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Analysis of chimera states as drive-
response systems
André E. Botha   1 & Mohammad R. Kolahchi2

Chimera states are spatiotemporal segregations – stably coexisting coherent and incoherent 
groups – that can occur in systems of identical phase oscillators. Here we demonstrate that this 
remarkable phenomenon can also be understood in terms of Pecora and Carroll’s drive-response 
theory. By calculating the conditional Lyapunov exponents, we show that the incoherent group acts 
to synchronize the coherent group; the latter playing the role of a response. We also compare the 
distributions of finite-time conditional Lyapunov exponents to the characteristic distribution that was 
reported previously for chimera states. The present analysis provides a unifying explanation of the 
inherently frustrated dynamics that gives rise to chimera states.

In the classic chimera state, a set of identical and identically coupled oscillators becomes divided into two coex-
isting, interdependent groups: one moving coherently, in the sense that the average frequencies of the oscillators 
are the same, the other moving incoherently1. Rather than emerging via spontaneous symmetry breaking, the 
chimera typically evolves from certain symmetry-broken initial conditions2,3. Once established, however, it can 
persist indefinitely, even for finite numbers of oscillators4. Other than being of theoretical interest, chimera states 
have been observed in a wide variety of experimental settings. See, for example, the introduction of ref.3, and the 
references given therein. For a recent review of chimera states, see Panaggio and Abrams5.

Since the discovery of chimera states, more than fifteen years ago6, much attention has been drawn to the fact 
that the two sectors appear to cooperate in sustaining the overall chimera character of the state. However, despite 
numerous studies, relatively little progress has been made towards explaining this mutually sustaining nature of 
the two groups.

The term, frustration, familiar from equilibrium studies7, has also been used in connection with the 
Kuramoto-Sakaguchi model8 (or frustrated Kuramoto model9), where a global phase shift α, called the frustra-
tion parameter, is present in the sine coupling function. In the past, Lyapunov functions have been used to study 
the dynamics in the original Kuramoto model10, with both attractive11 and repulsive12 coupling. The presence of 
α, however, precludes the possibility of defining a Lyapunov function for the system, thus making its analysis in 
terms of an energy landscape more complicated. Curiously, the literature on chimera states exclusively refers to α 
as the phase lag5. The reason for this change in nomenclature is unclear. In the article by Panaggio and Abrams5, 
for example, the effect of α on the dynamics is suggested as one of several open questions about chimera states. 
Here, we take up the familiar notion of frustration, but now in a dynamic sense. As in previous studies13–17, we 
make use of the nonlocally coupled Kuramoto-Sakaguchi model, which has been shown to support stable chimera 
states, even for relatively small numbers of oscillators. See, for example, Fig. 5 of ref.4, for the case N = 30, at r = 0.

Recently, Andrzejak et al.17 investigated the possibility of synchronizing chimera states across different inter-
acting networks in which the individual networks were capable of sustaining chimera states. They found that 
generalized synchronization18 could occur between two non-identical networks, containing the same number 
of oscillators, at two different values of α. For generalized synchronization to occur, nodes in the driver network 
had to be coupled unidirectionally to nodes in the response network19. The discovery of generalized synchroniza-
tion18 and phase synchronization20 have greatly extended the applicability of dynamical systems theory to chaos 
synchronization in general and, in the aforementioned study by Andrzejak et al.17, to chimera states. However, 
generalized synchronization of chaos cannot be used to model individual systems in which chimera states occur. 
This is because the nonlocal coupling, in the typical systems that support chimera states, is not unidirectional. 
To develop a model of chimera states, we therefore propose the framework contained in the influential paper by 
Pecora and Carroll21, on the synchronization of chaotic systems.

Pecora and Carroll21 were the first to investigate chaos synchronization between two identical dynamical 
systems in which arbitrary subsets of variables from one of the systems, called the drive, were used to replace the 
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corresponding variables in the other, called the response. They discovered a purely dynamic criterion for the syn-
chronization of the two chaotic systems; namely, that the sub-Lyapunov exponents21, later termed the conditional 
Lyapunov exponents22, should all be negative.

In the present work we apply Pecora and Carroll’s theory to obtain insights into the inner workings of chimera 
states. We show that the division of the coupled system of identical oscillators, into the incoherent and coherent 
groups, corresponds to Pecora and Carroll’s drive-response system. The incoherent group acts like a drive which 
maintains the order within the coherent group. In this way the inherently frustrated nature of the chimera is 
revealed. We also show that the present interpretation is consistent with that given previously for the peaks of the 
characteristic distribution of finite-time Lyapunov exponents for chimera states16.

Results
As in the work by Pecora and Carroll21, we start with two ‘identical’ systems. In our case, each system is a nonlo-
cally coupled Kuramoto-Sakaguchi model13:
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Here i, k = 1, 2, …, N, the integer R quantifies the coupling range, and K controls the coupling strength.
The way the system is divided into a drive and a response is crucial to its stability and synchronization prop-

erties21. In what follows we show how this subdivision is related to the structure of the chimera. Following Pecora 
and Carroll21, we wish to substitute some of the variables from the drive system (1), in place of the corresponding 
variables in the response (2). At first, such a substitution may appear to be contrary to the notion of the chimera 
state; since, one might object, when some of the driving ϕk are substituted for the corresponding θk, all the oscil-
lators in the response system (2), are no longer identical – because some are now being driven. While this loss 
of equivalence among the oscillators does break the symmetry between the driving and response system17, it is 
important to realize that the driving in no way affects the identicalness of the oscillators within the drive itself. 
Thus, the drive can still support a true chimera state; even though the response system no longer strictly fulfills 
the identicalness requirement. Crucially, however, Pecora and Carroll’s conditional Lyapunov exponents depend 
only on the dynamics of the drive, and thus the prediction they make about the chaos synchronization between 
the two ‘identical’ systems, are in fact predictions about the behavior of one and the same system; namely, the 
unaltered ‘drive’ system.

To clarify this point further, we summarize the main equations from Pecora and Carroll’s original paper21, in 
which they subdivide an N-dimensional autonomous system, written symbolically as

=u f u( ), (3)

into two subsystems:

= = v g v w w h v w( , ), and ( , ), (4)

with v = (u1, u2, …, um), w = (um+1, um+2, …, uN), g = (f1(u), f2(u), …, fm(u)), h = (fm+1(u), fm+2(u), …, fN(u)), and 
the response system given by ′ = ′w h v w( , ). Notice that the response system (primed variables) is being driven by 
a subset of dynamical variables, v, taken from the ‘drive’ system (3). The variational equation, determining the 
synchronization between w and w′, is then found to be of the form

ξ ξ= D h v t w t( ( ), ( )) , (5)w

where, “Dwh is the Jacobian of the w subsystem vector field with respect to w only”21. The conditional Lyapunov 
exponents are thus simply projections of the dynamics onto an appropriate subspace – they measure the growth 
or contraction of the principle axes (frame vectors) defined by the linearization of drive system, restricted to the 
w subspace; i.e., to the subspace spanned by the dynamical variables which are not directly participating in the 
driving. As such, the concept of conditional (or sub-) Lyapunov exponents can be extended to any N-dimensional 
autonomous system, even if no driving actually occurs.

With the previous paragraph as motivation, we follow Pecora and Carroll’s approach by setting, in Eq. (2), 
θ ϕ=
 

 for ∈ − + + N M N M[( 2)/2, ( )/2], where M is the number of drive oscillators. For simplicity of nota-
tion, and without any loss of generality, we assume here that N and M are even numbers, with M = 0 correspond-
ing to the case of no driving. A description of the numerical procedure followed to solve Eqs (1) and (2), is 
provided in the first subsection of Methods. Details of the numerical procedures which we used to calculate both 
the long-time averaged and finite-time conditional Lyapunov exponents, are given in the second subsection of 
Methods.

Figure 1 summarizes our findings on the synchronization properties for different subdivisions. Both drive 
systems, shown in (a) and (f), are in chimera states. In (a)–(e) successively more drive oscillators were symmetri-
cally added, starting from the centre of the incoherent region. In this case we see that the two systems fully syn-
chronize when the drive consists of all the oscillators in the incoherent region of the chimera. On the other hand, 
when the drive oscillators are taken from the coherent region of the driving chimera, as in (f)–(j), full synchroni-
zation of the two systems only occurs trivially when M = N. For the coherent drive, even with M = 98, we found 
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that the time averaged quantities, ϕ θ〈 − 〉




t1 1  and ϕ θ〈 − 〉




t100 100 , differ significantly from zero – they are typically 
in the range [10−4, 10−3]. On the other hand, for the incoherent drive, with M ≥ 70, the differences, either aver-
aged, or instantaneously measured, are on the order of the numerical accuracy, i.e. [10−14, 10−13]. We emphasize 
that we have tested both the instantaneous, and time averaged differences between the drive and response sys-
tems, because the coherent group is defined by adjacent oscillators that have equal time-averaged frequencies. 
Thus it is conceivable that the two systems could synchronize in a time-averaged sense, even though they are not 
fully synchronized.

The results in Fig. 1 suggest that, in the chimera state, the incoherent oscillators play the role of a drive, which 
acts to maintain the order in the coherent group. To explore this idea, we make use of Pecora and Carroll’s theo-
rem21: the systems will only synchronize if the conditional Lyapunov exponents22,23 are all negative. In our case 
the conditional Lyapunov exponents are obtained from the integration of Eq. (1), together with its linearization, 
restricted to the subspace of dynamical variables that are not being used to drive Eq. (2).

In Fig. 2 we show the conditional Lyapunov exponents for the two different driving configurations; i.e. for the 
incoherent and coherent drives that were seen previously in Fig. 1(a,f), respectively. With the view of comparing 
Fig. 2, to Fig. 1, let NI and NC denote the number of incoherent and coherent oscillators in the chimera state, with 
N = NI + NC. Our results indicate that, at fixed parameters, the ratio NI/N is independent of N, though it depends, 
unpredictably, on the exact initial condition that was used to set up the chimera. For a description of the initial 
conditions, see Abrams and Strogatz1. Furthermore, we found that NI is approximately equal to the number of 
negative ordinary (i.e. not conditional) Lyapunov exponents. An example of this rule can be seen in Fig. 2, for 
the M = 0 cases, for which there are approximately 68 negative Lyapunov exponents. This value can be read off 
more clearly from the N = 100 curve (given by the green line), in Fig. 3(b). On the other hand, by counting the 
incoherent oscillators in Fig. 1(a) or (f), we find that NI ≈ 70.

The ratio NI/N is insensitive to the system size. In Fig. 3, we have calculated the Lyapunov exponent spec-
tra corresponding to the M = 0 cases in Figs 1 and 2, for N = 50, 100, 200, 400 and 800. Our analysis suggests 
that the formation of the two regions in a chimera state may be a natural way for the system to overcome its 
inherent dynamic frustration. In the language of Pecora and Carroll’s pioneering work21,22, the chimera 
coherent-driving-incoherent subsystem is unstable and will not synchronize.

The above interpretation of the chimera state seems to have a wide range of applicability. Other than the results 
presented here, for 50 ≤ N ≤ 800, we have also calculated the conditional Lyapunov exponents for the various cou-
plings described in ref.16. In all cases, the driving chimera state can only synchronize the response system, when 
all the conditional Lyapunov exponents become negative. Synchronization only occurs when at least all the inco-
herent oscillators are used as the drive. We have also related our present analysis to the characteristic distribution 
of finite-time Lyapunov exponents for chimera states, described previously16.

Finite-time distributions of (conditional) Lyapunov exponents.  Before discussing the distribu-
tions, we emphasize once more that Pecora and Carroll’s conditional Lyapunov exponents are independent of 

Figure 1.  Time evolution of the instantaneous phase velocities. The panels show ϕ


t x( , )i  for the two systems of 
oscillators in Eqs (1) and (2), with N = 100, K = 1, R = 0.35 N and α = 1.47. (a) and (f) show the drive system (1), 
prepared in symmetrical chimera states. In (a) the lighter coloured (incoherent region), and in (f), the darker 
coloured (coherent region), has been centred on x = 0. In (b–e) the response corresponding to (a) is shown for 
increasing numbers M of drive oscillators. The drive oscillators are positioned symmetrically about the centre of 
the incoherent region (x = 0). Full synchronization of the systems in (a–e) only occurs when all the incoherent 
oscillators (or more) are driving the response system, i.e. for M > 70. For the coherent centred drive shown in 
(f), the response is shown in (g–j). In this case the two systems, i.e. the coherent centred drive and the response, 
never fully synchronize, even at very large values of M. Their failure to synchronize can be seen by comparing 
the time evolution of the phase velocities for the coherent drive, as shown in (f), with those of the responses at 
the various values of M, as shown in (g–j).
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the response system. So are the finite-time conditional Lyapunov exponents. For conceptual clarity, therefore, we 
emphasize here that the distributions which follow are independent of whether the ‘drive’ is, or is not, connected 
to the response system.

In Fig. 4, we make use of the incoherent-centred drive configuration from Fig. 1(a). Here we see an example 
of how the shape of the characteristic distribution evolves as the full spectrum of finite-time Lyapunov exponents 
is sequentially projected onto smaller and smaller subsets of the (a) coherent and (b) incoherent subsets of the 
dynamical variables.

We see that, as M increases up to the threshold of approximately 0.7 N = 140, the intensity of the main central 
peak in the characteristic distribution is reduced. This reduction occurs as more and more incoherent oscillators 
are being removed (projected out) from the dynamics; their effect after projection, only being felt conditionally 
through the nonlocal coupling that exists in this system. In the previous work16 it was suggested that the central 
peak seen in the characteristic distribution of a chimera is related to degrees of freedom corresponding to the 
coherent domain. In Fig. 4 we see that this interpretation is consistent with conceptual subdivision of the system 
into a drive-response system. The present analysis offers a more precise interpretation of the central peak in the 
characteristic distribution: the central peak directly corresponds to the dynamics of the coherent domain, and is 
indirectly (conditionally) dependent, through the nonlocal coupling, on the incoherent domain.

Figure 2.  Conditional Lyapunov exponents, ordered from large to small. All parameters are the same as is 
Fig. 1. For comparison the ordinary Lyapunov exponents (in the case of M = 0), are also shown. Panel (a) is for 
incoherent-centred driving, as in Fig. 1(a). Panel (b) is for coherent-centred driving, as in Fig. 1(f). In (a) we see 
that there are some positive Lyapunov exponents for driving up to M = 70. Full synchronization only occurs for 
M > 70, when all the conditional Lyapunov exponents become negative. On the other hand, for the coherent-
centred driving, in (b), we see that some of the conditional Lyapunov exponents remain positive, even for 
M ≥ 80. In this case the two systems never fully synchronize.

Figure 3.  Lyapunov exponents, ordered from large to small. Panel (a) shows the Lyapunov exponents for 
chimera states of Eq. (1), at different values of N. All other parameters are the same as in Figs 1 and 2, and the 
Lyapunov exponents were averaged as before. Here, there is no driving and the chimeras are asymmetric in all 
five cases. (b) Enlarged view of the boxed region in (a), where the Lyapunov exponents cross from positive to 
negative. We see that the ratios of the number of positive Lyapunov exponents, to the total number of Lyapunov 
exponents, falls within a relatively narrow range [0.31, 0.36] of i/N. The small differences seen in the crossing 
ratios correspond to different NI/N ratios for the chimeras at various N. The NI/N ratios differ due to the 
different initial conditions used in each simulation. Hence, the crossing ratios are essentially independent of N.
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Smallest chimera states.  Interestingly, for the so-called ‘smallest’ chimera states24, for which there are only 
three globally coupled oscillators, with an added inertial term, we could not get the two systems to synchronize 
for any of the chaotic chimera states reported in ref.24. An instructive example of this ‘smallest’ system is shown 
in Fig. 5. The failure of the two systems to synchronize, in this case, points to a fundamental difference between 
the chaotic chimeras observed in the ‘smallest’ system, compared to the classic chimera states that were discussed 
in ref.16. The chimera nature of this chaotic chimera is due to the fact that two of the average frequencies of the 
three oscillators are the same, and different from the third: −0.4422, −0.4422, −0.3114. At the same time, both 
the drive and response systems are chaotic, having very similar Lyapunove exponents: 0.01743, 0.0, −0.00011, 
−0.05496, −0.10111, −0.16438. The crucial difference between this chaotic chimera, and a classic chimera state, 
is the fact that the free oscillator in the response system oscillates chaotically, as can be seen in the far right col-
umn of Fig. 5(b). Thus, one can say that the coupling between the free oscillator and the two driving oscillators, 
is not order producing, as we observed previously for the incoherent drive configuration in the classic chimera.

Figure 4.  Distributions of finite-time Lyapunov exponents. We consider the incoherent-centred drive 
configuration in a system with N = 200 oscillators. All other parameters are the same as before. In (a), we show 
how the distributions of finite-time Lyapunov exponents evolve away from the characteristic shape that was 
described in our previous work16. This characteristic shape corresponds to the M = 0 case, for the full spectrum 
of finite-time Lyapunov exponents. As M increases the distributions obtained from the conditional finite-time 
Lyapunov exponents tend toward a Gaussian that is centred on the main peak of the characteristic distribution 
(M = 140). This Gaussian corresponds to all the degrees of freedom associated with the coherent group, made 
up of the 60 remaining oscillators. In (b) the corresponding distributions are shown, when the finite-time 
Lyapunov exponents are projected onto the subspaces spanned by the variables corresponding to the incoherent 
oscillators. Here we observe a reduction in the central main peak of the characteristic distribution (shown in (a) 
for M = 0), as M increases. When M becomes close to or equal to N, the characteristic distribution associated 
with the full spectrum of N finite-time Lyapunov exponents is recovered. This can be seen by comparing the 
M = 180 case in (b) with the M = 0 case in (a).

Figure 5.  Frequency-time plots for a chaotic chimera. For this ‘smallest’ system, described in ref.24, there are 
only three oscillators; however, the additional inertial terms make the system six-dimensional. Here the system 
on the right (b) is being driven by the first two oscillators from the system on the left (a). These two systems do 
not synchronize because the two conditional Lyapunov exponents, 0.0635 and −0.164, are not both negative. 
The initial conditions in this simulation were ϕ1 = ϕ2 = ϕ3 = 0, ϕ = .


0 371 , ϕ = − .


0 52 , ϕ = .


0 493 , for the drive, 

and θ θ= = 03 3 , for the response. Parameters: α = 1.765, μ = 0.06, m = 1.0, and ε = 0.1.
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Discussion
The drive-response theory of Pecora and Carroll21,22 shows how two chaotic systems can synchronize, if they are 
dynamically coupled the right way. Here, we have used their theory to bring out the stability of the frustrated state 
over the fully synchronized state. The character of the frustrated state is better discovered in this new light, as we 
find out about the relative size of the coherent and incoherent sets. We gain insight into the chaotic nature of the 
frustrated state. This chaotic character, however, is reduced as it happens in a collective state, within the chimera. 
A measure of this reduction could be estimated, using the Kaplan-Yorke conjecture25. This conjecture equates a 
dimension based on the Lyapunov exponents with the geometric dimension of the attracting set. The latter is the 
entropy or information dimension, pointing to the interrelations within the incoherent set, and among the set of 
oscillators as a whole. With many positive, but near zero Lyapunov exponents, this is found to be close to half the 
number of incoherent oscillators, and scaling in general as 0.35 N, which is less than if the chaotic set were on its 
own. For instance, this gives 0.7 for the Henon map, and 1.05 for the Lorentz map, as compared to 1.26 and 2.07 
for their actual Kaplan-Yorke dimensions, respectively. We therefore believe our analysis has provided a better 
understanding of the formation of the chimera, and how it is supported by its frustrated structure.

Our results can also be interpreted in the language of information theory, where the Lyapunov exponents 
measure the rate at which the system processes create or destroy information26. Analogous to the order produced 
by the flow of thermal energy in non-equilibrium systems, the coherent group in the chimera seems to destroy the 
dynamic information produced by the incoherent group, thus creating more order than would otherwise exist in 
the chaotic system. It would be very interesting to make a more quantitative study of the internal flow of dynamic 
information, perhaps in terms of entropy considerations27, within chimera states.

The stability of the chimera state indicates an inner correlation between the incoherent and coherent subsets 
of oscillators, which maintains the chimera as it is defined. Previous work along the same theme as we have pre-
sented here; namely, coupling two interacting populations of oscillators, has shown how the stability is controlled 
by the coupling strength, where the chimera emerges as the more stable state28,29. The stable state is interpreted as 
a result of two competing synchronization patterns29, leading to the more stable, yet frustrated, state.

Finally, it remains to investigate the relevance, to chimera states, of the numerous developments that have 
taken place since Pecora and Carroll’s original work21. Some of these developments have been discussed in their 
recent review23, which does not mention chimera states.

Methods
Numerical integration of Eqs (1) and (2).  The driving is achieved by evolving both systems simultane-
ously, and ensuring that the components being driven are overwritten by the corresponding drive components in 
each call to the function returning the derivatives, θk. For the numerical integration, we used Python’s dopri5 
routine, imported from the module scipy.integrate.ode. This is an explicit Runge-Kutta method of order (4)5, with 
adaptive step control and dense output30. We set the relative and absolute error tolerances to 10−14. Since asym-
metric solutions to the nonlocally coupled Kuramoto-Sakaguchi model are known to exhibit chaotic fluctuations 
of their position along the unit circle, particularly at low values of N14, we mostly calculate the symmetric numer-
ical solution of the drive system, for the cases when N ≤ 400. By doing so we avoid having to keep track of which 
drive oscillators belong to the coherent and incoherent groups, at any instant in time. Our calculations for asym-
metric drives at N = 800, where the position of the incoherent (and coherent) region is stationary over much 
larger time scales than used here, confirm that there are no essential differences between symmetric and asym-
metric driving.

Calculation of the Lyapunov exponents.  We have calculated the Lyapunov exponents by using the 
standard (WSSV) code given in Wolf et al.26, modified according to the method developed by He et al.31, for 
the conditional Lyapunov exponents. We performed the Gram-Schmidt orthogonalization of the frame vectors 
every 10 dimensionless time units, and allowed a transient time of 1000. The Lyapunov exponents were averaged 
between 1000 and 11000 time units, which is a sufficiently long time to ensure convergence of the largest expo-
nent to within a range of ±0.1% of its average value, during the last 1000 time units of the calculation.

The distributions of finite-time Lyapunov exponents were calculated as in the previous work16. To obtain 
the distributions for the finite-time, conditional exponents we simply set to zero the relevant rows and columns 
of the Jacobian matrix for the drive system, as explained in the method by He et al.31. The notation used for the 
distributions in Fig. 5 is as before. For example, P200(λ, 64) denotes the distribution of exponents (or conditional 
exponents), for N = 200 oscillators, averaged over 64 samples. As in the previous work16, our sample time interval 
is Δt = 1/128. Thus, the finite-time exponents have been averaged over 0.5 dimensionless time units. Each distri-
bution contains 10000 samples, recorded after the usual transient time of 1000.

Data availability.  The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.
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