed to eliminate the biomass
parameter X to make the algorithm dependent only on OUR and
stoichiometry:

1
OURðtÞ �

dOURðtÞ
dt

¼ 1
lþ b=a

� dl
dt

þ l: ð5Þ

Parameter R denotes the dynamics of oxygen consumption:

R ¼ 1
OURðtÞ �

dOURðtÞ
dt

: ð6Þ

The differential equation can then be used to represent the
dynamic relationship between the SGR values l and R:

1
lþ b=a

� dl
dt

þ l ¼ R: ð7Þ

One can also use the first-order transfer function:
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Gl=RðsÞ ¼ 1
Tsþ 1

; ð8Þ

where s is the Laplace variable, and T is the time constant related to
the SGR.

T ¼ 1
lþ b=a

: ð9Þ

The dynamic relationship between OUR and R is defined by the
differentiator transfer function

GR=OURðsÞ ¼ ks; ð10Þ

where k ¼ 1=OUR. The resulting transfer function relating the OUR
to the SGR is as follows:

Gl=OURðsÞ ¼ ks
Tsþ 1

: ð11Þ

The discrete OUR measurement-based SGR estimation algo-
rithm is then obtained from the transfer function (11) by applying
the z-transform. The discrete algorithm of the SGR estimator is
illustrated in Fig. 2.

In the structure scheme of the SGR estimator (Fig. 2), the first
part is intended for calculating the parameter Rn, which conveys
the dynamics of oxygen consumption:

Rn ¼ OURn � kð1� z�1Þ
Dt

: ð12Þ

By applying the z-transform for Eq. (12), where k ¼ 1=OURn,the
results yield

Rn ¼ 1
OURn

� OURn � OURn�1

Dt
: ð13Þ

The last part of the structure diagram of the SGR estimator
shows the relationship between the dynamics of oxygen consump-
tion and the time constant, which gives the value of the SGR:

ln ¼ Rn � Dt
Tð1� z�1Þ þ Dt

: ð14Þ

The final formula for the SGR estimator is obtained by applying
the z-transform to Eq. (14):

ln ¼ Rn � Dt
T þ Dt

þ ln�1 �
T

T þ Dt
; ð15Þ

where T ¼ 1=ðln�1 þ ðb=aÞÞ.
The presented SGR estimator is versatile and can be applied to

the monitoring of various cultivation processes. A single turning
parameter is the stoichiometric parameter ratio b=a, which is
specific to a particular strain of microorganisms and can be found
in reference books or estimated from early batch culture experi-
ments [24]. For many cell strains and in many cultivation pro-
cesses, the maintenance term b is negligible. The ratio b=a
(typically 0.01–0.04) is usually smaller than the SGR by orders of
magnitude. Therefore, even using a zero value for b=a in the esti-
mation algorithm provides interpretable SGR estimation results.



Table 1
Values of model parameters.

Parameter Value Dimension

ki 85 g/L
ks 0.7 g/L
m 0.02 g/(g�h)
sf 150 g/L
Yx=s 0.8 g/g
a 0.82 g/g
b 0.01 g/(g�h)

lmax 1.1 1/h
xð0Þ 0.5 g/L
sð0Þ 5.0 g/L
Vð0Þ 8.0 L
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5. Investigation of the SGR estimator performance

5.1. Computer simulation

The first step in assessing the performance of the SGR estimator
was chosen by computer simulation using the MATLAB/Simulink
platform. In the simulation, different fed-batch cultivation pro-
cesses with different SGR time profiles were modeled by varying
the feeding speed of the feeding solution. A mathematical model
of the E. coli cultivation process is described in [25,26]. The follow-
ing differential equation describes the biomass concentration (g/L):

dx
dt

¼ lðsÞ � x� F � x
V
; ð16Þ

where x is the biomass concentration, g/L; l is the specific biomass
growth rate (1/h); V is the volume of the liquid culture, L; F is the
substrate feeding rate, g/h; and t is the process time, h. Another dif-
ferential equation describing the glucose concentration in a bioreac-
tor (in g/L) is as follows:

ds
dt

¼ �qsðsÞ � xþ F � sf � s
V

; ð17Þ

where qs is the specific substrate consumption rate, g/(g�h), and sf is
the substrate concentration in the feeding solution (g/L). The vol-
ume of the medium in the bioreactor depends directly on the feed-
ing speed of the feeding solution.

dV
dt

¼ F: ð18Þ

The oxygen uptake rate signal is calculated using the Luedek-
ing/Piret model (g/(h�V)):
OUR ¼ a � lðsÞ � x � V þ b � x � V : ð19Þ

The dependence of the relative growth rate on the substrate
concentration can be mathematically expressed using the Monod
model [27,28]:

lðsÞ ¼ lmax �
s

ks þ s
� ki
ki þ s

; ð20Þ

where lmax is the maximum possible specific growth rate of the
specific cell culture, and ks and ki are the Monod expression param-
eters indicating the inhibition of the cell culture by overfeeding.
Finally, the simulation’s mathematical expression describing the
relative substrate consumption rate (in g/(g�h)) is as follows:

qsðsÞ ¼
lðsÞ
Yx=s

þm; ð21Þ

where Yx=s is a specific cell culture yield factor that describes the
need for a certain amount of food (glucose) for a certain amount
of biomass (g/g), and m refers to the model parameters that define
the food requirements for biomass maintenance, g/(g�h).

The parameters of the model Eqs. (12)–(17) and the initial val-
ues of the state variables in the simulation experiments are listed
in Table (1).

In the simulation experiments, various time profiles of the SGR
were obtained by manipulating the feed rate. Feed-rate interrup-
tion disturbances were also added to the feed-rate time profiles
to simulate the complicated process control conditions. As the
actual measurements of the OUR are usually corrupted by noise,
the measurements applied in the recursive estimation algorithm
(Fig. 2) were simulated by adding white Gaussian noise:

OURmn ¼ OURn þ r � OURn � Rand; ð22Þ
where OURm is the measured value of OUR; the percentage stan-
dard deviation of the absolute OUR value estimated from observa-
tions is r (r = 3%), Rand is a number from the Gaussian random
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number sequence with zero mean and unit variance, and subscript
n denotes the count of discrete measurement points.

In the simulation experiments, the time discretization step of the
recursive estimationalgorithmwas set toDt =0.0025h, and the ratio
b=a (tuning parameter) value was determined to be b=a = 0.01.

Preliminary simulation experiments showed problems in the
estimator’s performance during the initial stage of the cultivation
process. The convergence rate to the actual value of SGR at the
beginning of the process was sensitive to the initial value of the
SGR entered into the recursive algorithm (Fig. 2). The OUR estima-
tion errors significantly corrupted the estimator’s performance in
the initial stage of the cultivation process when the OUR signal-
to-noise ratio was low [6]. It was discovered that the initial
measurement-based estimate of the variable (Eq. 7 provides a valid
first-approach value for the SGR in the recursive estimation algo-
rithm. Therefore, the initial SGR value can also be estimated from
the early cultivation experiments. The above estimator perfor-
mance problems can be resolved by switching the estimator out-
put after some time once the OUR increases, and the estimation
algorithm captures the actual value of the SGR. A proper time point
for enabling the estimator was found to be 1–3 h into the cultiva-
tion process in the simulation platform.

The results of the simulation experiments under various culti-
vation conditions are presented in Fig. 3 (Experiments I and II).
The time trajectories of the feeding rate applied to simulate differ-
ent cultivation conditions are shown in Fig. 3a. The trajectories of
biomass growth are shown in Fig. 3b. The simulated values of
the OUR measurements OURmn, upon which the SGR estimation
is based, are shown in Fig. 3c. The estimator’s performance in
tracking time-varying biomass SGR is illustrated in Fig. 3d, in
which the estimated SGR trajectories (solid lines) are compared
with the actual trajectories (dotted lines).

The simulation results presented in Fig. 3 (Experiments I and II)
show that the proposed estimator offers accurate SGR estimates
during fed-batch cultivation processes under feeding rate distur-
bances and OUR measurement noise.

5.2. Experimental testing

The SGR estimator’s performance and reliability were investigated
using actual E. coli cultivation process data. Experimental SGR values
and OUR data for the oxygen uptake rate were collected from fed-
batch experiments of Escherichia coli obtained from [29] and industrial
R&D laboratories. To cover more practical scenarios, three types of
E. coli cell strains were used in different sizes of bioreactors:

1. The E. coli BL21 (DE3) pET21-IFN-alfa-5 cell strain was culti-
vated in a 7 L bioreactor. Eleven fed-batch cultivations were
performed, where eight cultivations were carried out with a
growth-limiting feed rate and three without a growth-limiting
feed rate, that is, batch or repetitive batch processes.



Fig. 3. Simulation results of the SGR estimator performance by tracking various SGR time trajectories (Experiments I, II): (a), (b), (c) feeding rate, biomass growth, and oxygen
uptake rate curves, respectively; d) comparison of the simulated SGR versus estimated SGR curves (dotted and solid lines, respectively).
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2. The E. coli BL21 (DE3) pET9a-IdeS cell strain was cultivated in a
12 L bioreactor. Two cultivations were performed at a growth-
limiting rate.

3. The E. coli (BL21(DE3) pLysS) cell strain was cultivated in a 15 L
bioreactor. Seven fed-batch cultivations under growth-limiting
rate conditions were selected for SGR estimator inspection.

The offline biomass concentration values in the cultivation
experiments were determined from the measurements of the opti-
cal density OD (in o.u.) multiplied by the coefficient of the biomass
concentration (approximately 0.4 g/L/o.u.) [30]. The experimental
SGR values were calculated from offline biomass concentration val-
ues collected from the sample measurements. The stoichiometry
parameters of cell cultures a and b were determined using the lit-
erature and experimental data [24]. In this work, the values for the
stoichiometry parameters of oxygen consumption remained the
same in all E. coli cell cultures (ratio b=a = 0.04).
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The precision and reliability of the SGR estimator were evalu-
ated by comparing the estimator predictions with the SGR values
calculated offline from the biomass growth curve approximating
the biomass concentration measurements. To describe the SGR
estimator results, the indicators of mean absolute error (MAE)
and root mean square error (RMSE) were applied. The MAE method
evaluates the errors between the estimated and observed biomass
values during the cultivation process. The MAE approach is defined
as follows [31]:

MAE ¼

Xn

i¼1

jŷi � yij

n
; ð23Þ

where n is the number of data counts, and ŷi is the estimation result
compared to yi, which is the value determined through the cultiva-
tion process. The root mean square error represents the square root
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of the residuals of the differences between the predicted and
observed values. The RMSE formula is as follows [31]:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðŷi � yiÞ2

n

vuuut
: ð24Þ

The SGR estimator results for the three different cell strains are
shown below.

Three experiments (9–11) were performed with a dose-
unlimited substrate feeding. The rest of the experiments were pro-
vided limited feeding using the various control strategies described
in [32], with multiple substrate-limited feeding profiles. The
Table 2
Analysis of E. coli BL21 (DE3) pET21-IFN-alfa-5, 7 L bioreactor.

Exp. No. RMSE, 1/h MAE, 1/h

1 0.034 0.027
2 0.054 0.047
3 0.056 0.040
4 0.051 0.036
5 0.050 0.038
6 0.045 0.038
7 0.054 0.046
8 0.057 0.040
9 0.040 0.035
10 0.041 0.030
11 0.034 0.030

Table 3
Analysis of E. coli(BL21(DE3) pLysS), 15 L bioreactor.

Exp. No. RMSE, 1/h MAE, 1/h

1 0.058 0.054
2 0.056 0.048
3 0.049 0.036
4 0.058 0.053
5 0.050 0.042
6 0.062 0.048
7 0.059 0.048

Table 4
Analysis of E. coli(BL21(DE3) pET9a-IdeS, 12 L bioreactor.

Exp. No. RMSE, 1/h MAE, 1/h

1 0.060 0.050
2 0.053 0.044

Fig. 4. SGR estimation results with cultivation process data: a) Exp. 1 Table 2, limited fed
and c) Exp. 9 Table 2, unlimited fed-batch cultivation process; d) Exp. 10 Table 2 and th
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human factors and equipment influenced the results, as shown in
Tables 2–4. Because the samples were taken manually, the SGR
experimental values featured errors that affected the outcomes of
the estimates. The overall average MAE of the SGR was 0.042 1/h,
and the overall average RMSE of the SGR estimation was
0.051 1/h. These results show that this approach is acceptable for
both limited and unlimited fed-batch cultivation processes with
various E. coli cell strains.

At the beginning of the cultivation process, the SGR estimator
requires an initial SGR value. This can be done in two ways to
obtain an initial SGR value. The first method uses two biomass con-
centration values taken from the measurement samples at the
beginning of the cultivation process and calculate the initial SGR
value. This method allows the use of the SGR estimator at the
beginning of the cultivation process when two samples are taken
at an interval of at least half an hour. This method is suitable if data
monitoring does not start from the beginning of inoculation and
when offline OD values are available. The second method (recom-
mended by the authors of this study) uses the initial value of the
SGR value set to zero. This method can be used when data monitor-
ing of the cultivation process data started immediately after the
inoculation or when the cells were still dormant. At the inoculation
moment, the cells have the stress of a new environment and must
be prepared for reproduction. This phase is called the lag phase.
The cells prepare ferments to start reproduction; hence, in the
lag phase, the specific growth rate is equal to zero [33,34].This
method allows the use of the SGR estimator at the beginning of
the cultivation process after inoculation without any measure-
ments of the biomass. As shown in Figs. 4–6, the SGR estimator
begins to run the start of the cultivation process.

During online monitoring of the cultivation experiments, the
SGR estimator demonstrated robust behavior and consistency
between the SGR online estimates and the rough SGR observations
obtained from the discrete offline biomass concentration
measurements.
6. Conclusions

In this study, an estimator of the biomass-specific growth rate
was developed for online monitoring of microbial cultivation pro-
cesses. The estimation algorithm is based on a functional model
and measurements of the oxygen uptake rate.

The computer simulation of our specific-growth-rate estimator
revealed robust behavior of the recursive estimation algorithm and
sufficiently accurate tracking of the specific-growth-rate time tra-
jectories under process disturbances and measurement errors of
-batch cultivation processes; b) Exp. 2 Table 2, limited fed-batch cultivation process;
e unlimited fed-batch cultivation process.



Fig. 5. SGR estimation results with limited feeding solution fed-batch cultivation process data: a) Exp. 1 Table 3; b) Exp. 2 Table 3.

Fig. 6. SGR estimation results with limited feeding solution fed-batch cultivation process data: a) Exp. 1 Table 4; b) Exp. 2 Table 4.
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the off-gas parameters. The experimental investigation estimator
was established using three different E. coli strains in bioreactors
with several different working volumes. The overall average MAE
of the SGR was 0.044 1/h, and the overall average RMSE of the
SGR estimation was 0.074 1/h.

This estimator can be applied to the online monitoring of vari-
ous cultivation processes with limited or unlimited substrate feed-
ing. This method requires adjusting only a single tuning parameter,
that is, the ratio of b=a, to adapt the estimator to a particular pro-
cess. An approximate or zero value of the tuning parameter pro-
vided satisfactory estimation results. Thus, the presented
estimator can provide a proper feedback signal for advanced SGR
automatic control systems.
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