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A B S T R A C T   

SARS-COV2 (Covid-19) prevails in the form of multiple mutant variants causing pandemic situations around the 
world. Thus, medical diagnosis is not accurate. Although several clinical diagnostic methodologies have been 
introduced hitherto, chest X-ray and computed tomography (CT) imaging techniques complement the analytical 
methods (for instance, RT-PCR) to a certain extent. In this context, we demonstrate a novel framework by 
employing various image segmentation models to leverage the available image databases (9000 chest X-ray 
images and 6000 CT scan images). The proposed methodology is expected to assist in the prognosis of Covid-19- 
infected individuals through examination of chest X-rays and CT scans of images using the Deep Covix-Net model 
for identifying novel coronavirus-infected patients effectively and efficiently. The slice of the precision score is 
analysed in terms of performance metrics such as accuracy, the confusion matrix, and the receiver operating 
characteristic curve. The result leans on the database obtainable in the GitHub and Kaggle repository, con-
forming to their endorsed chest X-ray and CT images. The classification performances of various algorithms were 
examined for a test set with 1800 images. The proposed model achieved a 96.8% multiple-classification accuracy 
among Covid-19, normal, and pneumonia chest X-ray databases. Moreover, it attained a 97% accuracy among 
Covid-19 and normal CT scan images. Thus, the proposed mechanism achieves the rigorousness associated with 
the machine learning technique, providing rapid outcomes for both training and testing datasets.   

1. Introduction 

The novel coronavirus, or “Covid-19”, could be an open-world 
emergency, according to the World Health Organisation (WHO). 
Currently, Covid-19 is rapidly spreading from its source in Wuhan City, 
China, throughout the globe [1–4]. The predicament of fighting the 
novel Covid-19 epidemic has brought an end to a few financial and civil 
problems in various social systems worldwide. Conversely, it has set off 
a torrent of research, both inside and outside the clinical space, to help 
networks conquer this test by limiting its unfavourable effects. The 
immensity of these logical endeavours and the speed at which the in-
formation regarding this matter has been produced presents issues for 

those attempting to stay current on these events [5]. Throughout the 
reaction to the Covid-19 emergency, numerous healthcare organisations 
have expanded their utilisation of broadcast communications. From 
clinics to residency chores, from understanding cooperation at home to 
those in isolation, virtual correspondence provides a safe manner to 
proceed with our obligations amid this epidemic [6–8]. Let us consider 
the way the coronavirus transmits. Contamination of Covid-19 is 
accomplished over droplets made when a tainted patient coughs, snee-
zes, or breathes out. These droplets are substantial, even when consid-
ering the observable suspension quickly falling to the floor [9]. 
Individuals are likely to be infected through close interaction with other 
individuals who are infected with Covid-19, either by touching an 
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infected surface or one’s own eyes, nose, or mouth. Although Covid-19 
impacts distinct people in several habits, highly infected people will 
make it difficult to coordinate syndromes. The primary side effects are 
fever, tiredness, and dry cough. A few individuals may encounter a 
“throbbing painfulness, nasal clog, runny nose, sore throat, Diarrhea” 
[10]. Amid an ordinary movement, it takes 6–8 days after someone is 
affected by the contamination for reactions to show up, and it can take 
up to 14–21 days as well. People with symptoms that are not severe who 
are otherwise normal should self-isolate in their homes. Clinical 
research is required in cases where an individual has fever, cough, and 
breathing problems. 

In response to this unexpected pandemic, researchers and medical 
experts in hospitals have seriously considered a helpful screening tech-
nique and medicine for Covid-19. The domain of this study is not 
delimited to clinical or bioscience research, and other areas such as data 
science, deep learning, and artificial intelligence are needed to impede 
and manage this epidemic by assigning obtainable results to machine 
learning [11]. 

Data science has become increasingly common and has entirely 
replaced the outline of many research areas. In the medical domain, 
image databases such as retina images, chest X-rays, and CT scan images 
provide favourable outcomes amidst an increased accuracy in percent-
age enabled by deep learning mechanisms and artificial intelligence 
[12–14]. We know that X-ray and CT scan appliances accommodate 
expensive and expedited outcomes for screening several human organs 
in clinics. However, medical experts are frequently required to assess 
X-ray and CT scan images. As a data analyst, it is clear that processing 
those images by applying machine learning, deep learning, and artificial 
intelligence will assist clinical specialists in diagnosing COVID-19 in-
dividuals. This mechanism would enforce the developing regions where 
X-ray and CT scan facilities are accessible but specialists are unavailable. 
We intend to expand a machine learning model entitled a Deep 
Covix-Net model that can evaluate the X-ray and CT scan images of lungs 
and diagnose if the individual is infected with Covid-19 or pneumonia. 
Amid several machine learning classifiers, random forest acts as an 
extensive classification and clinical image diagnosis technique. The 
outcomes of machine learning models justify their use in scaling the 
picture database to an accurate and robust one. The lungs are a vital 
spot, and examining their variations can provide an exact outcome for 
Covid-19. This article’s contributions include recommending various 
segmentation techniques that are adequate for detecting 
Covid-19-contaminated individuals and healthy lungs with the help of 
chest X-ray images enabled by machine learning algorithms. The 
dominant research contributions of this study are as follows:  

● We have proposed a deep Covix-Net model to identify Covid-19, 
normal, and pneumonia individuals via chest X-ray and CT scan 
images. 

● We rigorously examined the chest X-ray and CT scan images for in-
dividuals, aiming to screen for Covid-19, normal, and pneumonia. As 
a result, all the images enclosing the lesions were reaffirmed by 
qualified radiologists. 

● The achieved outcomes were examined using three metrics: accu-
racy, receiver operating characteristic, and confusion matrix.  

● The mechanism adopted in the present work facilitates the actual 
diagnosis of individuals affected by Covid-19, achieving a precision 
score of 99% for chest X-ray images. In comparison, it revealed a 
98% recall score.  

● The proposed technique gave a 96.8% accuracy for many image 
databases (9000 Chest X-ray), while revealing 97% accuracy in CT 
scan images for the qualitative study. 

The remainder of this article is arranged as follows: Section 2 ana-
lyses current X-ray and CT scan image examinations utilising a deep 
learning-based convolutional neural network (CNN). Section 3 provides 
an illustration of the recommended mechanism and associated database. 

In Section 4, we describe the proposed model and the innovations 
behind the model. Section 5 describes the experimental results and 
analysis with the metrics of the classifier. Finally, the conclusions are 
drawn in Section 6. 

2. Related work 

A computer-aided diagnosis method primarily based on CT images 
with a large capacity is intended to differentiate contamination of Covid- 
19 from other types of unusual and viral pneumonia contamination. This 
confirms that ResNet-101 is a promising method to identify and di-
agnose Covid-19 contamination. This version no longer entails signifi-
cant costs and can be used as a catalyst in CT imaging in radiology 
departments [15]. Hui et al. [16] developed a multi-view fusion version 
for preliminary screening of Covid-19 pneumonia. This version achieved 
a higher overall performance with a single-view version as well as a 
subgroup examination. This confirmed the great capacity to enhance the 
performance of the analysis as well as diminish the workload of radi-
ologists. We anticipate that the multi-view deep learning positioning 
mechanism may be utilised by a subordinate radiologist to quickly and 
precisely discover Covid-19 pneumonia. 

Elavarasan et al. [17] highlighted various innovations introduced to 
assist the public, government, and healthcare services in various facets 
of the war against Covid-19. They also addressed the technical rapidity 
that has emerged during the pandemic and its effect on the atmosphere 
and culture. In addition to the technology introduced, their study also 
discussed untapped mechanisms that have potential uses in managing 
pandemic conditions. Covid-19 identification with a deep learning 
approach has been performed. Because it is essential to classify the 
rapidly and widely spreading Covid-19 disease, artificial intelligence 
(AI) techniques are being applied to accomplish this task accurately and 
efficiently. Applying the pre-processing steps to an image is one of the 
innovative features of the suggested solution. More powerful functions 
can be deduced from the image data using pre-processing. With the 
piling method, identical images are superimposed on each pixel, and the 
low-efficiency pixels are improved. Effective properties can be obtained 
using the proposed technique and the SMO algorithm [18]. 

Regarding infectious ailments, data collection is ambitious at the 
very best of times. The rise of data science has brought impetus to re-
searchers and systems scientists, and the capacity to store and work with 
them by critical surveillance of vast amounts of data has increased. 
Coded data are complex and difficult to propagate. However, even after 
the pandemic is over, data will still exist and will be helpful for the 
research community. Data collection may cease because there are no 
new instances, but there will still be time to study the data. The impact 
of big data has provided clinicians and researchers with the ability to 
store and work with large amounts of data [19]. Pereira et al. [20] 
attempted to use only CXR images to distinguish pneumonia caused by 
Covid-19 from other categories, as well as stable lungs. The following 
viewpoints suggest a classification scheme: i) multiclass classification 
and ii) hierarchical classification, as pneumonia can be considered a 
pyramid. Texture is one of the key visual aspects of CXR pictures, so we 
can use a well-known interpretative method and utilise a pre-trained 
CNN technique to derive our classification schema functionality [20]. 

Given the potential for future Covid-19 epidemics, Santosh et al. [21] 
presented and explored the relevance of AI-driven instruments and their 
relevant training and testing models. The fundamental result of their 
study show that AI scientists should not always delay training, verifi-
cation, and analysis of the models for the entire dataset. Instead, from 
the outset of data collection, AI-driven tools must be applied in parallel 
with specialists in fields where constructive learning is utilised. 

Oh et al. [28] showed that a patch-based CNN model improved 
classification execution using a relatively small number of trainable 
parameters. The results of the experiments show that the proposed 
model achieved an accuracy of 88.9%. The modified inception transfer 
learning model to establish the mechanism, recommended by Shuai 
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Wang et al. [29], attained an accuracy of 89.5% for internal validation 
and 79.3% for external validation. A generative adversarial network 
(GAN) with deep transfer learning for Covid-19 diagnosis in chest X-ray 
images was proposed by Loey et al. [30] to enhance the overall per-
formance using AlexNet, GoogLeNet, and ResNet 18 models. The rec-
ommended mechanism attained an accuracy of 80.6%. Hemdan et al. 
[31] suggested Covid-19 classification with an f1-score of 89%. A deep 
convolution network based on the concatenation of the Xception and 
ReNet50V2 models proposed by Rahimzadeh et al. [32] achieved an 
overall average accuracy of 91.4% for all classes. Ten well-known CNNs 
(Alexnet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, 
ResNet-18, ResNet-50, ResNet-101, and Xception) were utilised for the 
prognosis of Covid-19 in [33], in which the researchers concluded that 
the ResNet-101 and Xception models attained the best performance, 
with an AUC of 0.994. COVID-Net, based on a tailored deep CNN rec-
ommended by Wang et al. [34], attained an accuracy of 93.3%. Zhang 

et al. [35] developed a new deep anomaly Covid-19 detection model for 
fast and reliable screening. The recommended model attained 96% 
sensitivity for Covid-19 cases and 70.65% sensitivity for non-Covid-19 
cases. 

Horry et al. [36] recommended a deep-based semi-automated image 
pre-processing method to detect Covid-19. The proposed mechanism 
attained 83% precision. Tsiknakis et al. [37] recommended a transfer 
learning model that attained an accuracy of 92% with 5-fold 
cross-validation. It was recently reported that a prudent methodology 
can help identify Covid-19-infected people among normal individuals by 
utilising CT scans and chest X-ray images using AI [38]. The image 
diagnosis tool utilises a decision tree classifier to identify a novel 
coronavirus-infected person. The recommended mechanism achieves an 
accuracy of 87% in chest X-rays, while it reveals 82% accuracy in the CT 
scan image database. Mei et al. [39] proposed a CNN model for diag-
nosing Covid-19 using CT scan images, a multilayer perceptron (MLP) 

Fig. 1. Schematic workflow of the proposed model to diagnose Covid-19/pneumonia/normal individuals.  
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model for diagnosing Covid-19 with clinical information, and a joint 
model for diagnosing Covid-19 using both CT scan images and clinical 
information. These models achieved accuracies of 79.6%, 74.2%, and 
83.5%, respectively. Mizuho et al. [40] proposed a computer-aided 
diagnosis model for the classification of Covid-19, pneumonia, and 
healthy chest X-ray images. This model utilised VGG16 as a pre-trained 
model and a combination of conventional and data augmentation 
methods. The recommended model attained an accuracy of 83.6%. 

3. Materials and methods 

3.1. Data acquisition 

The database utilised in this task is an open-source Kaggle and 
GitHub repository [41], which presently consists of over 9000 chest 
X-ray images, with 3000 for Covid-19-positive individuals, 3000 normal 
chest X-ray images, and 3000 pneumonia chest X-ray images. The CT 
scan database contains over 6000 images (3000 for normal and 3000 for 
Covid-19). The repository of the image database is open to image seg-
mentation approaches, and recent images are regularly incorporated. 
The entire image database has been verified and elucidated, containing 
verdicts regarding the X-ray and CT scan images. 

3.2. Data resizing 

Because the images in the database are not flexible, the X-ray and CT 
images are distinct extents; accordingly, we have reformed all the pic-
tures to a similar extent of 224 × 224 pixels. RGB reverting was 

enforced, and the eventual input to the recommended mechanism was 
provided as a 224 × 224 × 3 image. Subsequently, we applied image- 
segmentation techniques to this model. 

3.3. Feature extraction and feature selection 

We utilised advanced image segmentation techniques, such as 
texture, grey-level co-occurrence matrix (GLCM), grey-level difference 
method (GLDM), fast Fourier transform (FFT), and discrete wavelet 
transform (DWT), to process an aggregate of 200 lineaments in both the 
structural and recurrence areas. We actualised GLCM for an individual 
class or every division; we registered 12 lineaments by employing 
similar factual capacities. We estimated the following 12 statistical 
features: average, skewness, kurtosis, energy, average deviation, 
dimension, RMS, consistency, average gradient, std gradient [22], min, 
and median. The feature elicitation technique brought about 200 line-
aments for every X-ray and CT scan picture together (12 lineaments from 
texture, 12 lineaments from FFT, 40 lineaments from GLCM, 40 linea-
ments from GLDM, and 96 lineaments from DWT). 

4. Implementation 

The training model was implemented using an Anaconda-Jupyter 
notebook with a tensor flow platform to train the extensive image 
database. Importation of the necessary libraries was performed at the 
initial stage to access the code from other modules. Then, the image 
database is uploaded to the path, and the features are extracted using 
spatial and frequency domains such as texture, GLCM, GLDM, DWT, and 
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FFT for segmentation. Finally, we combined all 200 statistical features in 
both domains and utilised a Deep Covix-Net model to diagnose COVID- 
19 patients enabled by the random forest classifier, as illustrated in 
Fig. 1. The image pre-processing mechanism is shown in algorithm-1, 
and feature extraction of the images is shown in algorithm-2. Further-
more, the classification and performance measures of the model are 
shown in algorithm-3 for a chest X-ray image database with multiple 
classifications. The same process was followed in the CT scan image 
database with binary classification. 

Algorithm 1. Chest X-ray Image for Pre-processing 
where e, f, and g are the classes in the chest X-ray image database, and n 
is the total number of images. 

Algorithm 2. Feature Extraction Technique for Chest X-ray Images  

Algorithm 3. Train the Chest X-ray image database enabled by Deep 
Covix-Net model  

4.1. FFT positioned disjuncture 

Fast Fourier transform (FFT) estimates the discrete Fourier transform 
(DFT) and its inverse. The FFT is utilised to transform a digital signal (s) 
among range (L) from the time region into a frequency region (D), 
considering the amplitude of vibration based on its progress against the 
frequency as the signal emerges [23]. 

Fig. 2. (a) FFT segmented images of a sample Covid-19 chest X-ray; (b) FFT segmented images of a sample Covid-19 CT scan.  
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D[k] =
∑L− 1

j=0

(
s(j)Wjk

L
)
, WL = e− 2πJ/L, for k= 0, 1, 2,…. (1) 

The frequency spectrum vector is split into various frequencies to 
robotise the selection method of the sensitive frequencies to the fault 
under analysis. The average of each extent is then taken as the sensory 

aspect of the entity. The FFT technique was used on original images of 
both chest X-ray and CT scan images to observe the spectrum and cen-
tred spectrum of the images, as shown in Fig. 2 (a) and (b). Using FFT, 
we calculated 12 statistical features in all images. 

Fig. 3. Grey-level co-occurrence matrix segmentation on sample Covid-19 chest X-ray images.  

Fig. 4. Wavelet transform technique on a sample Covid-19 chest X-ray image.  
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4.2. GLCM positioned disjuncture 

The grey-level co-occurrence matrix (GLCM) is an analytical process 
broadly utilised to describe images and has been shown to be significant 
for second harmonic generation (SHG) collagen picture classification. 
This system considers the spatial connection between the image pixels at 
a particular point. Typically, it is determined in four directions at 
explicit distances. Textural highlight work is determined over this grid. 
Generally, various directions are contrasted or found in the middle value 
to obtain a novel measurement boundary [24]. GLCM segmentation of a 
sample Covid-19 chest X-ray image with GLCM dissimilarity, grass, and 
sky in four positions is shown in Fig. 3. 

The co-occurrence matrix is formally defined as the probability of 
grey level m occurring in the neighbourhood of another grey level n at a 
distance e in direction ṏ,R (m, n |e, ṏ), where e is a displacement vector, 
e =(Δa, Δb), and the direction ṏ is one of eight orientations. The dif-
ference between opposite directions is often ignored, and symmetric 
probability matrices can be employed only for four orientations, i.e., 0◦, 
45◦, 90◦, and 135◦. Statistical measures extract image features from this 
matrix. In the present study, the correlation (C) textural feature function 
was used. This is expressed in Eq. (2): 

C =
∑

m,n

(m − γm)(n − γn)R(m, n)
σmσn

(2)  

where 

γm =
∑

m,n
m. r(m, n) (3)  

γn =
∑

m,n
n. r(m, n) (4)  

σm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

m,n
(m − γm)

2
.r(m, n)

√

(5)  

σn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

m,n
(n − γn)

2
.r(m, n)

√

(6) 

Using GLCM, we calculated the first ten statistical features in four 
spatial locations for all images. 

4.3. Modified GLDM and texture positioned disjuncture 

Texture as an image highlight is extremely valuable in many image 
handling and computer vision applications. A broad survey on texture 
examination in image refining revealed the essential parameters of 
order, division, and union. Texture highlights have been utilised in 
various applications, such as satellite and aeronautical image exami-
nation, clinical image investigation for identifying variations from ab-
normalities, and recently in image recovery utilising surface as a 
descriptor. This section presents a method to deal with portraying 
texture utilising a multi-band disintegration of an image with applica-
tion to characterisation, division, object recognition, and picture re-
covery [25]. In the texture analysis, we calculated the 12 statistical 
features from all the images. 

The modified grey level difference method (GLDM) interaction 
computes the grey-level difference statistical likelihood thickness ca-
pacities for the pre-processed grey picture. This technique is utilised to 
remove the entire surface highlights of an advanced image. Contrast is 
characterised as an adjustment in density among the most noteworthy 
and least dense stages in an image. Therefore, the neighbourhood va-
rieties are on the grey level. The angular second moment is the pro-
portion of the homogeneity. If the contrast between grey levels over an 
area is low, these areas are expressed as having better angular second 
moment (ASM) values. The mean offers normal force estimation [26]. 

We calculated the first ten statistical features in four spatial locations 
with distance d = 8 from the reference and neighbour pixels (p, q) in all 
images in the database.  

y (p,q) = |x(p,q) − x(p,q + d)|                                                           (7) 

where x is the input image, y is the result of image x, and d is the distance 
for the modified GLDS calculation. 

4.4. Wavelet positioned disjuncture 

A discrete wavelet transform is characterised as a non-redundant 
tested CWT. The wavelet transform is intended to address a discrete- 
time arrangement y(n) as a bunch of wavelet coefficients. These co-
efficients are inspected from a CWT to yield a symmetrical (or bio-
rthogonal) set of premise capacities. Wavelet plans are abundant, with 
varying qualities. In this section, consideration is limited to symmetrical 
wavelets with little assistance. 

The utilisation of symmetrical bases guarantees that the portrayal is 
non-redundant. Typically, the utilisation of symmetrical portrayals 
prompts straightforward calculations for both remaking and disinte-
gration. However, productive wavelet calculations require computa-
tional burdens that are frequently not expected to actualise a quick 
Fourier transform [27]. 

There are a few comparative perspectives from which wavelets can 
be studied. Here, we discuss the wavelet through the idea of a channel 
bank. A couple of finite impulse response (FIR) channels with M co-
efficients are characterised. One of these channels is a high-pass chan-
nel, while the second is a low-pass channel, which cuts on/off at a large 
portion of the inspecting recurrence. The wavelet transform can be 
characterised by utilising these channels and applying them recursively. 
The channels are first applied to the input time arrangement to yield 
low-pass and high-pass segments, Y1(n) and Y2(n), individually: 

Y1(n) =
∑M− 1

l=0
ely(n − l) (8)  

Y2(n)=
∑M− 1

l=0
fly(n − l) (9)  

where el and fl are the coefficients of the low-pass and high-pass filters, 
respectively. It is expected to build a high-pass channel dependent on 
the low-pass channel, which is generally accomplished by utilising the 
rotating flip plan. Hence, the two arrangements of channel coefficients 
are connected as follows: 

fl =( − 1)leM− l (10) 

The yield of the two channels is a large portion of the input sequence 
transmission capacity, such that Y1(n) involves a lower recurrence range 
and Y2(n) is the upper band. The yields of each channel constitute a large 
portion of the first data transmission of Y(n) to ensure that these double 
cross arrangements contain excess data. Therefore, one can subsample 
the two-channel yields to a large portion of the first inspection rate. 
Subsampling is accomplished by disposing of substitute examples in 
each arrangement. Such resampling implies that the two signals indeed 
involve full data transmission. Because of the defective plan of the two 
FIR channels, the activity of resampling is associated with the two 
segments. 

Here, we performed two-way sequential coefficient operations such 
as CA1, CH1, CV1, and CD1 from CA1 and again calculated other 
wavelet coefficients such as CA2, CH2, CV2, and CD2 for every 
sequential coefficient, finally calculating the 12 statistical features (see 
Fig. 4). 
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4.5. Applying random forest classification 

Random forest is a supervised learning mechanism used for classi-
fication and regression problems. However, it is primarily utilised for 
classification issues. A forest comprises trees, and more trees imply a 
more vigorous forest. Essentially, the random forest mechanism makes 
decision trees from information tests and subsequently obtains the 
forecast from every one of them, eventually choosing the best outcome 
through voting. A group strategy is superior to a solitary decision tree 
because it diminishes overfitting by averaging the outcome. An illus-
tration of the operation of the random forest classifier is shown in Fig. 5. 

Functioning of Random Forest Mechanism: 

Stage 1: Initially, we start with the determination of random data 
samples from a given dataset. 
Stage 2 − Next, this mechanism develops a decision tree for each 
data sample. Then, at that point, we obtain the expected result from 
each decision tree. 
Stage 3: In this progression, voting is performed for each prophecy 
outcome. 

The advantages of the Random Forest mechanism are as follows: 

● Random forest prevents overfitting by averaging or joining the out-
comes of various decision trees.  

● It performs better for an enormous scope of data samples than does a 
solitary decision tree.  

● It is truly adaptable and offers exceptionally high accuracy.  
● Scaling of data is not required for a random forest mechanism. This 

results in great precision, even after providing information without 
scaling.  

● The random forest mechanism maintains a high precision, even 
when an enormous amount of data disappears. 

The random forest mechanism—an ensemble machine learning 
method broadly known for its superior performance over other machine 
learning techniques—was preferred for our model. The number of trees 
and the preferred number of instances, i.e., 100 are used in the random 
forest classifier to process if batch prediction is being performed. More 
or fewer instances may be provided, but this allows implementations a 
chance to specify a preferred batch size. We applied random forest 
classification to subgroups of Covid-19 individuals, delineating them by 
normal and pneumonia individuals. 

5. Results and analysis 

While training the system, the testing set attained an approximately 
0.32 loss score and 96.8% accuracy in chest X-ray images, while the CT 
scan images and testing set attained an approximately 0.3 loss score and 
97% accuracy. The loss score demonstrated a solid match between 
training and testing, confirming that our system does not experience 
overfitting or underfitting in both X-ray and CT scan databases. Then, we 
determined a receiver operating characteristic (ROC) curve and area 
under the ROC (AUC) to additionally evaluate the efficiency of our 
system, as shown in Fig. 6. (a, b, c). A comparison of Covid-19 chest X- 
ray images with non-Covid-19 and normal demonstrated that our 
mechanism achieved 98% precision and 99% recall when assessed on a 
test set of 1800 chest X-ray images, as shown in Table 1. 

For CT scan images, the proposed mechanism achieved 97% accu-
racy among normal and Covid-19 individuals. The output visualisation 
of the CT scan image database is shown in Fig. 7. The depiction estimates 
utilised for recognising the ideal division approach for Covid-19, 
normal, and pneumonia pictures ensue. 

A =

∑u=k
u=1c [u][u]

N
(11)  

Fig. 5. Illustration of random forest and its classification.  
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ρ(v) =
c [v][v]

∑u=k
u=1c [u][v]

(12)  

∏
(v) =

c [v][v]
∑u=k

u=1c [v][u]
(13)  

∂(v) =
c [v][v]

∑u=k
u=1c [v][v]

(14) 

Fig. 6. Chest X-ray image database performance: (a) ROC graph for 1800 test 
cases, with pneumonia as the target class; (b) ROC graph for 1800 test cases, 
with normal as the target class; (c) ROC graph for 1800 test cases, with Covid- 
19 as the target class. 

Table 1 
Confusion matrix for 1800 test cases with and without Covid-19.  

Class Covid-19 Pneumonia Normal Support 

Covid-19 603 4 0 607 
Pneumonia 10 562 30 602 
Normal 0 13 578 591 
Total 1800  

Fig. 7. CT scan image database performance: (a) ROC graph for 1800 test cases, 
with Covid-19 as the target class; (b) ROC graph for 1800 test cases, with 
normal are the target class. 
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F1 Score =

2 * c [v][v]∑u=k

u=1
c [u][v]

* c [v][v]∑u=k

u=1
c [v][u]

c [v][v]∑u=k

u=1
c [u][v]

+
c [v][v]∑u=k

u=1
c [v][u]

(15)  

where k indicates the number of classes, c is the confusion matrix, N is 
the total number of elements, and [u][u] denotes elements on the di-
agonal corresponding to the correct prediction. In addition, α represents 
accuracy, ρ(v) represents precision for the vth class, П(v) represents 
recall for the vth class, and ∂(v) denotes the specificity for the vth class. 
The performance metrics of the proposed model in terms of the chest X- 
ray image database are listed in Table 2. The confusion matrix for the CT 
scan image database is shown in Table 3. 

Table 4 compares the performance of five segmentation techniques 
in terms of the accuracy and kappa value of the features. The proposed 
deep Covix-Net model approach has better predictions than other seg-
mentation approaches correlated with Covid-19 and non-Covid-19. It 
exhibits the significance of obtaining a recurrence space and infers that 
those lineaments are pertinent to identifying Covid-19 disease on chest 
X-ray images. The proposed model improves the accuracy by 8%, 6.3%, 
1.5%, 2.5%, and 3.8% compared with the texture, FFT, DWT, GLCM, and 
GLDM feature extraction techniques, respectively, in the chest X-ray 
image database. For the CT scan image database, the proposed model 

improves to the tune of 0.6%, 1.2%, 0.5%, and 0.8%, with a 0.1% ac-
curacy, with respect to the techniques mentioned earlier. The proposed 
mechanism provides a recall of 97.9%, specificity of 96.1%, precision of 
96.5%, and F1 score of 97.1% in the CT scan image database. 

Furthermore, we applied different machine learning classifiers and a 
CNN to predict Covid-19 individuals. The random forest classifier pro-
vides more accuracy when compared with other classifiers, as shown in 
Table 5, while CNN provides 95% accuracy in chest X-ray and 86.1% 
accuracy in CT scan image database. We applied different training and 
testing splitting mechanisms, such as 90–10, 80–20, 70–30, 60–40, and 
50-50, as shown in Table 6. Finally, we also applied the validation 
mechanism with 5-fold, 10-fold, and splitting techniques (training: 80% 
and testing: 20%) and achieved more accuracy with more images in the 
testing set than the cross-validation method and various splitting 
percentages. 

Table 7 shows various mechanisms applied in the image database to 
diagnose Covid-19 individuals with performance metrics such as accu-
racy (%) for qualitative analysis. We have applied our model in the same 
image database from the GitHub and Kaggle repository [41], used in 
other recent research. We have fully used the machine learning model 
and achieved better performance than the other researchers’ deep 
learning mechanism. 

6. Conclusion 

The recommended Deep Covix-net model can identify a Covid-19- 
positive individual with a precision score of 98% and recall score of 

Table 2 
Performance metrics for the proposed model: chest X-ray images.  

Class Precision Recall F-Measure MCC 

Covid-19 0.98 0.99 0.98 0.98 
Pneumonia 0.97 0.93 0.95 0.92 
Normal 0.95 0.97 0.96 0.94  

Table 3 
Confusion matrix for 1800 test cases with and without Covid-19.  

Class Covid-19 Normal Support 

Covid-19 609 22 631 
Normal 13 556 569 
Total 1200  

Table 4 
Standard depiction of the features in five categories.  

Methods Chest X-ray Image 
Database 

CT Scan Image Database 

Accuracy 
(%) 

Value of 
Kappa 

Accuracy 
(%) 

Value of 
Kappa 

Texture (T) 88.8 0.83 96.4 0.92 
FFT (F) 90.5 0.85 95.8 0.91 
DWT (D) 95.3 0.93 96.5 0.92 
GLCM (G) 94.3 0.91 96.2 0.92 
GLDM (g) 93 0.89 96.9 0.93 
Proposed Deep Covix-net 

model (T þ F þ D þ G 
þ g) 

96.8 0.94 97 0.94  

Table 5 
Comparison of different machine learning classifiers on Chest X-ray and CT Scan 
image database.  

Machine Learning 
Algorithms 

Chest X-ray 
Accuracy (%) 

CT Scan 
Accuracy (%) 

SVM 92.5 86.2 
Naive Bayes 77.6 59.3 
Decision Tree 91.3 90.4 
Random Forest 96.8 97 
Logistic 96.3 89.7  

Table 6 
Comparison of various percentages of train-test splitting on chest X-ray and CT 
scan image database.  

Train-Test 
Splitting with 
Random Forest 
Classifier 

Image Count in 
Chest X-ray 
(Train-Test) 

Chest X-ray 
Accuracy 
(%) 

Image Count in 
CT Scan 
(Train-Test) 

CT Scan 
Accuracy 
(%) 

90%–10% 8100–900 97.3 5400–600 98 
80%–20% 7200–1800 96.8 4800–1200 97 
70%–30% 6300–2700 95.8 4200–1800 96.9 
60%–40% 5400–3600 95 3600–2400 96.4 
50%–50% 4500–4500 94.7 3000–3000 96.1  

Table 7 
Distinct mechanisms applied to identify Covid-19 individuals via chest X-ray and 
CT scan images.  

Reference Category of 
Chest Images 

Mechanism Accuracy 
(%) 

Oh et al. [28] X-ray Patch-based CNN 88.9 
S. Wang et al. [29] CT Scan Modified Inception 

Transfer Learning 
92.4 

Loey et al. [30] X-ray Googlenet 80.56 
Hemdan et al. [31] X-ray CovidX- Net 90 
Rahimzadeh et al. [32] X-ray Xception+

ResNet-50V2 
91.4 

Ali et al. [33] CT scan Alexnet 82.6 
Wang et al. [34] X-ray COVID-Net ‘93.3 
Zhang et al. [35] X-ray CNN 96 
Horry et al. [36] X-ray VGG 19 81 
Tsiknakiset al. [37] X-ray Inception V3 92 
Vinod et al. [38] X-ray 

CT Scan 
Decision Tree 87 

82 
Mei et al. [39] CT Scan CNN 

MLP 
Joint 

79.6 
74.2 
83.5 

Mizuho et al. [40] X-ray Computer-aided 
diagnosis 

83.6 

Deep Covix-net model 
(Proposed Method) 

X-ray 
CT Scan  FFT þ DWT þ

GLCMþ
GLDM þ Texture 

96.8 
97  
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99% for the X-ray database, while 97% accuracy for the CT scan is 
achieved. We used a large database size and obtained an output of 
approximately 96.8% accuracy for multiclassification of chest X-ray 
images. To the best of our knowledge, the novel methodology of the 
Deep Covix-Net model developed and proposed in the present work is 
the first of its kind to diagnose Covid-19 and non-Covid-19 individuals. 
We obtained good execution with balanced and large image databases 
compared with other existing models, as shown in Table 7. Our mech-
anism was completely robotised using an end-to-end system without the 
requirement for physical component extraction. It is feasible to develop 
a deep Covix-net model for multiple classifications of Covid-19, normal, 
and pneumonia with various segmentation approaches augmented by 
chest X-ray and CT scan image databases. The proposed mechanism 
could aid emergency clinic organisations and clinical specialists in 
making significant strides to deal with Covid-19, normal, and pneu-
monia individuals after obtaining this quick prognosis. 
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