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e Department of Zoology, University of Oxford, Oxford, UK 
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A B S T R A C T   

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in Wuhan, China, is the 
causative agent of the coronavirus disease 2019 (COVID-19). Since its first notification in São Paulo state (SP) on 
26th February 2020, more than 22,300,000 cases and 619,000 deaths were reported in Brazil. In early pandemic, 
SARS-CoV-2 spread locally, however, over time, this virus was disseminated to other regions of the country. 
Herein, we performed genomic sequencing and phylogenetic analysis of SARS-CoV-2 using 20 clinical samples of 
COVID-19 confirmed cases from 9 cities of Minas Gerais state (MG), in order to evaluate the molecular properties 
of circulating viral strains in this locality from March to May 2020. Our analyses demonstrated the circulation of 
B.1 lineage isolates in the investigated locations and nucleotide substitutions were observed into the genomic 
regions related to important viral structures. Additionally, sequences generated in this study clustered with 
isolates from SP, suggesting a dissemination route between these two states. Alternatively, monophyletic groups 
of sequences from MG and other states or country were observed, indicating independent events of virus 
introduction. These results reinforce the need of genomic surveillance for understand the ongoing spread of 
emerging viral pathogens.   

1. Introduction 

The World Health Organization (WHO) was informed on 31st 

December 2019 on the occurrence of unknown etiology respiratory 
disease cases in Wuhan, China [1]. Chinese authorities isolated and 
identified this pathogen as a novel coronavirus, the Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of 
the coronavirus disease 2019 (COVID-19) [2]. SARS-Cov-2 belongs to 
the genus Betacoronavirus, subgenera Sarbecovirus, sub-family Ortho-
coronavirinae and family Coronaviridae [3]. Based on phylogenetic 
analysis, SARS-CoV-2 has been divided in two lineages, A and B, 

according to the recent proposed lineage nomenclature [4,5]. Results 
from next-generation sequencing analysis have shown that SARS-Cov-2 
has homology to others coronaviruses (CoVs), such as SARS-CoV and 
Middle East respiratory syndrome coronavirus (MERS-CoV) [2,6]. 

SARS-Cov-2 was declared a public health emergency of international 
concern in January 2020 [7], and, since then, COVID-19 caused over 
293,000,000 cases and more than 5,450,000 deaths around the world 
[8]. The case fatality rates of this disease ranges from 1.2 to 1.6%, 
although, in over 60s the ratio considerably increases [9–11]. When 
there was no licensed antiviral for SARS-CoV-2 and vaccination 
coverage worldwide was limited, several countries mainly used 
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non-pharmaceutical interventions (NPIs) in an attempt to control the 
pandemic [12,13]. However, despite these measures have presented 
positive effects, studies have demonstrated that SARS-CoV-2 trans-
mission from asymptomatic or pre-symptomatic individuals complicates 
public health efforts to combat COVID-19 [12,14,15]. 

On 8th December 2020, the United Kingdom became the first occi-
dental country to vaccinate the population as a prophylaxis against 
COVID-19. After that, other countries initiated the COVID-19 vaccina-
tion programs, using different types of vaccine based on the methodol-
ogy and technology of production, in a two doses protocol [16]. To date, 
the global efforts against COVID-19 resulted in 66,5% of global popu-
lation vaccinated with a minimum one dose of vaccine, and 60,6% got 
the complete vaccination schedule, including the booster dose [17]. 
With the advancement of vaccination, the number of Covid-19 cases and 
related deaths significantly decreased, allowing to the countries to relax 
the NPIs measures [16,18]. Currently, 77,84% of Brazilian population 
are vaccinated with a completed initial protocol and 8.20% of people are 
only partially vaccinated [19]. 

SARS-CoV-2 replication can progress to different clinical manifes-
tations of COVID-19, and, for this reason, numerous approaches to the 
development of licensed antiviral therapies have being investigated for 
the treatment of COVID-19 [13]. Up to date, Remdesivir is the only drug 
approved by the American Food and Drug Administration (FDA) for the 
treatment of COVID-19 [20]. Additionally, Ritonavir-boosted nirma-
trelvir (Paxlovid), molnupiravir, and anti-SARS-CoV-2 monoclonal an-
tibodies (mAbs) have received Emergency Use Authorizations from the 
FDA for the treatment of COVID-19 [20]. These drugs prevent viral 
replication through various mechanisms of action, including blocking 
SARS-CoV-2 entry, inhibiting the activity of the SARS-CoV-2 3-chymo-
trypsin-like protease (3CLpro) and RNA-dependent RNA polymerase 
(RdRp), and causing lethal viral mutagenesis [21,22]. In Brazil, the 
Brazilian Health Regulatory Agency (Anvisa) recommends the 
FDA-approved antiviral treatments for COVID-19 [23]. Molnupiravir 
was approved by the ANVISA in early May 2022 [24]. What is more, 
viral replication demonstrates to be active early in the course of 
COVID-19 [25,26], and as a consequence of that, antiviral therapy 
presents the greatest impact before the illness progresses to the hyper-
inflammatory condition that can characterize the later stages of disease, 
including critical illness [25]. 

In Brazil, the first confirmed case of COVID-19 was reported in São 
Paulo state (SP) on 26th February 2020 [6]. Analysis of the first two 
whole-genome sequences of SARS-CoV-2, isolated from Brazilian pa-
tients who had recent returned from Italy, demonstrated two indepen-
dent events of virus introduction into the country [27]. Since then, 
COVID-19 is responsible for causing 22,300,000 cases and more than 
619,000 deaths in the country [8]. During the early pandemic in Brazil, 
SARS-CoV-2 spread locally. However, despite interventions to prevent 
the virus dissemination, afterwards, large urban centers have become 
responsible for spreading the virus to other locations. According to 
Candido and coworkers data, over 100 international introductions of 
virus were observed in Brazil in 2020, and most of Brazilian strains were 
classified in three clades [12]. Clade 1 circulated predominantly in SP 
state and presented a nucleotide substitution in the spike protein; clade 2 
was a widespread lineage, found in a several Brazilian states and was 
characterized by two nucleotide substitution (ORF 6 and nucleoprotein); 
and clade 3 was predominant in Ceará state (CE) [12]. 

Minas Gerais (MG) ranks as the second most populous state and the 
fourth largest area in Brazil, as well as it represents the third position in 
the Gross Domestic Product (GDP) values. MG shares borders with the 
states of SP, Bahia (BA), Rio de Janeiro (RJ), Goiás (GO), and Mato 
Grosso do Sul (MS). The city of Belo Horizonte, the capital of MG, is the 
major urban and finance center in Latin America [28]. Due to its large 
population size, economic situation, and facilitated access to other 
economy important states, MG has represented a potential region of 
SARS-CoV-2 dissemination, and potentially contributed to aggravate the 
pandemic [29]. To date, about 2,230,000 cases and over 56,660 deaths 

by COVID-19 have been reported in MG [30]. According to Xavier and 
colleagues, the majority of sequences analyzed from samples collected in 
MG up to April 2020 was classified as SARS-Cov-2 lineage B.1, which 
contains sequences from the United States of America (USA), Australia, 
China, and other countries [29]. Herein, we performed genome 
sequencing analysis of SARS-CoV-2 using 20 clinical samples of 
COVID-19 confirmed cases from 9 cities of MG to evaluate the molecular 
properties of circulating viral strains in the state from March to May 
2020. 

2. Methods 

2.1. Ethics statement and samples 

Samples used in this study were collected via nasopharyngeal swab 
in private medical diagnostic laboratories. Ethical approval for this 
study was obtained from the National Ethical Review Board with 
approval number CAAE 30127020.0.0000.0068.20 SARS-CoV-2 sam-
ples with RT-qPCR positive results, collected between March 25th and 
May 25th, 2020, from patients attending private laboratories of diag-
nosis from 9 cities of the state of Minas Gerais (MG), Brazil, were 
selected. Samples were processed for genome sequencing at the Institute 
of Tropical Medicine University of São Paulo (IMT-USP). Metadata 
included information on samples (date and municipality of collection, 
and cyclethreshold (Ct) of SARS-CoV-2 detection by RT-qPCR) and data 
from patients (gender and age) are presented in Table 1. 

2.2. cDNA synthesis and virus multiplex PCR amplification 

Viral RNA was used for cDNA transcription using Protoscript II First 
Strand cDNA synthesis Kit (New England Biolabs, UK) and random 
hexamers (Thermo Fisher Scientific, USA). Whole genome amplification 
was performed by multiplex PCR using SARS-CoV-2 primers described 
previously (https://artic.network/ncov-2019) and Q5 High-Fidelity 
DNA polymerase (New England Biolabs, UK) [31]. PCR conditions 
have been previously reported (https://artic.network/ncov-2019). PCR 
products were purified using the 1x AMPure XP beads (Beckman 
Coulter, United Kingdom) and quantified using fluorimeter with the 
Qubit dsDNA High Sensitivity assay on the Qubit 3.0 instrument (Life 
Technologies, USA). 

2.3. Whole genome sequencing and genome assembly 

About 1 ng/μL of DNA from each of the 20 samples selected to this 
study was used to proceed to the library preparation. Amplicons from 
each sample were normalized and pooled in an equimolar fashion and 
barcoded using the EXP-NBD104 (1–12) and EXPNBD114 (13–24) 
Native Barcoding Kits (Oxford Nanopore Technologies, UK), following a 
previously published protocol [31]. After barcoding ligation, libraries 
were loaded on a flow cell and sequenced by MinION for 8–24 h using 
SQK-LSK109 Kit (ONT, UK). To monitor sequencing in real-time and 
estimate the depth of coverage (target of 200-fold) across the genome for 
each barcoded sample (https://artic.network/rampart), RAMPART 
software from the ARTIC Network (https://artic.network/ncov-2019) 
was used. After generated reads, fast 5 files were base called, demulti-
plexed, and trimmed using Guppy software v2.2.7 (ONT, UK). Minimap2 
v2.28.0 was used to obtain the consensus genomes by mapping the fast 
files to the reference genome of SARS-CoV-2 isolate Wuhan-Hu 1 
(GenBank Accession Number MN908947) and SAM tools were used to 
converted these files in a sorted BAM file [32]. The quality test and 
length filtering were performed for each barcode using guppyplex (https 
://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). Bio-
Edit was used to build a multiple sequence alignment of the resulting 
dataset [33,34]. 
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2.4. Collation of SARS-CoV-2 global datasets 

The dataset of this study was generated using 20 sequences of SARS- 
CoV-2 genomes from samples collected in 9 MG cities. Additionally, 31 
sequences from other regions of the state, available at GISAID, were 
included to the dataset [35] (https://www.gisaid.org), resulting in 51 
whole genome sequences from samples of 16 cities of MG. The dataset 
generated with sequences from MG represents approximately 1 
sequence for every 157 cases (0.63%) notified up to May 27th, 2020. 
Juiz de Fora was the third city in MG with the highest number of 
SARS-CoV-2 notified cases, including 3.18% of all notified cases in this 
city during the period of samples collection, representing about 1 
sequence for every 31 cases [36]. 

2.5. Phylogenetic analysis of SARS-CoV-2 in Minas Gerais 

The complete dataset was generated with the 20 sequences from this 
study, as well as sequences from GISAID platform, totalizing 1637 se-
quences of whole genomes of SARS-CoV-2 globally distributed. 
Wherein, 57.7% (945/1637) and 42.3% (692/1637) of the sequences 
represent isolates from Brazil and from other countries, respectively. 
Among sequences from Brazil, 51 were generated from samples 
collected in MG, being 20 of those new sequences generated in this 
study. Sequences used for analysis had the genome coverage >75% in 
average. MAFFT was used to build a multiple sequence alignment of the 
dataset. The accuracy of the observed substitutions and frameshift of 
sequences was further validated by manually and carefully verifying the 
aligned files. Sequences edition and phylogenetic reconstruction were 
performed using AliView [34]. A maximum likelihood phylogenetic tree 
was estimated using Hasegawa-Kishino Yano nucleotide substitution 
model with a gamma distributed rate variation among-site [37] in 
IQTree v.226 [38]. Finally, SARS-CoV-2 lineages were identified using 
Phylogenetic Assignment of Named Global Outbreak Lineages tool (htt 
ps://github.com/cov-lineages/pangolin). 

2.6. Nucleotide substitutions and protein sequence prediction 

Fasta files of sequences generated in this study were aligned to the 
reference genome of SARS-CoV-2, isolate Wuhan-Hu 1 (GenBank 
Accession Number NC_045512.2), and the nucleotide substitutions were 
obtained according to reference sequence. The online platform PRO-
VEAN (Protein Variation Effect Analyzer) was used to provide a pre-
diction for a protein sequence [39]. The aligned sequences generated in 
this study referent to the coding regions of each protein were translated 

and any genetic differentiation identified was analyzed in PROVEAN 
protein tool. As input, this tool accepts a protein sequence and amino 
acid variations and performs a BLAST search to identify homologous 
sequences and generates scores. Variants with a score equal to or below 
– 2.5 are considered deleterious and variants with a score above – 2.5 are 
considered neutral [39]. 

3. Results 

62 samples from clinically suspected cases of COVID-19, collected at 
the private laboratory Diagnosis of Brazil (DB) in 9 cities of Minas Gerais 
state (MG) were screened for the detection of SARS-CoV-2 by RT-PCR. 
20 samples with RT-qPCR positive results for SARS-CoV-2 (cyclethres-
hold (Ct) values ranging from 9.96 to 25.59 - average of 18.41) 
(Table 1), were selected for this study. These samples were collected 
from 25th March to 25th May 2020, in Juiz de fora (35%), Uberlândia 
(10%), Uberaba (5%), Santos Dumont (5%), Pouso Alegre (10%), For-
miga (5%), Extrema (10%), Cambuí (15%), and Barbacena (5%) (Fig. 1). 
As shown in Fig. 1, samples analyzed in this work were collected in cities 
from the southernmost region of MG, an area that shares borders with 
São Paulo (SP). Due to the geographical proximity, and the fact that SP 
state is a great economic pole, the mobility of people between these 
locations is regular. These samples were collected from female (8/20, 
40%) and male patients (12/20, 60%) (Table 1). The average age of 
patients was 53.4 years old. 

The 20 selected samples (DNA ≥1 ηg/μL) were used to perform 
whole genome sequencing using a combination of multiplex PCR 
amplification (https://artic.network/ncov-2019) and Nanopore 
sequencing. We obtained an average reference coverage of 85.10% 
related to the reference genome NC_045512.2. The 20 whole genome 
sequences of SARS-CoV-2 from samples collected in 9 MG cities gener-
ated in this study and 31 sequences from other regions of the state, 
available at GISAID (https://www.gisaid.org), were aligned to compose 
our dataset resulting in 51 whole genome sequences from samples of 16 
cities of MG. Since the incompleteness of the sequences is inevitable, the 
accuracy of the observed substitutions and frameshift of sequences was 
validated by manually and carefully verifying the aligned files prior to 
perform phylogenetic analysis and investigate nucleotide substitutions, 
as well as analyze protein sequence prediction. 

Phylogenetic trees were reconstructed from the 20 whole genome 
sequences generated in this study and additional 1617 complete genome 
sequences deposited on GISAID from March 23rd to 25th May 2020 
(Fig. 2). Sequences clustered according to lineages A and B, representing 
the Wuhan/WH04/2020 (EPI_ISL_406801) and Wuhan-Hu-1 

Table 1 
Epidemiological Information and Lineages of SARS-CoV-2 identified on samples investigated in the study, and date from patients.  

CADDE ID Sample Ct value Collection date Age Gender State Municipality Lineage Most common countries 

MG 1 Swab 25,59 25/03/20 58 Male MG Extrema B.1.1.28 Australia, United Kingdom 
MG 4 Swab 9,96 30/03/20 80 Male MG Uberlândia B.1.1.28 Australia, United Kingdom 
MG 6 Swab 20,58 31/03/20 73 Male MG Uberaba B.1 USA, Spain, United Kingdom 
MG 7 Swab 17,90 01/04/20 46 Male MG Cambuí B.1.1.28 Australia, United Kingdom 
MG 8 Swab 20,09 02/04/20 63 Female MG Pouso Alegre B.1.1.28 Australia, United Kingdom 
MG 9 Swab 18,62 02/04/20 32 Female MG Cambuí B.1.1.33 USA,United Kingdom 
MG 10 Swab 19,04 02/04/20 79 Female MG Cambuí B.1.1.33 USA, United Kingdom 
MG 13 Swab 19,99 07/04/20 82 Male MG Uberlândia B.1.1.28 Australia, United Kingdom 
MG 15 Swab 16,87 07/04/20 25 Female MG Formiga B.1.1.28 Australia, United Kingdom 
MG 18 Swab 18,98 08/04/20 62 Female MG Extrema B.1.1.33 USA, United Kingdom 
MG 19 Swab 15,78 09/04/20 75 Male MG Santos Dumont B.1 USA, Spain, United Kingdom 
MG 20 Swab 14,89 09/04/20 25 Female MG Pouso Alegre B.1 USA, Spain, United Kingdom 
MG 21 Swab 18,67 15/04/20 31 Male MG Juiz de Fora B.1 USA, Spain, United Kingdom 
MG 22 Swab 22,09 15/04/20 46 Male MG Juiz de Fora B.1.1.33 USA, United Kingdom 
MG 24 Swab 23,43 17/04/20 61 Male MG Barbacena B.1.1.33 USA, United Kingdom 
MG 34 Swab 15,55 17/05/20 38 Male MG Juiz de Fora B.1.1.28 Australia, United Kingdom 
MG 38 Swab 14,61 18/05/20 69 Male MG Juiz de Fora B.1.1.33 USA, United Kingdom 
MG 42 Swab 19,99 19/05/20 56 Male MG Juiz de Fora B.1 USA, Spain, United Kingdom 
MG 51 Swab 16,89 23/05/20 30 Female MG Juiz de Fora B.1.1.28 Australia, United Kingdom 
MG 54 Swab 17,70 25/05/20 37 Female MG Juiz de Fora B.1.1.33 USA, United Kingdom  
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Fig. 1. Area under investigation. Map of the MG state showing the percentage of new SARS-CoV-2 sequences by cities and the incidence per 100,000 population.  

Fig. 2. Phylogenetic tree of the predominant lineages in MG. All samples from MG belong to lineage B, varying between B.1, B.1.1.33 and B.1.1.28. Blue markers 
represent samples from Minas Gerais; The black circles mark the SARS-CoV-2 sequences generated in this study; The circle along the tree represents the lineages. 
Orange marker represents the reference sequence of the lineage A (Wuhan/WH04/2020 - EPI_ISL_406801) and Purple marker represents the reference sequence of 
the lineage B (Wuhan-Hu-1 - EPI_ISL_402123). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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(EPI_ISL_402123), respectively, as the recently proposed SARS-CoV-2 
lineage nomenclature (Rambaut et al., 2020). Our phylogenetic anal-
ysis revealed that sequences from MG grouped to the lineages B.1, 
B.1.1.28 and B.1.1.33 (Fig. 2). Pangolin analysis also demonstrated the 
similarity between the sequences generated in this work and those 
identified in countries as China, USA, Australia, Portugal, United 
Kingdom and Brazil (Table 1). 

Phylogenetic analysis also demonstrated that the sequences gener-
ated in this study from samples collected in Cambuí (1), Extrema (1), 
Formiga (1), Juiz de Fora (3), Pouso Alegre (2) and Barbacena (1) were 
grouped in clusters with isolates from SP (Fig. S1), suggesting a route of 
dissemination of the virus between these two states. Additionally, other 
sequences grouped with isolates from different Brazilian states, as Santa 
Catarina (SC; 1), Pará (PA; 2) and Rio Grande do Sul (RS; 1), or with 
another country (France; 1), suggesting independent introductions of 
the virus in the country. Moreover, sequences from Juiz de Fora (ID: MG 
21) and Santos Dumont (ID: MG 19) grouped in the same monophyletic 
group, which is sustained by the proximity of these cities (approximately 
48 km) (Fig. 1). A sequence from Juiz de Fora, generated in this study, 
also grouped with GISAID dataset sequences from the same locality, 
suggesting a local circulation of SARS-CoV-2. 

The topology of the tree demonstrated that the viral isolates from the 
20 generated sequences grouped in 3 main monophyletic groups 
(Fig. 3). Sequences from Juiz de Fora (ID: MG 42 and MG 21), Uberaba 
(ID: MG 6) and Santos Dumont (ID: MG 19) (Fig. 4A) were characterized 
by a nucleotide substitution in the spike protein (A23403G) (Fig. 4B). 
The cluster with sequences from Juiz de Fora (ID: MG 22 and MG 54), 
Cambuí (ID: MG 10) and Extrema (ID: MG 18) (Fig. 5A) presented two 
nucleotide substitutions: one in the ORF6 (T27299C) (Fig. 5B) and 
another in the nucleoprotein (T29148C) (Fig. 5B). Sequences from 
Cambuí (ID: MG 9 and MG 10) and Juiz de Fora (ID: MG 22, MG 38, MG 
51 and MG 54) (Fig. 6A) reveled three nucleotide substitutions in 

nucleocapsid phosphoprotein region (G28881A, G28882A and 
G28883C) (Fig. 6B). As described in Table 2, some sequences showed 
nucleotide substitution in viral non-structural proteins (nsps) 2, 3, 4, 7, 
8, 12, and in the structural protein Spike (Table 2). Analysis performed 
using PROVEAN (Protein Variation Effect Analyzer) platform reveled 
that nucleotide substitutions in spike protein (A23403G) (Fig. 4B), 
nucleoprotein (T29148C) (Fig. 5B), nsp 3 (C6726T) (Table 2), nsp 8 
(C12651T) (Table 2), and nucleocapsid phosphoprotein (G28881A, 
G28882A and G28883C) (Fig. 6B) are characterized as neutrals. Alter-
natively, nucleotide substitutions in ORF6 (T27299C) (Fig. 5B), nsp 2 
(C920T) (Table 2), and nsp 7 (C12053T) (Table 2) are deleterious. 

4. Discussion 

This study presents the information on the SARS-CoV-2 variants 
circulating in nine cities of the southernmost region of Minas Gerais 
(MG) from March to May 2020. Until 25th May 2020, the state reported 
6962 cases of COVID-19. Due to its proximity to São Paulo city, and 
because of the intense industrialization that some Brazilian cities have 
recently undergone, such as Pouso Alegre and Extrema, this specific MG 
region has a representative role to understand the progress of SARS-CoV- 
2 infections in Brazil. Currently, there are very few sequences from this 
region deposited on GISAID database, compromising the understanding 
of the pandemic effects in this region of interest. The data presented here 
were obtained through sequencing of 20 samples of SARS-CoV-2 in-
fections confirmed by RT-qPCR along with others 1617 sequences pre-
viously deposited on GISAID [35]. 

Molecular properties of circulating viral strains have been investi-
gated through genetic analyses and surveillance. SARS-CoV-2 lineages A 
and B are characterized by Wuhan/WH04/2020 and Wuhan-Hu-1 se-
quences, respectively. Additionally, lineage B is divided in sublineages 
[40,41]. The 20 whole genome sequences generated in this study, and 

Fig. 3. Phylogenetic tree. The phylogenetic tree demonstrates sequences grouped into monophyletic groups. The colored circles represent the sequences generated in 
this study and their respective cities. 
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Fig. 4. Nucleotide substitutions. a) Phylogenetic tree representing the sequences from Uberaba, Juiz de Fora and Santos Dumont grouped in a clade. b) alignment of 
the sequences grouped with the reference sequence, identifying the nucleotide substitution A23403G. The colored circles represent the samples analyzed in this study 
and their respective cities; The nucleotide substitution regions are marked by the black rectangle; Nucleotide substitutions are indicated by the black text box. 

Fig. 5. a) Phylogenetic tree representing the sequences from Juiz de Fora, Cambuí, Extrema and Barbacena grouped in a clade. b) alignment of the sequences 
grouped with the reference sequence, identifying the nucleotide substitutions T27299C and T29148C. The colored circles represent the samples analyzed in this study 
and their respective cities; The nucleotide substitution regions are marked by the black rectangle; Nucleotide substitutions are indicated by the black text box. 
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additional 1617 from GISAID, composed the dataset of this study. The 
reconstruction of the phylogenetic tree showed that the 20 generated 
sequences grouped to the lineage B.1, B.1.1.28, and B.1.1.33 clusters. 
Our data showed the prevalence of SARS-CoV-2 lineages B.1.1.28 and 
B.1.1.33 circulation in Minas Gerais state during the period of analysis. 
The B.1.1.28 strain also circulated in countries such as Australia and 
United Kingdom, and B.1.1.33 also circulated in the United States [29]. 
According to Santos and colleagues, this means that, at some point of the 
pandemic, international introductions of SARS-CoV-2 occurred in Brazil, 
as well as in Minas Gerais. As an important commercial and techno-
logical region, and national and international well-connected state, MG 
potentially contributed to the viral introduction and spread of 
SARS-CoV-2 in Brazil [13]. 

Our results demonstrated that generated sequences from 6 cities of 
MG (Cambuí, Extrema, Formiga, Juiz de fora, Pouso Alegre, and Bar-
bacena) clustered with sequences of isolates from São Paulo state (SP). 
At the beginning of the pandemic in Brazil, COVID-19 cases were mainly 
reported in São Paulo [13], a state that shares border with MG south-
ernmost region. Since some isolates from these two states were grouped 
in the same monophyletic groups, it suggests a possible transmission 
route between these municipalities. Our data also showed the clustering 
of the generated sequences with isolates from other Brazilian states, or 
other country, and with an isolate from the same location in MG. All 
these findings support either, the dissemination of the virus among 
nearby geographical areas or independent introductions from other 
locations. 

Nucleotide substitutions in the genomic regions of the spike protein, 

Fig. 6. a) Phylogenetic tree representing the sequences from Juiz de Fora, Cambuí, Extrema and Barbacena grouped in clade. b) alignment of the sequences grouped 
with the reference sequence, identifying the nucleotide substitutions G28881A, G28882A, and G28883C. The colored circles represent the samples analyzed in this 
study and their respective cities; The nucleotide substitution regions are marked by the black rectangle; Nucleotide substitutions are indicated by the black text box. 

Table 2 
Characteristics of the nucleotide substitutions predicted by PROVEAN analysis 
in specific viral genome regions.  

Nucleotide 
Substitution 

Product Samples ID PROVEAN 
results 

C920T nsp2 MG 6 Deleterious 
C1059T nsp2 MG 6  
T5804C nsp3 MG 42  
C6286T nsp3 MG 8  
C6726T nsp3 MG 54 Neutral 
C8047T nsp3 MG 20  
C8266T nsp3 MG 38  
C9967T nsp4 MG 18  
C12053T nsp7 MG 7, MG 8, MG 51 Deleterious 
C12651T nsp8 MG 10 Neutral 
G14028T nsp12 MG 8  
A14271G nsp12 MG 6  
A23403G S protein ALL SAMPLES Neutral 
C23422T S protein MG 20  
C23683T S protein MG 10  
T27299C ORF 6 MG 10, MG 18 

MG 22, MG 54 
Deleterious 

T29148C Nucleoprotein MG 10, MG 18, MG 
22, MG 54  

G28881A Nucleocapsid 
phosphoprotein 

MG 22, MG 38, MG 
52, MG 54 

Neutral 

G28882A Nucleocapsid 
phosphoprotein 

MG 22, MG 38, MG 
52, MG 54 

Neutral 

G28883C Nucleocapsid 
phosphoprotein 

MG 22, MG 38, MG 
52, MG 54 

Neutral  
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ORF6, nucleoprotein and nucleocapsid phosphoprotein were observed 
in our analysis. In early 2020, viral strains with substitution in the 
genomic region of the spike protein were shown to predominantly 
circulate in SP state [13]. However, substitutions of nucleotides in the 
ORF6 and nucleoprotein genomic regions were found to be spatially 
wide spread in Brazil [13]. It suggests that, due to flexibility of social 
isolations measures and easy access to SP state, the viral strains that 
most circulated in SP during this period were also detected in the MG 
cities here studied, and have potentially spread to others states. The 
substitutions in the nucleocapsid phosphoprotein were described by 
Koyama and collaborators, who identified the same substitution in 1573 
samples globally distribute [42]. 

SARS-CoV-2 contains open reading frames (ORFs) that encode the 
four main structural proteins (Spike, Envelope, Nucleocapsid and 
Membrane) [4]. The Spike protein interacts with cell host receptor 
controlling viral tissue tropism [43]. For SARS-CoV-2, Spike protein 
attaches to the host receptor Angiotensin-converting enzyme 2 (ACE-2) 
[44]. This protein is essential in the early stages of SARS-CoV-2 infec-
tion. Therefore, is important to track and investigate variations in the 
genetic sequences that encode the Spike protein. The nucleotide sub-
stitution A23403G in the spike genomic region, that generates the mu-
tation D614G drew increased attention for being detected in genome 
sequences of SARS-CoV-2 from samples collected around the world [45], 
being the variant carrying the D614G-Spike protein the most prevalent 
in the global pandemic [46,47]. As stated by Plante and coworkers, 
studies in hamsters infected with the G614 variant showed that even 
though viral titers in the lungs did not increase, they were higher in 
nasal washes and trachea samples [45]. Clinical evidences demonstrated 
that D614G mutation enhances viral loads in the upper respiratory tract 
of COVID-19 patients, resulting in increased viral titers [45]. However, 
according to their data, sera from these hamsters reveled modestly 
higher neutralization titers against G614 virus than against D614, 
highlighting the need of further therapeutic antibodies studies with this 
viral variation [45]. In this context, Weissman and colleagues, using a 
pseudotyped virus system, evaluated the G614 mutation and suggested 
that this substitution increased the epitope exposure, resulting in an 
enhanced vulnerability to neutralization [39]. Additionally, Zhang and 
coworkers reported that the G614 spike presents an interaction with 
cellular receptor that modulates structural rearrangements for mem-
brane fusion, and suggested an improved immunogenic site to neutral-
ization [48]. Alternatively, some studies using animal models compared 
the neutralizing activity against S(D614) and S(G614) for several 
candidate vaccines [49–52], and concluded that single-residue muta-
tions hardly change viral sensitivity to neutralization. The author sug-
gest that some alterations in this sense only occur whether the mutation 
significantly alters S protein conformation [52]. Based on these findings, 
the mutation D614G possible does not interfere with vaccine efficiency. 

Substitutions described in this study were either neutrals or delete-
rious. Neutral mutations occur when substitutions in the nucleotide or 
amino acid sequences do not cause loss or alteration in the protein 
function [53]. In the present work, neutral mutations were found in four 
different genomic regions (nsp3, nsp8, spike protein and nucleocapsid 
phosphoprotein). Substitutions in the spike protein have been reported 
in strains of samples from SP state [13], and demonstrated to be 
important for viral fitness [45]. Deleterious mutations can either, 
introduce codons through small frameshift deletions or insertions, and 
cause nonsense or splice junction alterations, or represent large de-
letions or duplications. Also, some mutations can compromise the gene 
function [54]. We observed deleterious mutations in three different 
genome regions: ORF6, nsp2 and nsp7. Despite being deleterious, the 
mutations in ORF6 were found sparsely distributed in Brazil [13]. This 
suggests that these substitutions may be beneficial or do not significantly 
interfere with the virus infection. 

Through beneficial mutations, some SARS-CoV-2 variants become 
predominant around the globe. These variants are classified as variants 
of concern (VOC) [55]. To date, five variants were classified as VOC: 

Alpha, Beta, Gamma, Delta and Ômicron [55,56]. The VOCs have been 
associated to higher transmissibility in all age groups, to the severity of 
the disease, and to increased number of covid-19 cases [57,58]. 
Genomic surveillance is important to monitor virus evolution and its 
consequences, in addition to prevent the emergence and spread of new 
SARS-CoV-2 variants. Although genome sequencing is the gold standard 
method to detect mutations, it is an expensive and time-consuming 
technique, making its implementation difficult for all countries. Brazil 
is an example, from the beginning of the pandemic to the present date, 
approximately 147,955 Brazilian SARS-CoV-2 genomes have been 
deposited in the GISAID database [59]]. Considering that over 31,3 
million cases of COVID-19 have been confirmed, Brazil has a low 
genomic data performance. This reality makes it even more important to 
take full advantage of all the data generated and bioinformatics analysis 
play these important role [55,56]. Through bioinformatic analysis, 
Wright and collaborators studied mutations that are potential threat 
based on the impact in human immune response or changes in virus 
biology caused by phenotypic alteration, including that boosted by 
vaccines or antiviral drugs [56]. For a better understanding of clinical 
effects caused by genetic changes undergone by the virus, it is important 
to correlate genomic and clinical data, being this interface made through 
bioinformatic analysis [55]. Tracking these mutations has become so 
important in a pandemic context that researchers have created websites 
to analyze amino acid replacement and predict the impact in neutral-
izing activity of monoclonal antibodies (mAbs), convalescent sera, and 
vaccines [56]. 

In summary, this work showed the predominance of a circulating 
lineage in the regions investigated, several nucleotide substitutions in 
important regions of virus genome, and the phylogenetic relationship 
between the newly generated sequences and sequences from the global 
dataset. At the time of the analysis, few substitutions were initially re-
ported in other Brazilian states, which suggested that, over time and 
with flexibilization of social distance measures, SARS-CoV-2 has spread 
out to other regions of the country. Here, samples analyzed covered up 
to 60 days at the beginning of the pandemic in the MG state. Therefore, 
these findings provide very relevant information to a better under-
standing of the impacts of the genetic variability of SARS-CoV-2 on the 
ongoing pandemic, or even on future outbreaks, and reinforce the need 
for genomic surveillance in the spread of emerging viral pathogens. 

Repositories 

GenBank: SAMN18521634, SAMN18521635, SAMN18521636, 
SAMN18521637, SAMN18521638, SAMN18521639, SAMN18521640, 
SAMN18521641, SAMN18521642, SAMN18521643, SAMN18521644, 
SAMN18521645, SAMN18521646, SAMN18521647, SAMN18521648, 
SAMN18521649, SAMN18521650, SAMN18521651, SAMN18521652, 
SAMN18521653. 

GISAID: EPI_ISL_672672, EPI_ISL_ 904028, EPI_ISL_ 904031, EPI_ISL_ 
672673, EPI_ISL_ 904023, EPI_ISL_ 904018, EPI_ISL_ 904020, EPI_ISL_ 
904030, EPI_ISL_ 904034, EPI_ISL_ 904021, EPI_ISL_ 904022, EPI_ISL_ 
904032, EPI_ISL_ 904029, EPI_ISL_ 904026, EPI_ISL_ 672674, EPI_ISL_ 
904033, EPI_ISL_ 904019, EPI_ISL_ 904027, EPI_ISL_ 904024, EPI_ISL_ 
904025. 

Ethical approval 

Ethical approval for this study was obtained from the National 
Ethical Review Board with approval number CAAE 
30127020.0.0000.0068. 

Funding information 

Funding was provided by the Medical Research Council-São Paulo 
Research Foundation (FAPESP) CADDE partnership award (MR/S0195/ 
1 and FAPESP 18/14389-0). FAPESP further supports IMC (2018/ 

G.M. Ferreira et al.                                                                                                                                                                                                                             



Biologicals xxx (xxxx) xxx

9

17176-8 and 2019/12000-1), JGJ (2018/17176-8 and 2019/12000-1) 
ECR (88887595690/2020-00). DSC is supported by Claredon Fund and 
by the Department of Zoology, University of Oxford. Coordination for 
the Improvement of Higher Education Personnel (CAPES) – Brazil – 
Prevention and Combat of Outbreaks, Endemics, Epidemics and Pan-
demics Finance Code #88881.506794/2020-01 and CAPES – Finance 
code 001. VRG and GMF received the PhD scholarship (# 
88887.505971/2020-00 and # 88887.571465/2020-00) from CAPES. 

Author statement 
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