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ABSTRACT

Quantifying the genetic diversity in natural populations is crucial to address ecological
and evolutionary questions. Despite recent advances in whole-genome sequencing,
microsatellite markers have remained one of the most powerful tools for a myriad
of population genetic approaches. Here, we used the 454 sequencing technique to
develop microsatellite loci in the fire coral Millepora platyphylla, an important reef-
builder of Indo-Pacific reefs. We tested the cross-species amplification of these loci
in five other species of the genus Millepora and analysed its success in correlation
with the genetic distances between species using mitochondrial 16S sequences. We
succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla,
among which twelve were polymorphic with 2-13 alleles and a mean observed
heterozygosity of 0.411. Cross-species amplification in the five other Millepora species
revealed a high probability of amplification success (71%) and polymorphism (59%)
of the loci. Our results show no evidence of decreased heterozygosity with increasing
genetic distance. However, only one locus enabled measures of genetic diversity
in the Caribbean species M. complanata due to high proportions of null alleles for
most of the microsatellites. This result indicates that our novel markers may only be
useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed
significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323—
0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility
to new polymorphic microsatellite markers for hydrozoan Millepora species creates
new opportunities for future research on processes driving the complexity of their
colonisation success on many Indo-Pacific reefs.

Subjects Biodiversity, Evolutionary Studies, Genetics, Marine Biology, Molecular Biology

Keywords Genetic diversity, Genetic distance, Cross-species transferability, Microsatellites,
Millepora

INTRODUCTION

Coral reefs are increasingly threatened by chronic and acute stressors (Bellwood et al., 2004)
and are expected to be highly vulnerable to future climate change due to rapidly increasing
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sea surface temperatures and ocean acidification (Hoegh-Guldberg et al., 2007; Pandolfi et
al., 20115 Kuffner et al., 2015). These anthropogenic disturbances can further change the
biodiversity in coral reefs and may hamper their capacity to deliver important sources of
ecosystem services to millions of people (Wilkinson, 2008; Cardinale et al., 2012). The capac-
ity of reef organisms to survive and adapt to such environmental changes will partially de-
pend on their levels of genetic diversity, which is key for a species’ ability to persist in chang-
ing environments (Frankham, 2005; Barrett ¢ Schluter, 2008; Hoffmann ¢ Sgro, 2011).
Many studies have focused on elucidating the underlying mechanisms of the origin and
maintenance of genetic variation in populations of scleractinian corals as they provide
much of the habitat framework and structural complexity of reefs (e.g., Baums, Miller ¢
Hellberg, 2005; Baums, 2008; Davies, Treml ¢ Matz, 2015).

For long-live sessile organisms, such as reef-building corals, patterns of genetic diversity
at both local and global scales are highly governed by the dispersal of sexual larvae (Baird,
Guest & Willis, 2009; Harrison, 2011). Molecular studies have uncovered a wide range of
dispersal patterns in scleractinian corals, from populations primarily sustained by self-
recruitment (Gilmour, Smith & Brinkman, 2009; Mokhtar-Jamasi et al., 2013) through eco-
logically significant gene flow and connectivity among their populations (Van der Ven et al.,
20165 Lukoschek, Riginos ¢ Van Oppen, 2016). Furthermore, the degree of genetic variation
in partially clonal reef organisms is heavily influenced by the relative contribution from
sexual and asexual reproduction for local population maintenance (e.g., Baums, Miller
& Hellberg, 20065 Pinzon et al., 20125 Adjeroud et al., 2014). While our understanding of
population genetics in scleractinian corals has improved considerably over the last decade,
such information remains unavailable for Millepora hydrocorals (‘fire corals’).

Millepora hydrocorals are an important component of reef communities worldwide
where they, similar to scleractinian corals, significantly contribute to reef accretion (Nagelk-
erken & Nagelkerken, 2004; Lewis, 2006). Although fire corals compete with other reef-
building taxa (Wahle, 1980; Dubé, Boissin ¢ Planes, 2016), they also favour coral survival
during Acanthaster outbreaks, highlighting their key ecological role in reef resilience (Kayal
¢ Kayal, 2016). Despite their major importance for reef conservation, fire corals have been
relatively understudied and not much is known with respect to their genetic diversity,
population structure or life history (e.g., reproductive strategies). Few studies have shown
that Millepora species can colonise a wide range of reef environments via both sexual propag-
ules (Lewis, 2006; Bourmaud et al., 2013) and asexual reproduction through fragmentation
(Edmunds, 1999; Lewis, 2006). While they are sessile and have limited tolerance to envi-
ronmental changes (Lewis, 2006), species of Milleporidae have a wide distribution range,
i.e., circumtropical (Boschma, 1956). Fire corals are also known for their extensive mor-
phological variability, which has caused problems in resolving their systematics (Boschma,
1948). There is currently no agreement regarding the number of Millepora species and no
phylogenetic study investigating the genetic relationships among them (but see Ruiz-Ramos,
Weil & Schizas, 2014 for a species complex in the Caribbean). Although microsatellite loci
have been identified in Millepora alcicornis (Ruiz-Ramos & Baums, 2014), there was a lack
of highly variable genetic markers for this genus until very recently (but see Heckenhauer et
al., 2014). The development of new molecular markers for Millepora species will increase
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our knowledge on the genetic diversity of a conspicuous reef-building organism across its
geographic range. These microsatellite markers will enable further studies on the biological,
ecological and evolutionary processes underlying the population persistence of Millepora
hydrocorals.

Microsatellites, also known as simple sequence repeats (SSRs) or short tandem repeats
(STRs), have emerged as one of the most powerful genetic markers in population and
evolutionary genetics (Selkoe ¢ Toonen, 2006). Improvements in next generation sequenc-
ing techniques have provided new opportunities for microsatellite isolation in non-model
organisms (i.e., with no genetic information available) (Zhang et al., 2011), with a good rep-
resentativeness of loci across the genome (Martin et al., 2010). Because microsatellites are
codominant (Estoup et al., 1993), highly polymorphic (Schlotterer, 2000) and transferable
among closely related species (Cheng et al., 2012), they are commonly used for a remarkable
array of applications, such as inferring genetic diversity (Silva ¢» Gardner, 2015; Nakajima et
al., 2016) and population structure patterns (Noreen, Harrison ¢ Van Oppen, 2009; Boissin
et al., 2016), evaluating reproductive strategies (Baums et al., 2014; Ardehed et al., 2015)
and parentage screening (Mourier ¢ Planes, 2013; Warner, Willis & Van Oppen, 2016).
Cross-species transferability has been successful in many species (Barbard et al., 2007; Reid,
Hoareau & Bloomer, 20125 Maduna et al., 2014; Pirog et al., 2016) allowing for genetic stud-
ies in closely related species. However, the few studies that have investigated the efficiency of
cross-species transferability of microsatellite loci have demonstrated a negative correlation
between the genetic distance and the amplification success (Carreras-Carbonell, Macpherson
& Pascual, 2008; Hendrix et al., 2010; Moodley et al., 2015). This constraint can hamper
accurate comparisons of genetic diversity among more distantly related species.

Here, we used 454 GS-FLX sequencing technology to develop an additional set of de
novo microsatellite markers for Millepora platyphylla to first assess its genetic diversity on
Moorea’s reefs in French Polynesia. Secondly, we tested these new microsatellite loci for
cross-species amplification in five other Millepora species: the branching Millepora intricata,
Millepora dichotoma and Millepora tenera, the plate-like species Millepora complanata and
the encrusting Millepora exaesa (Boschma, 1948). Lastly, genetic distances based on the 16S
mitochondrial gene were estimated among these species and M. platyphylla to identify the
transferability success of these newly developed microsatellites across the Milleporidae.

MATERIALS & METHODS

Preparation of genomic DNA for 454 sequencing

The calcification processes (Stanley, 2006) and metabolic pathways (Trench, 1979) of cal-
careous hydrozoans are supported by a symbiotic association with protozoan dinoflagellate
algae of the genus Symbiodinium. To design species-specific markers, genomic DNA of Sym-
biodinium was removed from the animal tissue using a succession of extraction techniques.
Candidate microsatellite repeats were isolated from a pool of 14 partially bleached
fragments of M. platyphylla collected in situ on Moorea’s reefs to minimise the quantity
of Symbiodinium in their tissues. Further mechanic (centrifugation) and genetic (positive
and negative controls in PCR) techniques were applied to ensure microsatellites belonged
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to the animal only (see below). Fragments were homogenised in 1,000 nL of CHAOS
buffer (4 M guanidine thiocyanate; 0.5% N-lauroyl sarcosine; 25 nM Tris—HCI pH 8; 0.1 M
2-mercaptoethanol) modified from Fukami et al. (2004). Samples were incubated at 60 °C
for 2 h while rotating and then centrifuged at 1,500 rpms for 30 s to precipitate symbiont
algae expelled from host cells. A total of 20 nL of the aqueous phase was examined under
microscope to confirm the absence of Symbiodinium. Further potential contamination was
tested by running microsatellites on pure cultures of zooxanthellae DNA (see below). 350
pnL of CHAOS solution containing animal tissues was transferred to a new vial and 350 pL
PEB (protein extraction buffer) was added (100 mM Tris pH 8; 10 mM ethylenediaminete-
traacetic acid (EDTA); 0.1% Sodium dodecyl sulfate (SDS)). DNA was purified with
phenol/chloroform (24:1) and precipitated with isopropanol as described by Mieog et al.
(2009). Samples from the 14 colonies were pooled together to increase detection of poly-
morphism. A total of 1 pg of genomic DNA was sent to GenoScreen platform (Lille, France)
for the development of the microsatellite library using 454 GS-FLX Titanium reagents as
described in Malausa et al. (2011). Briefly, total DNA was mechanically fragmented and
enriched for TG, TC, AAC, AAG, AGG, ACG, ACAT and ACTC repeat motifs. Enriched
fragments were subsequently amplified and PCR products were purified and quantified.
GS-FLX libraries were then carried out following manufacturer’s protocols and sequenced
on a GS-FLX PTP. The Quality Detection Device (QDD) pipeline (Meglécz et al., 2010) was
used to analyse the 454 sequences and to design primers for amplification of the detected
microsatellite motifs. Primer pairs were then selected depending on the motif (di-, tri-,
tetranucleotide), the number of repeats (>5) and the product size (>100 bp) and tested
on agarose gels for amplification.

Microsatellite discovery and primer testing

A panel of 16 M. platyphylla colonies was used to optimise PCR amplification and identify
polymorphic loci. Small fragments of tissue-covered skeleton (<2 cm?) were incubated at
55 °C for 1 h in 450 pL of digest buffer with proteinase K (QIAGEN, Hilden, Germany).
Genomic DNA was extracted using a QIAxtractor automated genomic DNA extraction
instrument, according to manufacturer’s instructions. PCRs were performed in a final
volume of 10 pL including 5 i L Type-it Multiplex PCR Master Mix (1 x) (QIAGEN, Hilden,
Germany), 3 nL RNase-free water, 1 L primers (2 wM for both forward and reverse primers
diluted in TE buffer) and 1 pL of template (10-50 ng/uL). The PCR program included
an initial denaturing step of 5 min at 95 °C, followed by 40 cycles of 30 s at 95 °C, 90 s at
optimal temperature (57-60 °C) depending on the microsatellite locus (see Table 1), and
30 s at 72 °C, followed by a final 30 min elongation step at 60 °C. The PCR products were
electrophoresed on 2% agarose gels. For loci with high-quality and consistent amplification,
the PCR was repeated on DNA template isolated from Symbiodinium strains (clade A to F
identified based on 23S chloroplast rDNA, Table S1) to identify coral specific loci and to
exclude putative Symbiodinium specific loci. Symbiodinium strains were provided by the
BURR laboratory at Buffalo, US (BURR; http://www.nsm.buffalo.edu/Bio/burr/). For the
loci that are specific to Millepora, the forward primer was fluorescently labelled with the
G5 dye set including 6-FAM, VIC, NED and PET (Applied Biosystems, Foster City, CA).
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Table 1 Characterisation of de novo microsatellite loci and genetic diversity in the target species Millepora platyphylla collected in Moorea, French Polynesia.

Locus Primer Sequence 5'-3’ Dye MP Motif Ta GenBank N Size Null LD Na H, H, Fis

name (°C) accession (bp)

Millo7 F: TAGTACATCGGGCATGAGCA 6-FAM 3 (CA) 16 57 KX670763 50 92-144 - - 13 0.760 0.855 0.121*
R: GTACTCTACGGCGTGTGCGT

Mill27 R: CTTTCGTTTCCGATCATTCC VIC 3 (TG)1o 57 KX670764 50 136-148 - 0.044 5 0.600 0.636 0.067
R: TGCCAGAACTAAGTTATCACAGC

Mill30 F: AGTTGGCTCTGAGTGCGAGT NED 2 (TG)11 57 KX670765 50 203-211 - 0.025 4 0.680 0.648 —0.039
R: CCTCGGTTTATGGCTGAGAT

Mill47 F: AAGCGTGTAATGCACTCAAAGA NED 2 (GA)s 57 KX670766 50 118-162 0.101 0.057 10 0.600 0.766 0.227**
R: AACAGAAGTCGAACTGAGTCAAAA

Mill52 F: CCCTGAGGCATCGAAATATAA 6-FAM 1 (AC)y 60 KX670767 50 94-98 - - 2, 0.420 0.412 —0.010
R: TGCAATTGATGGTATTTGCATT

Mill56 F: TCTGCAGATTTTGCATCTCG PET 1 (AGA)6 60 KX670768 50 194 - - 1 0 0 -
R: TAGCAACAATGCTTCGCTGA

Mill61 F: AAATGAACTCGCCCAAAAGA PET 4 (CAA); 57 KX670769 50 163-166 - 0.048 2 0.480 0.467 0.044
R: ACACTGTCGATTGTGTTCCAA

Mill67 F: TTGCGAGTTTACTTACCAGGC VIC 1 (TAGA)s 60 KX670770 50 259-359 0.144 0.039 11 0.420 0.588 0.294**
R: TGAAGCAAATGACAAGAGCAA

Mill86 F: GCGCGAAAATAAATTAAGGAA NED 4 (GTT)s 57 KX670771 50 106 - - 1 0 0 -
R: TCCAATCTGAATTCCACCCT

Millo1 F: CACTTTCGCCATTGTTGCTA PET 4 (CAA)g 57 KX670772 50 116 - - 1 0 0 -
R: AACGGAATTCGAATCATTGC

Mill93 F: TGAAATTTTCCAGTGACATCAAA 6-FAM 2 (TGT); 57 KX670773 50 91-100 - 0.055 3 0.260 0.339 0.243
R: GCTAATTATGAAATAGCAACTCCTAAA

Mill94 F: GCATAAAGAATAAAGCAGAGGCA 6-FAM 3 (GAA); 57 KX670774 50 131-140 - 0.016 2 0.480 0.461 —0.032
R: CAATTGTGGGGAAGTTCGTT

Mill95 F: TCCATAGCTTCTGCCTCCTC 6-FAM 1 (TTG); 60 KX670775 50 123-138 - 0.022 3 0.320 0.304 —0.042
R: GCTGATGATGCTGTCGAAGA

Mill101 F: AGTCCTTCAATTGGTGGGTG PET 2 (CAA)g 57 KX670776 50 132-135 - - 2 0.640 0.493 —0.289
R: GAGATGATGACTGAGCAGCAG

Mill103 F: TTAAAGCCAGAGACAGAGAGACA VIC 3 (AG); 57 KX670777 50 94-100 - 0.017 4 0.700 0.621 —0.117
R: ATCAACAGTTTCCCCTGTGC

Notes.

MP, multiplex panel in which each locus was included; T,, primer temperature annealing; N, number of individuals with reliable amplification; Null, proportion of null alleles; LD, proportion of al-
lele comparisons showing significant linkage disequilibrium (P < 0.05); Na, number of alleles; H,, observed heterozygosity; H,, expected heterozygosity; Fis, inbreeding coefficient.
Significant values of Fyg are indicated by bold values with *P < 0.05 and **P < 0.001.
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Amplified fragments were visualised on an Applied Biosystems 3730 Sequencer using a
GeneScan 500 LIZ ladder.

Sampling, genotyping and cross-species amplification

The optimised loci were genotyped in our target species in addition to five other Millepora
species to test for their transferability. For the characterisation of newly developed
microsatellites, small fragments (<2 cm?) from 50 M. platyphylla colonies were collected on
the reefs of Moorea in French Polynesia (CITES - FR1298700028-E). For cross-species am-
plification transferability tests, samples were collected from various locations in the Indo-
Pacific and the Caribbean for five other species of fire corals: 11 M. intricata in Papua New
Guinea, 30 M. dichotoma in Europa Island (Mozambique Canal), 30 M. tenera and 14 M.
exaesa both in Reunion Island and 30 M. complanata in Curagao (Table 52). DNA from the
165 Millepora colonies was extracted as described above and optimised loci were combined
in four multiplex panels according to their allele size range and primer annealing temper-
ature (see MP in Table 1). PCRs (10 nL) were performed with 2 uM of labelled forward
primer and reverse primer with the same amplification conditions described above. PCR
products were sent to GenoScreen (Lille, France) for fragment analysis and were visualised
using an Applied Biosystems 3730 Sequencer. An internal size ladder (GeneScan 500 LIZ,
Applied Biosystems) was used for accurate sizing and alleles were scored and checked
manually using GENEMAPPER v.4.0 (Applied Biosystems, Foster City, CA). Samples that
were ambiguous in scoring were re-amplified and re-scored. All peak profiles that were
faint or ambiguous (i.e., multiple peaks) were considered as missing data.

Phylogenetic analyses

Additionally, a 461 bp portion of the mitochondrial 16S gene was amplified for 30 specimens
(five colonies per species) and used to estimate the genetic distances among the six Millepora
species. The PCR amplifications were performed using the primers 16S-SHA and 165-SHB
(Cunningham & Buss, 1993) in 20 wL reactions containing: 1.5 mM of MgCl,, 0.2 mM of
each ANTP, 1x final concentration of buffer, 0.5 pM of each primer, 0.25 unit of Red
Hot Taq polymerase, 2 pL of DNA template (80—100 ng/pL) and sterilised water up to
20 pL. The cycling parameters were as follows: an initial denaturation step of 5 min at 94 °C,
followed by 35 cycles of 1 minat 94 °C, 1 min at 50 °C, 1.5 min at 72 °C and a final elongation
step of 5 min at 72 °C. Sequencing of the PCR products was performed by GenoScreen
(Lille, France).

Data analyses

Control for the presence of null alleles, scoring errors and large allele dropout were per-
formed with MICROCHECKER v.3.7 (Van Qosterhout et al., 2004). To assess the discrim-
inative power of the microsatellite markers, the genotype probability (GP) was estimated
for each locus and for a combination of all loci using GENALEX v.6.5 (Peakall & Smouse,
2006). Repeated multilocus genotypes (MLGs) were also identified in GENALEX and were
considered as clone mates at GP < 0.001. The probability of identity, P(p), was computed
to evaluate the power of our microsatellites to accurately distinguish closely related
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genotypes from those produced by asexual reproduction (Waits, Luikart ¢ Taberlet, 2001).
Population genetic analyses were then performed after the removal of all clonal replicates.

Indices of genetic diversity were estimated for each species in all locations using
GENALEX, including Na, the total number of alleles per locus, observed (H, ) and expected
(He) heterozygosity (Weir ¢ Cockerham, 1984). The inbreeding coefficient Fig and linkage
disequilibrium were estimated using GENETIX v.4.02 (Belkhir et al., 1996), applying a
permutation procedure (1,000 permutations) to assess statistical significance. GENETIX
was also used to estimate genetic distance among populations of M. platyphylla and the
other Millepora species with the microsatellite dataset using the 8 estimator of Fst (Weir
& Cockerham, 1984) based on a permutation procedure (1,000 permutations). Genetic
p-distances among species at the mtDNA 16S gene were calculated in Mega v.6 (Tamura
et al., 2013). In addition to the p-distance, we also computed other genetic distances (i.e.,
Kimura-2-Parameters, Tamura & Nei and Maximum composite Likelihood, all available
in the software Mega v.6) and found similar species rank among all measures tested. We
also examined the cross-species amplification success of the new microsatellite markers
by plotting the genetic diversity (Ho) and the proportions of missing data (non amplified
loci after 3x repeat PCR, and this at different annealing temperatures) in each species
against genetic distance (16S) and relationships were tested using Pearson’s correlation
coefficient.

RESULTS

Development of de novo microsatellites in Millepora platyphylla
Sequencing of the microsatellite-enriched library from 14 partially bleached fragments of M.
platyphyllayielded 78,784 reads. The Quality Detection Device (QDD) for bioinformatic fil-
tering resulted in a final set of 5,976 sequences containing microsatellite motifs. For the char-
acterisation of new microsatellites, 127 primer pairs (out of the 186 resulting from the QDD
filtering, 68.3%) were tested in 16 individuals of M. platyphylla collected on Moorea’s reefs.
Fifteen loci showed clear amplification profiles and no Symbiodinium specific locus was
identified, proving the efficiency of the DNA extraction technique. For the 50 M. platyphylla
colonies collected on Moorea’s reefs, twelve loci were polymorphic (from 2 to 13 alleles) and
three additional monomorphic loci were retained for further cross-species transferability
tests (Table 1). Contig sequences containing the microsatellites identified in this study are
available in GenBank (KX670763-KX670777, Table 1).

Significant linkage disequilibrium was identified and distributed among all microsatellite
loci in M. platyphylla. 9.1% of the pairwise locus combinations showed a significant
probability of linkage disequilibrium at P < 0.05 (Table 2). The presence of null alleles
was detected at Mill47 and Mill67 with frequencies of null alleles at both loci estimated at
10.1% and 14.4%, respectively. These two loci were removed from our dataset for further
genetic analyses, although there was no evidence of scoring error or large allele dropout for
any locus. Given the low P(1p) value estimated (1.3E—6), our panel of microsatellites had a
high power to distinguish colonies that were clonal replicates. For the ten polymorphic loci
showing no evidence of null alleles, the mean number of alleles (Na) per locus was 3.462
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Table 2 Summary of genetic distances (GD) based on the 16S gene between the target species and other Millepora species together with indices
indicating microsatellite transferability and genetic diversity.

Species Locality N MLG Clonal Pup) GD Amp Pol Null LD Na H,
MLG (%) (%) (%) (%)
M. platyphylla Moorea 50 50 - 1.3E—6 - 100 80.0 13.3 9.1 3.462 0.411
M. intricata Papua 11 10 1 1.1IE—6 0.048 73.3 60.0 - 12.1 3.909 0.405
M. dichotoma Europa 30 24 4 4.1E-7 0.049 86.7 60.0 7.7 10.3 3.417 0.323
M. tenera Reunion 30 24 6 3.1E-7 0.049 80.0 73.3 58.3 23.0 4.833 0.439
M. complanata Curagao 30 30 - 1.3E—6 0.130 53.3 46.7 75.0 10.2 4.000 0.250
M. exaesa Reunion 14 14 — 3.9E—6 0.149 60.0 53.3 11.1 17.6 3.625 0.496
Notes.

N, sample size; MLG, number of multilocus genotypes; Clonal MLG, number of multilocus genotypes with clonal replicates; P(p), Probability of Identity; Amp, percentage
of loci amplified; Pol, percentage of polymorphic loci; Null, percentage of loci showing evidence of null alleles; LD, percentage of allele comparisons showing significant link-
age disequilibrium (P < 0.05); Na, mean number of alleles; H,, mean observed heterozygosity.

Na and H, were estimated based on loci showing no evidence of null alleles and clonal replicates were removed from our dataset for these measures of genetic diversity.

Table 3 Nuclear (Fsr) and mitochondrial (p-distance) genetic distances among Millepora species. Val-
ues above the diagonal are the Fsr calculated on the microsatellite dataset, values with P < 0.001 are in
bold and the remaining values are NS. Values below the diagonal are genetic distances (p-distance) based
on the mitochondrial 16S gene.

M. platyphylla M. intricata M. dichotoma M. tenera M. exaesa

M. platyphylla 0.343 0.373 0.339 0.167
M. intricata 0.048 0.031 0.065 0.181
M. dichotoma 0.049 0.051 0.062 0.221
M. tenera 0.049 0.051 0.000 0.293
M. exaesa 0.149 0.143 0.150 0.150

and the observed heterozygosity (Ho) was 0.411 (Table 2). Only three loci out of fifteen
showed significant deficiency in heterozygotes compared to HWE and only one of them
showed no evidence of null alleles (Mill07, Fis: 0.121, Table 1).

Cross-species amplification in Milleporidae

Assessment of the mtDNA genetic distances (GD) within the Millepora genus revealed
that branching species, i.e., M. intricata, M. dichotoma and M. tenera, were more closely
related (0.048-0.049) to our target species, with haplotypes shared between M. dichotoma
and M. tenera (Table 3 and see Appendix S1 for the haplotype network). The plate-like M.
complanata (0.130) and encrusting M. exaesa (0.149) were more genetically distant from
M. platyphylla. The mean amplification success for cross-species amplification was 70.7%
(~11 loci out of 15) and the mean polymorphism was 58.7% (~9 loci out of 15). Cross-
species amplification decreased significantly with mtDNA genetic distance (r = —0.931,
P =0.007), with a reduced amplification success in the most divergent species, i.e., M.
complanata (53.3%) and M. exaesa (60.0%), and higher for M. intricata (73.3%), M. tenera
(80.0%) and M. dichotoma (86.7%) (Table 2). Cross-species amplification also revealed
a significant decrease of polymorphism with increasing mtDNA distance (r = —0.857,

P =0.029), with lower percentages of polymorphic loci for non-target species (<73.3%,
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Figure 1 Proportion of missing data (A) and observed heterozygosity (B) per microsatellite locus (cir-
cles) in five Millepora species plotted against genetic distances (16S gene) from the target species. Tar-
get species Millepora platyphylla (p, red) and non-target species; Millepora intricata (i, green), Millepora di-
chotoma (d, pink), Millepora tenera (t, purple), Millepora complanata (c, blue) and Millepora exaesa (e,
yellow).

Table 2). No relationship was found between the percentage of loci showing evidence
of null alleles and genetic distance (r =0.331, P = 0.521). The highest percentage was
recorded for M. complanata (75.0%), while lowest for M. intricata (0%). The proportion
of missing data per locus increased significantly with increasing level of genetic distance
(Fig. 1A, r=0.214, P = 0.044).
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Clonal replicates were found in the three branching species: 1 clonal MLG in M. intricata,
4 in M. dichotoma and 6 in M. tenera (Table 2). The mean observed heterozygosity per locus
was highly variable in all species, although more limited in M. tenera and M. complanata
due to high proportions of null alleles in both species (Fig. 1B and Table S3). No
significant correlation was found between the genetic diversity and mtDNA genetic
distance (r =—0.175, P =0.101). The mean observed heterozygosity was slightly reduced
for M. complanata (0.250) compared to other species (0.323 for M. dichotoma < Ho < 0.496
for M. exaesa) (Table 2). However, Ho estimate in M. complanata was based on only one
microsatellite locus (Mill 103, Fig. 1B). For the four other non-target species, 2 loci out of 15
showed significant deficiencies in heterozygotes compared to HWE in M. dichotoma (Mill07
and Mill67, Fis: 1.000) and another one in M. intricata (Mill101, Fis: 0.500) (Table S3).

The transferability of microsatellites in the Milleporidae also revealed strong genetic
differentiation among some species (Table 3 and see Appendix S2 for the Bayesian clustering
analysis). No significant genetic differentiation was observed for the closely related branch-
ing species (i.e., M. intricata, M. dichotoma and M. tenera). For all comparisons involving
our target species M. platyphylla, the lowest value of Fsp(< 0.167) was recorded for the most
divergent species M. exaesa. No relationship (r =0.150, P = 0.679) was found between the
nuclear (Fsr from microsatellite data) and mitochondrial (p-distance from 16S) genetic
distances.

DISCUSSION

Microsatellites’ development and transferability in Milleporidae
To date, there is no study assessing the genetic diversity and population structure of fire
coral species. This gap is mostly due to the lack of highly variable genetic markers in the
genus until very recently, whereas microsatellite loci have been identified in the Caribbean
species Millepora alcicornis (Ruiz-Ramos & Baums, 2014). Heckenhauer et al. (2014) have
succeeded in developing eleven microsatellite markers for M. dichotoma from the Great
Barrier Reef and showed that their transferability was successful between geographic
regions (Red Sea) and the species M. platyphylla. Their study has shown that eight of the
eleven microsatellite markers (72.7%) were transferable to M. platyphylla which is less to
what we had in the present study (i.e., 86.7% between M. dichotoma and M. platyphylla).
Six of their loci had only 2 alleles for M. platyphylla, which is not informative enough
depending on the analyses performed (e.g., parentage analyses). Furthermore, most of
the microsatellite markers developed by Heckenhauer et al. (2014) were characterised by
significant deficiencies in heterozygotes, whereas only two of our loci showed such HWE
disequilibrium in both of these species. Depending on the target species, a combination
of markers from the two studies would thus seem a good strategy for population genetic
approaches in Millepora hydrocorals.

Our cross-amplification tests show a higher cross-taxon transferability success (73.3—
86.7%) for a genetic distance below 5% from our target species (i.e., M. intricata,
M. dichotoma and M. tenera) and a reduced transferability above this level (<60%
for M. complanata and M. exaesa). Overall, our results show a high probability to
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amplify a microsatellite locus within the genus Millepora, where 71% of the loci were
successfully amplified in the five non-target species. This value is slightly lower to what
was demonstrated for the Caribbean Montastraea species complex (scleractinian corals),
i.e., ~80% of amplification success in two other species within the same location (Davies
et al., 2013). Our lower value, while still very high, is not surprising as we tested cross-
amplification between six species of the genus Millepora (i.e., no species complex as for
Montastraea spp), which were also collected throughout their entire geographic range.
The non-amplification of some microsatellite loci in the non-target species is most likely
due to specific mutations in the primer binding sites in M. platyphylla, i.e., null alleles
(Paetkau & Strobeck, 1995). These loci, specific to Moorea’s population, may result from
local evolutionary processes at this location, such as bottlenecks, expansions, life history
traits, inbreeding and outbreeding (Keller & Waller, 2002; Leffler et al., 2012; Romiguier et
al., 2014). Our cross-amplified loci show a high probability to be polymorphic in non-target
species (58.7%), which is much higher to what is generally found in other taxa, such as fishes
(~25-30% in Barbard et al., 2007; Reid, Hoareau ¢~ Bloomer, 2012) and birds (~20-50% in
Dawson et al., 2010). Many other studies using cross-amplification have shown a significant
decrease in the transferability success and polymorphism with evolutionary distance from
the target species (Jan et al., 2012; Maduna et al., 20145 Moodley et al., 2015).

Usefulness of cross-species amplification in Indo-Pacific
Milleporidae

The level of genetic diversity is key for the persistence of a species in changing environments
and represents a fundamental aspect of biodiversity (Romiguier et al., 2014). Quantifying
the genetic diversity in natural populations and species is critical to address ecological and
evolutionary questions (Nair, 2014), which requires the development of suitable molecular
resources. In this study, our cross-species amplification approach for the development of
new microsatellites shows no significant evidence of lower genetic diversity nor greater
proportion of null alleles with increasing genetic distance from our target species, which is in
contradiction with previous studies (Carreras-Carbonell, Macpherson ¢ Pascual, 2008; Hen-
drix et al., 2010; Moodley et al., 2015). Our results also show that most of our microsatellite
markers are not useful to estimate the genetic diversity in the Caribbean species M.
complanata due to the high proportion of null alleles. Hence, this study reveals that the
transferability of our microsatellites ensures comparable estimations of the genetic diversity
among closely related Millepora species, although restricted to the Indo-Pacific region.
Further investigations with other Caribbean species, such as M. alcicornis, are needed to
test their transferability in this geographic region.

In this study, we also found that genetic distance from interspecific microsatellite data
were not congruent with mtDNA distance among the studied species. It is not surprising as
such highly variable markers would suffer from homoplasy as one look into higher taxon re-
lationships, while microsatellites are well-known to be mostly useful for intra-specific stud-
ies (Selkoe & Toonen, 2006). Nonetheless, assessment of the population structure among
closely related Indo-Pacific species revealed a clear genetic differentiation between the
branching species and the plate-like M. platyphylla. Our panel of new microsatellite loci
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is therefore useful for species delineation and can help resolve the century-old species
problem in Milleporids (Boschma, 1948).

Patterns of genetic diversity and population structure in Milleporidae
The first evaluation of genetic diversity among species of Millepora across its geographic
range in tropical reefs reveals moderate levels of heterozygosity and allelic richness. The
lowest genetic diversity was found for the Caribbean species, M. complanata, likely resulting
from the low proportion of polymorphic loci (46.7%) and the high proportion of loci
showing evidence of null alleles (75.0%). Nonetheless, levels of genetic diversity estimated in
this study are similar to what was described for many tropical scleractinian species (Baums,
2008; Shearer, Porto ¢ Zubilaga, 2009) and to what is expected in populations of partially
clonal organisms. In this study, linkage disequilibrium, relatively high levels of allelic and
genetic diversity, and heterozygote deficiencies were estimated for the six studied hydrocoral
species, as previously described in some scleractinian corals (Baums, 2008). Overall,
these new microsatellites are suitable to infer genetic diversity and to evaluate reproductive
strategies in the partially clonal fire corals.

CONCLUSIONS

This study highlights the utility of cross-species amplification of microsatellites in assessing
population genetics of the Millepora genus in the Indo-Pacific region. Surprisingly, this ap-
proach does not result in lowering genetic diversity (Ho) in non-target species, thus ensuring
an unbiased estimation of genetic diversity among fire coral species. The development of
microsatellites can be complex and difficult in many taxa, such as birds (Primmer et al.,
1997) and plants (Lagercrantz, Ellegren ¢ Adersson, 1993), due to biological constraints that
can affect the abundance and motif repeats of microsatellites in the genome (76th, Gdspdri
& Jurka, 2000). A recent study has demonstrated high microsatellite coverage in several
species of cnidarians, including Millepora alcicornis (Ruiz-Ramos ¢ Baums, 2014), indicat-
ing that there is no biological constraint for the development of microsatellite markers
in this phylum. The availability of numerous microsatellite markers for reef-building
Millepora species creates new opportunities for future research into the processes driving
the complexity of their colonisation success on many Indo-Pacific reefs.
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