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The bone microenvironment homeostasis is guaranteed by the balanced and fine
regulated bone matrix remodeling process. This equilibrium can be disrupted by
cancer cells developed in the bone (primary bone cancers) or deriving from other
tissues (bone metastatic lesions), through a mechanism by which they interfere with
bone cells activities and alter the microenvironment both biochemically and mechanically.
Among the factors secreted by cancer cells and by cancer-conditioned bone cells,
extracellular vesicles (EVs) are described to exert pivotal roles in the establishment and
the progression of bone cancers, by conveying tumorigenic signals targeting and
transforming normal cells. Doing this, EVs are also responsible in modulating the
production of proteins involved in regulating matrix stiffness and/or
mechanotransduction process, thereby altering the bone mechanoenvironment. In
turn, bone and cancer cells respond to deregulated matrix stiffness by modifying EV
production and content, fueling the vicious cycle established in tumors. Here, we
summarized the relationship between EVs and the mechanoenvironment during
tumoral progression, with the final aim to provide some innovative perspectives in
counteracting bone cancers.
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INTRODUCTION

Bone primary tumors are a heterogeneous group of rare neoplasms of the skeleton, accounting for
approximately 0.2% of all tumors (Franchi, 2012). Their etiology is almost unknown, and an
appropriate prognostication of primary bone tumors is complicated by the morphological overlap
with other bone lesions of mesenchymal and non-mesenchymal origin. Bone tumors are classified as:
chondrogenic, osteogenic and fibrogenic tumors, vascular tumors of bone, osteoclastic giant cell-rich
tumors, notochordal tumors, other mesenchymal tumors of bone, hematopoietic neoplasms of bone
and undifferentiated small round cell sarcomas of bone (Choi and Ro, 2021). Besides primary
tumors, bone metastatic lesions are actually much more common, especially in adults, most of which
resulting from breast and prostate primary cancers (Cecchini et al., 2005). Bone metastases are
classified as osteolytic (characterized by destruction of bone matrix), osteoblastic (characterized by
deposition of aberrant new bone) or mixed in dependance on how cancer cells interfere with
physiological bone remodeling (Macedo et al., 2017). The main features of the metaphyseal bone,
where metastases usually arise, are the rich vasculature and the constant remodeling of the bone
matrix by which a plethora of soluble factors (among which growth factors, cytokines and
extracellular vesicles) are released, thus acting as chemoattractant signal for cancer cells from
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distant sites (Bussard et al., 2008). Bone remodeling is a
physiological process deriving from the continuous turnover
of the bone matrix guaranteed by the finely regulated activity
of the bone cells: osteoblasts (bone forming cells) (Lin et al., 2020)

and osteoclasts (bone resorbing cells) (Peruzzi and Teti, 2012)
that are responsible in maintaining the structural balance of bone
matrix content, and the osteocytes that participate in bone
remodeling in response to environmental and mechanical

FIGURE 1 | Schematic representation of the mechanisms by which EVs are involved in bone lesion formation.
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stimuli (Hu and Qin, 2020; Qin et al., 2020). In the bone
microenvironment, the osteocytes can perceive and respond
coordinately to environmental cues, such as hormones,
physical stress, and mechanical loading and unloading. Doing
this, osteocytes coordinate bone homeostasis by releasing factors
that regulate bone formation or resorption with respect to
demands (Bonewald, 2011). Several pathological factors can
deregulate bone homeostasis, thereby inducing bone structural
defects and macro- and micro-environment alteration, ultimately
leading to cancer cells colonization within the tissue (Buenrostro
et al., 2016). The mechanisms by which tumor cells metastasize to
bone are poorly understood, although the theory of the
premetastatic niches organized by primary tumors from near
and distal regions of the body is now accepted by the scientific
community (Doglioni et al., 2019; Wang et al., 2021). Once
established in the bone microenvironment, cancer cells from
both bone primary tumors or secondary metastases are
responsible of bone remodeling deregulation, by altering bone
cell activities (Taube et al., 1994; Guise et al., 2006). This process
induces the release by bone cells and bone matrix of growth
factors, cytokines and other soluble molecules that fuel tumor
cells, leading to a “vicious cycle” in which bone integrity is
destroyed and cancer cell growth and migration are promoted
(Lamora et al., 2016; Esposito et al., 2018). Among the factors
released by the vicious cycle, tumor- and bone-derived
extracellular vesicles (EVs) are receiving growing interest
because of their involvement in cancer progression and cancer
bone tropism (Tamura et al., 2020) (Figure 1). EVs are non-
replicable, lipid bilayer nanoscale vesicles virtually released by
every cell type into the extracellular space (Yáñez-Mó et al., 2015;
Théry et al., 2018). The traditional classification of EVs
distinguishes three main sub-populations as microvesicles,
exosomes, and apoptotic bodies (Yáñez-Mó et al., 2015;
Zaborowski et al., 2015) on the basis of their biogenesis,
release mechanisms, size, content and function, and their
cargo consists of lipids, nuclear acids as DNAs, mRNAs,
miRNAs and long non-coding RNAs, and proteins that reflect
the composition of the cell of origin. Emerging evidence suggests
that within a tumor microenvironment EVs are crucial factors in
the communication between cancer and normal cells, influencing
cancer onset, progression and metastatization (Tai et al., 2018;
Dai et al., 2020). In turn, cancer cells can modulate EV
production by altering the microenvironment in terms of
mechanics (Eichholz et al., 2020; Nicastro et al., 2020) and
acidity (Parolini et al., 2009; Logozzi et al., 2018). In the bone
microenvironment, EVs are known to participate in tissue
remodeling process by regulating the fine equilibrium between
bone deposition and bone resorption, at both physiological and
pathological levels, as well as in the tissue engineering-based bone
regeneration (Eichholz et al., 2020; Yan et al., 2020). More in
detail, EVs released by monocyte (Ekström et al., 2013) and
osteoclasts (Wang et al., 2013; Li et al., 2016; Sun et al., 2016), as
well as by mature osteoblasts (Cui et al., 2016) and osteoblast
precursors (Furuta et al., 2016), are involved in regulating
mesenchymal stromal cell differentiation towards osteogenic
lineage. On the other side of the coin, osteoclastogenesis, the
process by which bone-resorbing osteoclasts are formed starting

from monocyte precursors (Zaidi et al., 2003), is mediated by
bone cell-derived EVs (Cui et al., 2016; Huynh et al., 2016; Xie
et al., 2017). In this context, transforming EVs derived from
cancer cells are described as pivotal factors involved in bone
tumor formation and progression (Han et al., 2019; Tamura et al.,
2020). Indeed, EVs released by bone primary and/or secondary
cancer cells are able to alter bone homeostasis favoring cancer
establishment and progression (Li et al., 2019; Chicón-Bosch and
Tirado, 2020; Raimondi et al., 2020). The deregulation of bone
cell activities mediated by cancer-derived EVs depends on the
transfer of transforming factors from cancer to normal bone cells,
thus further fueling tumoral transformation and inducing
aberrant bone cell activity. Most of the bone
microenvironment alterations related to bone cancers are also
reflected in the mechanics of the tissue, in terms of extracellular
matrix stiffness and architecture. Sekita and colleagues have
reported that the bone metastases induced by prostate cancer
show impair mechanical functions that might be attributed to
disruption of the anisotropic microstructure of bone in multiple
phases (Sekita et al., 2017). Moreover, tumor-generated pressure
acts to osteocytes and modifies the bone microenvironment
promoting the growth of prostate cancer bone metastasis
(Sottnik et al., 2015). In view of this, here we summarized the
mutual relationship between extracellular vesicles and the
mechanoenvironment in the context of bone tumors, both
primary and metastatic, with the final aim to provide some
novel points of view to counteract cancer by considering the
roles exerted by EVs and the tissue biomechanics.

EXPERIMENTAL CRITICAL ISSUES IN
STUDYING EVS AND
MECHANOENVIRONMENT
From an experimental point of view, studying the extracellular
vesicles is a complex challenge due to the heterogeneity of these
particles (Beltraminelli et al., 2021). Furthermore, several
revisions of the nomenclature referring to EVs have occurred
in recent years, trying to identify a specific signature for each EV
sub-populations and to standardize isolation and characterization
procedures (Théry et al., 2018). The traditional classification into
exosomes, microvesicles and apoptotic bodies based on
biogenesis and surface protein markers can no longer be
considered specific due to the overlap of size range, density
and endosome-associated protein expression among EV
categories. For this reason, a more recent and comprehensive
classification of EVs is based on differential ultracentrifugation,
the most used technique for EV isolation from cell culture media
and biological fluids. By this, exosomes and microvesicles
<150 nm and pelleted by 100 000g/200 000 g
ultracentrifugation are collectively referred to as “small” EVs,
in comparison to “large” EVs obtained by slower centrifugation
(Théry et al., 2006). Therefore, given the heterogeneity of EVs and
the lack of standardized techniques to isolate, purify and
characterize them, it is important to keep in mind these
critical issues when comparing biological results achieved by
different studies. Other than any experimental bias derived by
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EV sample collection, purification and analysis, another level of
complexity is given by the observation that EV metabolic
signature depends on cell culture conditions (Palviainen et al.,
2019). As deepened below, it is worth noting that the conditions
in which a cell culture is maintained can modulate per se the
production and the molecular signature of EVs, thus suggesting
the importance in choosing the proper mechanoenvironment, in
terms of both matrix stiffness and mechanical stimuli, for each
cell type when the aim is studying EV production and cargo.

ROLE OF TUMOR-DERIVED EVS IN
REGULATING BONE
MECHANOENVIRONMENT
Extracellular vesicles secreted by cancer cells can transform the
surrounding environment as well as distant tissues, thus
triggering the metastatic process, by creating favorable
conditions for tumor progression (Tamura et al., 2020; Mo
et al., 2021). Unlike cancers that develops in other soft organs,
the establishment of a tumor lesion in the bone
microenvironment implies the remodeling of the bone matrix
to physically create the space for tumor growth. By a mechanism
known as “the vicious cycle”, cancer cells interfere with the
physiological crosstalk among bone cells leading to the bone
lesion (Mundy, 2002). During this process, EVs released by
cancer cells or by transformed bone cells are involved in
altering the bone microenvironment and the bone matrix,
thereby causing the deregulation of the stiffness and the
mechanics properties of the tissue (Figure 1). The crucial
processes involving EVs in bone primary tumor progression,
dissemination and transformation of surrounding normal cells
have been well characterized (Urciuoli et al., 2018; Chicón-Bosch
and Tirado, 2020). Among these, one of the main processes by
which EVs modulate the bone microenvironment is through the
conveying of lytic enzymes involved in extracellular matrix
remodeling, as matrix metalloproteinases (MMPs) and MMP
modulators (Nawaz et al., 2018). Beside the transport of ECM-
remodeling factors as cargo, osteosarcoma-derived EVs can
modulate the MSC and osteoblast epigenetics by inducing the
expression ofMMP1 and VEGF, both involved in the bonematrix

remodeling (Mannerström et al., 2019). At the same time, EVs
produced by cancer cells are known to interfere with the
physiological bone remodeling process, by altering the
functions of both osteoblasts and osteoclasts (Figure 1).
Indeed, osteosarcoma-derived extracellular membrane vesicles
(EMVs) convey bioactive pro-osteoclastogenesis factors (as
MMP-1 and -13, TGF-β, CD-9 and RANKL) responsible in
stimulating osteoclast formation and bone resorption
(Garimella et al., 2014). Raimondi et al. also described the
packaging of pro-osteoclastogenesis miRNAs (miR-148a-3p
and miR-21-5p) in osteosarcoma-derived exosomes that are
responsible of promoting osteoclast differentiation and bone
resorption activity (Raimondi et al., 2020), further
demonstrating a specific role for cancer-derived exosome
cargo in the alteration of bone matrix remodeling (Table 1).
In the context of bone lesions induced by cancer cells developed
in distant organs, EVs exploit the same pathways mentioned
above to alter, directly or by transforming the surrounding cells,
the bone mechanoenvironment. Prostate cancer-derived EVs are
capable to affect both osteoblasts and osteoclasts, leading to
osteogenic or osteolytic metastases, respectively. Exosomes
collected from a prostate cancer cell line (TRAMP-C1) impair
osteoclast precursor differentiation into mature osteoclasts by
decreasing the expression of differentiation markers, among
which cathepsin K and MMP-9 (Karlsson et al., 2016). At the
same time, prostate-cancer derived exosomes overexpressing hsa-
miR-940 can stimulate an aberrant osteogenic differentiation of
mesenchymal cells and the activation of osteoblasts, thereby
favoring the formation of an osteosclerotic lesion (Hashimoto
et al., 2018) (Table 1). Breast cancer-derived EVs are known to
participate in the formation of osteolytic bone lesions usually
related to this type of cancer. Exosomes collected from the
conditioned medium of breast cancer cells MDA-MB-231 and
conveying L-Plastin are responsible in osteoclast activation, thus
inducing an osteolytic bone microenvironment favoring cancer
growth (Tiedemann et al., 2019). Moreover, miR-218 conveyed
by MDA-MB-231-derived EVs has been described to reduced
osteoblast differentiation and type 1 collagen deposition (Liu
et al., 2018), thereby altering bone matrix composition (Table 1).
MiRNAs conveyed by cancer cell-derived EVs can also appease
the metastatic progression to bone. MiR-192 conveyed by lung

TABLE 1 | List of cited miRNAs conveyed as EV cargo and involved in the crosstalk between EVs and mechanoenvironment in bone tumors.

miRNA Cells of origin Target cells Role/mechanism of action References

miR-148a-3p Osteosarcoma cell lines (SaOS2,
MG-63, U2-OS)

Osteoclasts To promote osteoclast differentiation and bone resorption
activity

Raimondi et al.
(2020)miR-21-5p

miR-940 Prostatic carcinoma cell lines (C4,
C4-2 and C4-2B)

Mesenchymal stromal
cells

To induce osteogenic differentiation Hashimoto et al.
(2018)

miR-218 Breast cancer cell line (MDA-MB-231) Osteoblasts To reduce osteoblast differentiation and type1 collagen
deposition

Liu et al. (2018)

miR-192 Lung cancer cell line (A549) and
highly metastatic subpopulations

Bone marrow cells and
endothelial cells

To impair osteolytic lesions and bone colonization by
decreasing tumor-induced osteoclastogenesis and
angiogenesis in vivo

Valencia et al.
(2014)

miR-21 Breast cancer cell line (SCP28) Osteoclasts To favor the differentiation and the resorbing activity of
osteoclasts, supporting the formation of a pre-metastatic niche

Yuan et al. (2021)
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adenocarcinoma-derived exosome-like vesicles is responsible
alone in eliciting a multimodal mechanism by which reducing
bone metastasis by acting on tumor-induced osteoclastogenesis
and interfering with metastatic angiogenesis (Valencia et al.,
2014) (Table 1). It is worth noting that, in the case of
metastatic bone lesions, cancer-derived EVs are involved in
supporting a pre-metastatic niche formation to prime
successful tumor growth and survival in an otherwise hostile
environment for circulating tumor cells (Guo et al., 2019)
(Figure 1). Exosomes collected from conditioned medium of
SCP28 cells, a bone-seeking subpopulation of MDA-MB-231
breast cancer cell line, promote the differentiation and the
resorbing activity of osteoclasts, thus favoring the formation of
a pre-metastatic niche via transferring miR-21 to bone cells
(Yuan et al., 2021) (Table 1). All together, these findings
demonstrate that EVs represent an important factor in the
crosstalk between tumor and the host tissue and in the
modulation of the bone extracellular matrix composition by
interfering with bone cell activities.

HOW MECHANICAL STIMULI INFLUENCE
THE EV-MEDIATED EFFECTS IN THE BONE
TUMOR MICROENVIRONMENT
The tumor microenvironment is commonly defined as
desmoplastic, namely a condition characterized by chronic
inflammatory status, hyperactivation of fibroblasts and pro-
fibrotic pathways, elevated angiogenesis and increased
production of ECM proteins responsible in stiffening the
surrounding stroma, thereby altering the physiological
mechanoenvironment (Pickup et al., 2014). The desmoplastic
response of tissue stroma to the presence of cancer cells has
been described to be driven, at least in part, by cancer-derived
EVs which act on resident cells to increase ECM protein
production (Jiang et al., 2017; Saber et al., 2020). In turn,
matrix stiffness in the tumor microenvironment can modulate
the effects mediated by cancer-derived EVs, as well as mechanical
stimuli impact the EV biological properties (Piffoux et al., 2018). By
using synthetic substrates mimicking the stiffness of the tumor and
tumor stroma, Schwager and co-authors demonstrated that
microvesicles collected from high aggressive breast cancer cell
line MDA-MB-231 cultured on stiff matrix (20 kPa
Polyacrylamide gels) were more able to induce a transforming
phenotype in normal NIH-3t3 fibroblasts than by using softer
matrices (Schwager et al., 2019). These data suggest that matrix
stiffness in the tumor microenvironment can prime normal cells
for response to cancer-derived EVs. Moreover, the mechanical
nature of the bone matrix can influence the EV cargo. Indeed, a
proteomic study on EVs produced by mineralizing vs. non-
mineralizing osteoblasts revealed several differences in terms of
conveyed proteins and of effects on prostate cancer cell growth
(Morhayim et al., 2015), leading to the speculation that an altered
mineralization status likely occurring in bone metastasis can
modulate the production and the cargo of osteoblast-derived
EVs. Furthermore, Morrell and co-authors showed that
mechanical stimulation of osteocytes induced Ca2+ oscillations

influencing EV release and regulating bone formation, both
in vitro and in vivo experimentations (Morrell et al., 2018).
Starting from these observations, a speculation can be made on
an existing loop between EV cargo and release and the peculiar
mechanoenvironment associated to a bone tumor lesion.

CLINICAL RELEVANCE OF
EV-MECHANOENVIRONMENT
CROSSTALK IN BONE TUMORS
Although the feasibility to interfere with EV production has not
been already explored in the clinical approach to cancers, these
vesicles are good biomarkers for cancer diagnosis and prognosis, as
well as a feasible tool for drug delivery in pre-clinical and clinical
applications (Ciferri et al., 2021). Similarly, as a consequence of the
altered ECM processing and degradation in cancer, the protein-
specific fragments deriving from ECM turnover and released in the
bloodstream can be potentially used as circulating biomarkers
useful for clinical diagnosis and monitoring of cancer patients
(Leeming et al., 2011; Petersen et al., 2020). The relevance in
considering the interplay between EV production and the bone
mechanoenvironment can be instrumental in the therapeutic
approaches to bone cancers. Indeed, therapies aim at reducing
tissue stiffness have been exploited to decrease tumor aggressiveness
and potentiate cancer treatment response. Anti-fibrotic drugs used
to reduce ECM stiffening in solid cancers can also act on ECM-
derived EV production by cells within the primary tumor, thereby
impacting metastatization by preventing the EV-mediated
conditioning of the premetastatic niche (Guo et al., 2019).
Moreover, the altered ECM stiffness associated to bone tumor
progression leads to changes in ECM-derived EV release, and
the coordinated modulation of these two biomarkers can be
monitored simultaneously, providing a new diagnostic/
prognostic tool specific for the management of bone tumors.
Another relevant aspect that is worth to be considered is the
in vitro experimental conditions used in the pre-clinical studies
on cancer cell culturemodels. The procedures historically developed
for cancer cell in vitro experimentation involved utilizing a flat layer
of cells attaching to plastic/glass substrates. Now, the scientific
community has fully accepted that two-dimensional (2D) culture
conditions is not physiologically relevant, and studies achieved in
such conditions may difficulty be translated in vivo (Lovitt et al.,
2014). The tissue-specific mechanoenvironment is an essential
component of a tumor and must be recapitulated as much as
possible in cell culture models. This can be achieved by using three-
dimensional conditions and substrates with the stiffness of the tissue
of origin. Notably, EV production in cell culture is strictly related to
the experimental condition (Villasante et al., 2016; Palviainen et al.,
2019), and this is another key aspect to be considered when cancer-
derived EVs are studies in cell culture models.

CONCLUSION

The tumor microenvironment is a complex structure containing
cells (malignant and not), soluble factors and extracellular matrix.
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Cancer cells can alter the surrounding environment directly or by
conditioning the normal cells, by processes involving, among
others, the stiffening of the ECM and the production of
transforming EVs. These two phenomena are interconnected
and modulate each other, participating in a coordinated way
in the onset, progression and metastasis of virtually any tumor. In
the bone microenvironment, dysregulated mechanical stimuli,
both in terms of matrix stiffness and of perceived mechanical
forces, can act firstly onmechanosensing osteocytes, then on bone
and/or cancer cells which in turn respond by releasing EVs. These
can target cells in the microenvironment, interfering with the
physiological bone homeostasis processes and fueling the
formation and the progression of a bone tumor lesion by
regulating the bone ECM composition and stiffness. Here, we
recapitulated the functional crosstalk between EVs and the

mechanoenvironment in bone tumors, also emphasizing the
relevance to consider these aspects in the in vitro cell culture
models for cancer drug development and personalized therapy.
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