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A key question for temporal processing research is how the nervous system

extracts event duration, despite a notable lack of neural structures dedicated

to duration encoding. This is in stark contrast with the orderly arrangement

of neurons tasked with spatial processing. In this study, we examine the link-

age between the spatial and temporal domains. We use sensory adaptation

techniques to generate after-effects where perceived duration is either com-

pressed or expanded in the opposite direction to the adapting stimulus’

duration. Our results indicate that these after-effects are broadly tuned,

extending over an area approximately five times the size of the stimulus.

This region is directly related to the size of the adapting stimulus—the

larger the adapting stimulus the greater the spatial spread of the after-

effect. We construct a simple model to test predictions based on overlapping

adapted versus non-adapted neuronal populations and show that our effects

cannot be explained by any single, fixed-scale neural filtering. Rather, our

effects are best explained by a self-scaled mechanism underpinned by

duration selective neurons that also pool spatial information across earlier

stages of visual processing.
1. Introduction
Although sub-second timing information is critical to the accuracy of most sen-

sory and motor processing, human receptor surfaces do not appear to encode

time directly in the way they initiate the analysis of non-temporal features such

as pitch, location or temperature. Even at less peripheral locations within the ner-

vous system, evidence remains sparse for any neural structures whose primary

function relates to the encoding of temporal information. Despite this, we are

capable of formulating temporal estimates that, although noisy [1,2] are made see-

mingly without conscious effort and form one of the only perceptual metrics that

transcends all sensory modalities [3]. This ‘supramodal’ quality has contributed

to the dominance of dedicated, modular mechanisms for time perception such

as a the pacemaker-accumulator [4–6], oscillator/coincidence-detector [7,8] or

memory decay [9] systems. To varying degrees, all of these systems facilitate tem-

poral perception by monitoring ongoing background neural activity around the

time of stimulus presentation.

In computational terms, centralized models have the attraction of economy

in that they avoid the potentially superfluous proliferation of independent, loca-

lized timing mechanisms across primary sensory areas. However, the

convergence of sensory inputs onto specialized processing modules necessitates

an a priori pooling of information across these inputs. It therefore follows that

stimulus-specific time perception of any kind presents non-trivial challenges

to centralized timing processes. For sub-second duration perception, the possi-

bility of multiple localized timing mechanisms is given credence by reports of

sensory-specific distortions of perceived duration. For example, perceived
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visual (but not auditory) duration is compressed around

the time of a saccade [10] or via repeated presentation of

identical images [11]. More generally, estimates of auditory

duration are expanded relative to those for visual stimuli,

as well as being significantly less variable [12–15], in-

consistent with a singular central mechanism for the two

sensory modalities.

Further examples of sensory-specificity have been revealed

by adaptation experiments where exposure to consistent

duration information leads to a ‘duration after-effect’ (DAE):

adaptation to relatively short/long auditory or visual

durations induces perceptual expansion/compression of

subsequently viewed/heard intermediate duration stimuli.

These repulsion-type after-effects are bidirectional, limited to

the adapting stimulus modality and tuned around the adapt-

ing duration [16–19]. The neural basis of these effects

remains unclear. One possibility is that they reflect a human

analogue of the ‘channel-based’ analysis predicted by neurons

with bandwidth-limited duration tuning found in a range of

neural structures across several amphibian and mammalian

species (as recently reviewed in [20]). In the visual domain, the

activity of these neurons could form a relatively late-stage,

‘dedicated’, duration-encoding mechanism [21] that—while

sensory-specific—could operate at level where basic stimulus

features have been pooled to allow selectivity for more com-

plex, object-based analysis [22]. Alternatively, if visual event

duration forms part of a ‘primal sketch’ [23], duration-tuned

neurons would extract duration information alongside low-

level stimulus features, prior to any pooling.

Here we address this question by using the orderly

relationship between spatial selectivity and visual cortical

hierarchy. Specifically, neurons located in extrastriate visual

cortex, which perform more complex forms of visual analysis,

often inherit pooled inputs from lower-level structures

[24,25]. This pooling of information over larger spatial

regions supports the analysis of more global image proper-

ties, produces receptive fields that are necessarily larger

than their inputs and exhibit correspondingly coarser spatial

selectivity. Conversely, primary sensory or (even pre-cortical)

areas are more closely associated with high degrees of spatial

selectivity [26–31].

By measuring the spatial tuning of DAEs, we are able to

show that the effects of adaptation extend well beyond the

adapted location. This broad spatial tuning could be consistent

with a single, large-diameter receptive field size such as those

found in the inferotemporal visual cortex [32]. However, we

also show that increasing stimulus size induces a proportional

increase in the width of the spatial tuning profiles. We con-

struct a simple model based on the degree of overlap

between adapted and non-adapted neural populations that

allows us to quantify the scale-dependent relationship between

size and adaptation spread. We propose DAEs to be a signature

of mid-level visual neurons that pool spatial information across

proportionally smaller lower-level inputs.
2. Material and methods
(a) Observers
Six observers (three naive) took part in the main experiments

(figures 1–3). All observers gave their informed, written consent

to participate, and had normal or corrected to normal vision and

hearing at the time of the experiment.
(b) Stimuli and apparatus
All visual stimuli were presented on a gamma-corrected Compaq

P1220 CRT monitor with a refresh rate of 100 Hz and a resolution

of 1280 � 1024. This was connected to a 2 � 2.26 GHz quad-core

Apple Mac Pro desktop computer running Mac OS 10.6.8. All

stimuli were generated using MATLAB v. 7.9.0 (Mathworks,

USA) running the Psychtoolbox Extension v. 3.0 (Brainard and

Pelli, 1997, www.psychtoolbox.org). The physical durations of

all auditory and visual stimuli were verified using a dual-

channel oscilloscope. The auditory stimulus was a 500 Hz tone

presented through Sennheiser HD 280 headphones. Visual

stimuli were isotropic, luminance-defined Gaussian blobs

(mean luminance 77 cd m22) presented against a uniform grey

background of 37 cd m22, whose luminance (L) profile was

defined as follows:

L ¼ Lmaxð1þ e�ðx
2=2s2

stimÞÞ,

where Lmax is the peak luminance value (set to 94 cd m22) and

sstim is the standard deviation of the Gaussian.

In the initial experiment (figures 2a–c and 3b) sstim was set to

18. In subsequent experiments, stimulus size was modified by

increasing (sstim ¼ 1.58, figure 3c) or decreasing (sstim ¼ 0.58,
figure 3a) this value.
(c) Procedure
Observers viewed the visual stimuli binocularly in a quiet, dar-

kened room while maintaining fixation on a white 0.078
circular fixation marker presented 5.338 to the left of the centre

of the screen. Viewing distance was controlled (via chin rest) to

ensure one pixel subtended one arc minute. A block of trials

began with an initial adapting phase consisting of 100 serially

presented visual stimuli. Within a block the duration of these

stimuli was fixed at either 160 ms or 640 ms. Interstimulus inter-

val (ISI) was randomly jittered between 500 and 1000 ms. The

adaptation phase was followed by a further four ‘top up’ adapt-

ing stimuli and a subsequent test phase (figure 1) consisting of a

fixed (320 ms) duration auditory reference stimulus and a variable

duration visual test stimulus. Observers then made a two alterna-

tive forced choice (2AFC) duration discrimination judgement as to

‘which was longer, flash or beep?’ Visual test stimuli varied in

seven approximately logarithmic steps: 240, 260, 290, 320, 350,

390 and 430 ms, which were randomly interleaved within a

method of constant stimuli.

Observers responded via key press, which triggered the

next top-up and test cycle, until all test durations had been

presented 10 times per block of trials. The adapting stimulus

was presented at fixation, 58 or 108 to the right of fixation.

Test stimuli were either presented at the adapting location or

locations providing 58 or 108 adapt–test spatial intervals

(figure 1). This provided nine adapt–test spatial configurations

(three adapt locations � three test locations), each of which

remained constant within a block of trials. Each adapt–test

spatial configuration was repeated for both adapting durations

giving a total of 18 conditions. Blocks pertaining to each condition

were completed in a random order. Each observer completed three

blocks per condition to give 30 repetitions per data point, per

observer. In total, data collection lasted approximately 27 h per

observer.

The resulting psychometric functions were fitted with a

logistic function of the form

y ¼ 100

1þ e�ð
x�PSEÞ

u
Þ

where PSE represents the point of subjective equality, corre-

sponding to the physical test duration that is perceptually

equivalent to the 320 ms auditory reference stimulus and u is

an estimate of the observer’s duration discrimination threshold

http://www.psychtoolbox.org
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Figure 1. A schematic showing the adapt – test paradigm. In the adaptation phase, observers view a series of visual stimuli of fixed duration (160 ms in this example) at
one of three possible adapt locations (fixation in this example). In the following test phase, observers make a duration discrimination judgement between a 320 ms
auditory reference duration, and a variable visual test duration (320 ms in this example). The test stimulus may occur at fixation, at 58 eccentricity or at 108 eccentricity
(constant within a block), forming nine possible adapt – test spatial configurations.
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(half the difference between the values corresponding of 27 and

73% test longer responses). From these functions, PSE values

were extracted for each observer for both the 160 and 640 ms

adaptation conditions, across each of the nine adapt–test spatial

configurations.
(d) Modelling
To aid us in making inferences regarding the spatial scale of

duration coding mechanisms, we developed a simple filtering

model. We simulated the neural representation (rep) of each

stimulus across retinotopic cortex by convolving its horizontal

contrast envelope with a Gaussian spatial filter

rep ¼ e�ðx
2=2s2

stimÞ � e�ðx
2=2s2

filt
Þ,

where sstim and sfilt are the standard deviations of the sti-

mulus and filter, respectively, and x indicates the spatial

distance from the centre of the stimulus/filter (all in degrees of

visual angle).
Because both stimulus and filter are Gaussians, rep is itself a

Gaussian centred at the location of the stimulus, with a standard

deviation srep given by

srep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

stim þ s2
filt

q
:

The proportional overlap O between adapting and test neural

representations can be calculated by

O ¼ 2

ð0

�1

1

s2
rep

ffiffiffiffiffiffi
2p
p e�ððx�d=2Þ2=2s2

repÞ dx,

where d is the centre-to-centre distance between adapting and

test stimuli.

The expected DAE was assumed to be a linear function of

this overlap

DAE ¼ kO,

where k is the peak DAE obtained with identical adapting and

test stimuli.
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x-axis values represent conditions in which the test stimulus was presented further from (closer to) fixation than the adapting stimulus. Blue circles represent
conditions where the adapting stimuli were presented at fixation, green circles represent conditions where the adapt location was 58 eccentricity and red circles
represent conditions where the adapt location was 108 eccentricity. Error bars represent the SEM. (d ), (e) See the main text for details.
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For each stimulus size, we fitted the spatial filter model to

the tuning function relating DAE magnitude to separation,

finding the values of srep and k that minimized the sum

of squared residual errors between expected and measured

after-effect magnitudes.
3. Results
Figure 2a shows sample psychometric functions from a single

representative observer. The proportion of responses where the

visual test was perceived as longer than the auditory reference

is plotted as a function of visual test duration for the condition

where both the adapting stimulus and test stimuli were pre-

sented at 108 from fixation (i.e. with no spatial separation).

Repeated presentations of the 640 ms adapting stimulus (solid

black curve, black squares) depresses the number of ‘test

longer than reference’ responses, which reflects a perceived com-

pression in the duration of the test stimulus: a physical test

duration of 377 ms is judged as perceptually equivalent to a

physical auditory reference duration of 320 ms. Conversely, the

function relating to the 160 ms adaptation condition (dashed

curve, black circles) is shifted leftwards, reflecting an expansion

of the perceived duration of the test stimulus: a physical test

stimulus of 315 ms now has perceptual equivalence with the
reference stimulus. These temporal distortions are consistent

with previous reports of bi-directional, repulsive DAEs [17,19].

The extent of the lateral separation between the two func-

tions provides a measure of DAE magnitude and can be

expressed as the arithmetic difference between PSE values

for the two adapting duration conditions

DAE ¼ PSE640 –PSE160,

where PSE640 is the PSE value obtained from the 640 ms

adapting duration and PSE160 is the PSE value obtained

from the 160 ms adapting duration. For the observer shown

in figure 2a, DAE ¼ 62 ms when adapting and test durations

are both presented at the same location. Of particular interest

in this study was to establish how DAE varied during

manipulation of the adapt–test spatial interval. Figure 2b
shows psychometric functions for the same observer when

the adapting and test stimuli were separated by 108 (‘Adapt

at 108, test at fixation’). The superimposition of the two func-

tions is in stark contrast with the lateral separation shown in

figure 2a. This represents a reduction in the effectivity of the

adapting stimuli: the perceived duration of the test stimulus

shows negligible variation across both adapting durations.

Figure 2c shows data from the same observer where DAE is

plotted as a function of all nine adapt–test spatial configur-

ations. For all three adapting locations, robust DAEs are
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generated by presenting adapt and test stimuli at the same

spatial location (figure 2c, central data points). As the adapt–

test spatial interval is increased, DAE magnitude shows a

progressive decrease, indicating a reduction in the perceptual

bias induced by adaptation. This pattern of spatial tuning is

manifest for all three adapting locations, as demonstrated by

the red, green and blue data points forming a single function.

Spatially tuned DAEs are evidence that—at some level—

event timing must be segregated into distinct regions of

visual space, a finding that could signal the presence of neur-

ons that are selective for both the duration and spatial location

of a visual event. But what is the spatial scale of duration

coding mechanisms? To address this question quantitatively,

we developed a simple spatial filtering model based on the

assumption that DAEs occur when (and only when) adapting

and test stimuli stimulate overlapping neural populations

(see Material and methods for details). As illustrated in

figure 2d, we first convolved the horizontal contrast profiles

of our stimuli with a Gaussian filter corresponding to

neural blur, then calculated the proportional overlap between

the resulting neural representations of the adapt and test

stimuli. The proportion of overlap was then calculated for a

range of different adapt–test spatial separations. Figure 2e
shows the resulting spatial tuning functions obtained with

a range of neural representation sizes. Application of the

model to the individual data shown in figure 2c, revealed a

best-fitting srep of 3.678, which is several multiples of sstim
(the spatial spread of the stimulus). In other words, duration

adaptation extends into spatial regions well beyond the

physical confines of the adapting stimuli themselves.

A relatively large after-effect spread across space could be

consistent with late-stage processing subserved by a coarse,

fixed scale of spatial filtering [33]. If this scale (sfilter) is larger

than the stimulus, (sstim—as depicted in figure 2d) the

degree of overlap between adapting and test neural represen-

tations (srep) would be similar across modest changes in

stimulus sizes above and below 18. We examined this possi-

bility by repeating our experiment using smaller (0.58) and

larger (1.58) Gaussian stimuli. Group averaged results for

each of the three size conditions are shown in figure 3a–c.

Irrespective of stimulus size, DAE magnitude declines system-

atically with adapt–test spatial interval; however, the rate of

decline varies with stimulus size. This progressive broadening

of spatial tuning with increasing stimulus size is summarized

in figure 3d, where best-fitting srep values are plotted as a func-

tion of sstim. In comparison, the dotted lines show a family of

model predictions for different levels of neural blur. Clearly,

changes in the spatial tuning of the DAE with stimulus size

are not consistent with any fixed scale of spatial filtering.

From the best-fitting srep values, we can work back in our

model to calculate the neural blur of the filter sfilter, which

would have produced this pattern of results. The data predict

filter sizes of 2.768, 3.918 and 7.868 for our three stimulus sizes

of 0.58, 18 and 1.58. Rather than a fixed level of coarse spatial
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filtering, this suggests a ‘self-scaled’ relationship in which the

spatial scale of the filter determining after-effect tuning forms

a multiple of the spatial scale of the stimulus. Simulations

based on this principle are shown in figure 3e where the

best-fitting scaled filter is 5.2 � sstim (figure 3e—black line).
cietypublishing.org
Proc.R.Soc.B
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4. Discussion
We sought to investigate the interaction between spatial infor-

mation, recent sensory history and the perception of duration.

Adaptation techniques were used to generate bidirectional

repulsive DAEs, which were tested for their sensitivity to

adapt–test changes in spatial location. This sensitivity was

found to be coarse: the effects of adaptation spread into a

region considerably larger than the adapting stimulus itself

(figures 2c and 3b). The size of this region is proportional to

the size of the adapting stimulus (figure 3a–c). Our model

simulations allowed us to assess our spatial tuning data along-

side predictions based on a range of fixed, coarse-scale spatial

filters (figure 3d) versus scaled filtering which forms a multiple

of stimulus size (figure 3e). Fixed-scale filters were unable to

capture the relationship between stimulus size and after-effect

spread. Instead, our data are better described by modelling

based on the principle that DAEs are generated by a mechanism

with self-scaled filtering properties. The effect of this self-scaling

is to spread DAEs across an area that is approximately five-times

larger than the adapting stimulus.

Broad spatial tuning has practical implications for how

adaptation-induced biases are measured. Because duration

adaptation do not transfer between sensory modalities [17],

our observers judged the perceived duration of a visual test

stimulus relative to an auditory reference. An alternative is

to use a visual reference that is presented at an unadapted

spatial location. However, our data show that it is critical to

sufficiently separate the stimuli (particularly if the stimuli

themselves are large), otherwise adaptation will influence

both the reference and test stimuli during the 2AFC judge-

ment. This provides a possible explanation for why robust

DAEs have not been reported in experiments using large

visual test and reference stimuli presented in relatively close

spatial proximity [34].

The spatial tuning reported here contradicts the conclusions

of a very recent study where after-effects were generated in one

hemisphere (e.g. 108 left of fixation) and then tested in the oppo-

site hemisphere (e.g. 108 right of fixation) [35]. In the Li et al.
study, adapting and test stimuli were always presented at 108
either side of fixation. This raises the possibility that interhemi-

spheric communication between corresponding areas of

cortical eccentricity (e.g. [36]) could facilitate the transfer of

DAEs around an iso-eccentric annulus centred on fixation.

This scenario would produce spatial tuning across the annulus’

diameter (as per this study) but not around its circumference (as

per the Li et al. study). To investigate this possibility, we

repeated our experiment using a 0.58 sized stimulus and a 208
adapt–test spatial interval that spanned 108 either side of

fixation. The results are shown in the electronic supplementary

material, figure S1. In keeping with earlier experiments,

(figure 3a–c) all observers show robust DAEs when adapting

and test stimuli were both presented 108 right of fixation. How-

ever, no significant after-effects were generated when adapting

stimuli were presented at 108 right of fixation and test stimuli

were presented 108 left of fixation, despite matching eccentricity
across hemispheres. This is consistent with a spatial filtering

account of our ‘within-hemisphere’ data (figure 3a), which

predicts a negligible (more than 5%) after-effect magnitude for

the 0.58 sized stimulus across a 208 adapt–test spatial interval.

At the opposite extreme to position-invariant accounts of

temporal processing, effects are generated when observers

view continuous periods of temporally dynamic (flickering

or drifting) visual patterns. Subsequently viewed test stimuli

typically undergo perceptual compression, (but see [37])

within the same region of the visual field [38,39]. These

after-effects show very narrow (approx. 18) spatial tuning

[40] and no interocular transfer, leading some to propose

an adaptation locus within the magnocellular layers of the

LGN ([41], but see [42]). Similarly ‘repetition suppression’

paradigms show that the presentation of two or more identi-

cal visual stimuli in close temporal proximity leads the

underestimation of the second stimulus’ duration [43]. This

effect is exaggerated when the two stimuli share the same

orientation and are presented within approximately 28 of

each another. Again, these effects have been attributed to

mechanisms driven by early striate visual neurons [44].

This group of duration phenomena appear to share some

common features: unidirectional (mostly compressive) percep-

tual distortion, which is tightly tuned to low-level stimulus

characteristics such as spatial location. These features contrast

sharply with the DAEs reported here which could suggest

that the two types of after-effect (unidirectional, narrowly

tuned versus bidirectional, broadly tuned) might be signatures

of distinct temporal processing mechanisms.

However, recent advances in our understanding of visual

spatial adaptation offer an alternative interpretation. Adaptation

to stimulus features such as contrast, temporal frequency,

motion and orientation modulates neural activity across a

wide range of areas from the retina, to the striate and extrastriate

cortices (as recently reviewed in [45]). Neurophysiological

advances have revealed an adaptation cascadewhere the activity

at any given site is a product of adaptation intrinsic to neurons

at that site and adaptation inherited from earlier visual areas

[46,47]. In some cases [47,48], the ‘downstream’ recipients

of ‘upstream’ adaptation are unable to distinguish between

adapted and non-adapted inputs, leading to a cumulative

superimposition of distinct adaptation effects [49,50].

Could adaptation effects from different levels of neural pro-

cessing also occur for temporal information? Because receptive

field size increases systematically throughout pre-cortical, stri-

ate and extrastriate visual areas [26–30], our broad spatial

tuning dictates that bidirectional, repulsive DAEs must orig-

inate at a cortical location beyond that responsible for the

narrowly tuned, unidirectional effects discussed above. What-

ever the relationship between these two after-effects, simple

inheritance of earlier adaptation would predict that our repul-

sive DAEs should display similarly narrow spatial tuning

[24,51]. Instead, our tuning profiles suggest repulsive DAEs

are generated by subsequent phase of adaptation that is embo-

died with the spatial selectivity of neurons whose larger

receptive field size reflects their downstream location

[46,52,53]. In this context, the output duration signal from

early mechanisms [39,43,44] would feed forward to form the

(compressed) input signal for a downstream mechanism

responsible for the repulsion-type after-effects reported here.

As argued elsewhere [17], channel-based duration encoding

by neurons with bandwidth-limited sensitivity to a range of dur-

ations [54] is consistent with repulsion-type after-effects. In the
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visual domain, a relevant example is the duration tuning seen

across the millisecond range in ‘off response’ neurons within

areas 17 and 18 of cat visual cortex [55]. Within these regions

(and their primate homologues V1 and V2), individual neurons

show tuning for a raft of stimulus features such as orientation,

spatial frequency, contrast and motion [56,57]. Neurons with

bandpass duration selectivity have also been documented in

the auditory systems of a wide range of species including cat

auditory cortex [58], the auditory midbrain nuclei of amphibians

[59], bats [60,61], guinea pigs [62,63], rats [64] and mice [65]. In

addition to stimulus duration, these same neurons invariably

show selectivity for auditory pitch [20] and, in some cases,

spatial location [66]. Cross-species and cross-sensory modality

generality points towards duration being a generic feature to

which a wide variety of neurons can show tuning.

Which neurons might be responsible for mediating

channel-based processing of duration in humans? Recent

neurophysiological evidence suggests a duration processing role

for sub-regions within the inferior parietal lobule [67–69]. How-

ever, visually responsive parietal areas have large, often bilateral

receptive fields [70], the vast majority of which are at least 58 in

diameter [71–73]. It therefore seems likely that the adaptation-

induced perceptual distortions described here and elsewhere

[37,39,43,44] reflect intrinsic adaptation in upstream visual areas,

which undergo subsequent duration encoding in extrastriate

areas such as LIP and SMG. Motor, premotor and supplementary

motor cortices are also reported to show duration-dependent pat-

terns of neural activity [74–76] but again, how intrinsic duration

adaptation within these areas could facilitate even broadly

tuned spatial specificity (or indeed perceptual distortions in the

absence of any motor action) remains unclear.

When considering the neural underpinnings of DAEs, it is

important to acknowledge the relationship between stimulus

size and spatial tuning (figure 3). This size dependency is

incompatible with the uniformly broad tuning predicted by a

large fixed-scale spatial filter that encodes duration across a

range of stimulus sizes (see horizontal sections of dashed

lines in figure 3d ). Is there any evidence for a visual processing

stage which not only summates low-level information across a

moderate spatial extent, but also whose scale is fundamentally

linked to the scale of its inputs? A prime example of exactly this

relationship is provided by the interdependency between

mechanisms encoding spatial variations in luminance (first-

order) and those encoding variations in texture/contrast

(second-order). It is widely accepted that the rectified output

of small, linear first-order filters form the input to subsequent,

larger second-order filters (for a recent review see [77]). To

extract contrast/texture modulations each second-order filter

performs ‘spatial pooling’ by combining the outputs of several

neighbouring first-order filters [78,79]. As a result, second-

order perceptual phenomena are more spatially diffuse than

their first-order counterparts [80–82].

Critically, second-order pooling of first-order inputs creates

spatial scale-dependency between the two stages: second-

order filter size forms a multiple of its first-order input [83].

Psychophysical estimates place this multiple between 3 and

50 [82,84–86], dependent on the stimulus and task [87].

Single-unit recordings have demonstrated that this relationship

is underpinned by neurons whose spatial frequency tuning for

contrast or texture-defined information is between 5 and 30 �
lower than for luminance-defined information [88–90].

If DAEs are indeed a product of duration tuning within

neurons also selective for second-order image statistics then
two clear predictions follow: (i) after-effects should propagate

into a region larger than that predicted by first-order filtering

(i.e. the borders of the stimulus itself) and (ii) the size of this

region will be a fixed multiple of adapting stimulus size,

reflecting the proportionality between first- and second-order

size tuning. Our data and model simulations show precisely

this effect. Ongoing experiments in our laboratory will test a

further prediction of the second-order hypothesis: it should

be possible to induce DAEs by adapting to repeated presen-

tations of fixed-duration second-order information (e.g.

sinusoidal contrast modulation) superimposed on first-order

information which does not provide any consistent duration

signal (e.g. dynamic luminance noise). In this situation, the

adapting duration signal would be available to second-order

mechanisms alone and its effects would therefore only be

manifest with second-order test stimuli. This scenario would

be compatible with a recent report of DAEs transferring

across first-order orientation [91].

In summary, our data and model are suggestive of a mid-

level form of duration encoding by visual neurons that are

selective for a stimulus’ spatial characteristics and its duration.

These behavioural data are consistent with neurophysiological

evidence of neurons showing bandwidth-limited tuning to

duration alongside a raft of other stimulus features across a

wide range of species. Although such a mechanism has the

apparent disadvantage of relatively coarse spatial resolution,

it could provide duration estimates that avoid some of the

ambiguities associated with the earliest stages of visual proces-

sing. For example, using first-order luminance alone during

object identification can yield spurious results that are cor-

rupted by shadows and shading gradients [92]. By pooling

across a larger spatial area, it is possible to disambiguate

object–background borders via second-order changes in tex-

ture or contrast. Relatedly, changes in viewing distance alter

absolute first- and second-order spatial scale but, for any

given object, the size ratio between these cues does not

change. This ‘scale invariance’ [93–95] ensures that our ability

to detect and discriminate between stimulus features defined

by second-order cues remains constant across distances in a

way that does not hold for first-order cues [96]. Therefore, if

duration selectivity were a feature of neurons tasked with

more complex image attributes it would afford perceived dur-

ation a degree of object specificity that could be robust enough

to cope with occasions where lower-level information is less

reliable. Studies examining after-effects of temporal perception

while systematically varying stimulus feature complexity will

help localize the strata occupied by time perception within

the sensory processing hierarchy.
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