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ABSTRACT

Objective: Electronic health records (EHRs) are a rich source of information on human diseases, but the infor-

mation is variably structured, fragmented, curated using different coding systems, and collected for purposes

other than medical research. We describe an approach for developing, validating, and sharing reproducible

phenotypes from national structured EHR in the United Kingdom with applications for translational research.

Materials and Methods: We implemented a rule-based phenotyping framework, with up to 6 approaches of

validation. We applied our framework to a sample of 15 million individuals in a national EHR data source (popu-

lation-based primary care, all ages) linked to hospitalization and death records in England. Data comprised con-

tinuous measurements (for example, blood pressure; medication information; coded diagnoses, symptoms,

procedures, and referrals), recorded using 5 controlled clinical terminologies: (1) read (primary care, subset of

SNOMED-CT [Systematized Nomenclature of Medicine Clinical Terms]), (2) International Classification of

Diseases–Ninth Revision and Tenth Revision (secondary care diagnoses and cause of mortality), (3) Office of

Population Censuses and Surveys Classification of Surgical Operations and Procedures, Fourth Revision (hospi-

tal surgical procedures), and (4) DMþD prescription codes.

Results: Using the CALIBER phenotyping framework, we created algorithms for 51 diseases, syndromes, bio-

markers, and lifestyle risk factors and provide up to 6 validation approaches. The EHR phenotypes are curated

in the open-access CALIBER Portal (https://www.caliberresearch.org/portal) and have been used by 40 national

and international research groups in 60 peer-reviewed publications.

Conclusions: We describe a UK EHR phenomics approach within the CALIBER EHR data platform with initial evi-

dence of validity and use, as an important step toward international use of UK EHR data for health research.

VC The Author(s) 2019. Published by Oxford University Press on behalf of the American Medical Informatics Association.
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INTRODUCTION

The UK National Health Service (NHS) offers international

researchers opportunities to explore “cradle to grave” longitudinal

electronic health record (EHR) phenotypes at scale. It is one of the

few countries that combines a single-payer-and-provider compre-

hensive healthcare system, free at the point of care, with extensive

national data resources across the entire population of 65 million.

Patients are identified by a unique healthcare-specific identifier

which enables linkage of patient data across EHR sources and the

creation of longitudinal phenotypes that span primary and second-

ary care.1 Over 99% of people are registered with a general practi-

tioner (GP) and structured primary care data collected

electronically have been used by UK, U.S. and other researchers for

decades.2 Furthermore, these national EHR data sources are being

linked with large-scale consented genomic resources, for example,

the 100 000 Genomes Project (also known as Genomics England)3

and UK Biobank,4–6 and enable the investigation of simple or com-

plex traits across participant populations with diverse genetic

backgrounds.7

The UK EHR landscape differs from the United States and else-

where in important ways. Although the United Kingdom, unlike the

United States, has the opportunity to establish a national approach,

it faces the common challenge that EHR for primary care and hospi-

tal care are handled by different data providers and are kept sepa-

rately, with independent access requirements.8,9 Significant progress

has been made by U.S. initiatives such as Electronic Medical

Records and Genomics (eMERGE),10 BioVU,11 Million Veteran

Program,12 and All Of Us,13 and in Canada,14 Australia,15 Swe-

den,16 and Denmark.17 In the United Kingdom, however, there has

been no recognized phenotyping framework or go-to resource for

EHR researchers for systematically creating, curating and validating

(rule-based or otherwise) EHR-derived phenotypes, obtaining infor-

mation on controlled clinical terminologies, sharing algorithms, and

communicating best approaches. Structured primary care EHR have

been used in >1800 published studies,18 but only 5% of studies pub-

lished sufficiently reproducible phenotypes,19 while significant het-

erogeneity exists (one review reported 66 asthma definitions).20

Current UK initiatives19,21,22 for curating EHR-derived phenotypes

focus on lists of controlled clinical terminology terms (referred to as

code lists) rather than self-contained phenotypes (terms, implemen-

tation, and validation evidence).

The scope of our research focuses on rule-based algorithms, as

the majority of research studies (with some exceptions)23,24 using

UK EHR utilize this approach for creating EHR-derived pheno-

types.25 The main use case for CALIBER phenotypes and the ap-

proach presented in the manuscript is observational research (which

is also the main stakeholder group of UK EHR): (1) high-resolution

clinical epidemiology using national EHR examining disease

etiology or prognosis, or (2) genetic epidemiology studies through

the UK Biobank and Genomics England investigating simple and

complex traits across populations. Our aspiration, however, is for

CALIBER phenotypes to be adopted by the NHS in terms of com-

putable knowledge which can be integrated in the healthcare system

and used for interventional studies and clinical guidelines. Each of

these use cases, however, has a different threshold on what is consid-

ered adequate performance, and we adopted a systematic and robust

validation approach to quantify phenotype performance.

EHR phenotype validation is a critical process guiding their sub-

sequent use in research or care.26,27 There are multiple sources of

evidence or study designs that contribute to building confidence

in the validity of an EHR phenotype for a particular purpose.

Countries may also differ in the opportunities for validation: for ex-

ample, in the United Kingdom, cross-referencing against multiple

EHR sources, prognostic validation, and risk factor validation are

all made possible by nationwide population-based records.28–32 In

contrast with the United States, only recently have scalable methods

been developed to access the entire hospital record for expert re-

view,33 and text corpora are not available at scale.34 There have

been few previous studies35 of the validity of International Classifi-

cation of Disease and Health Related Problems–Tenth Revision

(ICD-10) terms36 in the United Kingdom against hospital records be-

cause introduction of hospital EHRs is recent (for example, there

are only 3 hospitals that have achieved stage 6 on the Healthcare In-

formation and Management Systems Society Electronic Medical Re-

cord Adoption Model.37

We have developed the CALIBER EHR platform for the United

Kingdom by adopting and extending best practices from leading ini-

tiatives and consortia (for example, eMERGE, Million Veteran Pro-

gram, BioVU) with regards to creating, evaluating, and

disseminating EHR-derived phenotypes for research. Specifically,

these practices, which were previously not systematically followed

in the UK EHR community before CALIBER include (1) establishing

a robust and iterative phenotype creation process involving multiple

scientific disciplines, (2) systematically curating EHR-derived

phenotypes, (3) using methods for enhancing reproducibility, and

(4) undertaking and reporting robust phenotype validation analyses.

Here, we define a framework for enabling EHR phenotyping in a

scalable and reproducible manner. Algorithm reproducibility was

defined similarly to Goodman’s “methodology reproducibility,”38

that is, providing a systematic and precise description of the algo-

rithm components, logic, implementation, and evidence of validity

that would enable national or international independent researchers

to create, apply, and evaluate CALIBER phenotyping algorithms in

local similar data sources. We present a systematic validation frame-

work for assessing accuracy consisting of up to 6 approaches of evi-

dence (expert review to prognostic validation) and disseminating

through a centralized open-access repository. We have chosen heart

failure (HF), acute myocardial infarction (AMI), and bleeding as

examples of medical conditions that exemplify the strengths of na-

tional linked UK EHR and the nontrivial challenges researchers en-

counter.

MATERIALS AND METHODS

We developed an iterative and collaborative approach for creating

and validating rule-based EHR phenotyping algorithms using UK

structured EHR. The approach involved expert review interwoven

with data exploration and analysis. An EHR phenotyping algorithm

translates the clinical requirements for a particular patient to be con-

sidered a case into queries that leverage EHR sources stored in a re-

lational database and extracts disease onset, severity, and subtype

information. In the following sections we describe the platform, the

algorithm development process, and validation consisting of 6

approaches of evidence.
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UK primary care EHR, hospital billing data, and

cause-specific mortality in the CALIBER platform
The CALIBER platform39 is currently built around 4 national EHR

data sources (Figure 1) deterministically linked using NHS number

(unique 10-digit identifier assigned at birth or first interaction), gen-

der, postcode, and date of birth; 96% of patients with a valid NHS

number successfully linked.40

The baseline cohort is composed of a national primary care EHR

database, the Clinical Practice Research Datalink (CPRD).41 Pri-

mary care has used computerized health records since 2000 and gen-

eral practices use one of several EHR systems. CPRD contains

longitudinal primary care data (extracted from the Vision and Egton

Medical Information Systems clinical information systems) on diag-

noses, symptoms, drug prescriptions, vaccinations, blood tests, and

risk factors irrespective of disease status and hospitalization. The

CPRD uses Read42 terms (112 806 terms; subset of the International

Health Terminology Standards Development Organization

SNOMED-CT [Systematized Nomenclature of Medicine Clinical

Terms])42 to record information. Prescriptions are recorded using

Gemscript (a commercial derivative of the NHS Dictionary of Medi-

cines and Devices [dmþd])43 (72 664 entries). The CPRD contains

>10 billion rows of data from >15 million patients (from all the

contributing primary care practices, irrespective of consent to link-

age) shown to be representative in terms of age, sex, mortality, and

ethnicity44–46 and of high validity.47

Hospital Episode Statistics (HES) (https://digital.nhs.uk/)48 con-

tains administrative data on diagnoses and procedures generated

during hospital interactions. Diagnoses are recorded using the ICD-

10 and procedures using the Office of Population Censuses and Sur-

veys Classification of Surgical Operations and Procedures, Fourth

Revision (10 713 terms, similar to Current Procedural

Terminology).49 Up to 20 primary and secondary discharge diagno-

ses are recorded per finished consultant episode. The Myocardial Is-

chaemia National Audit Project (MINAP) is a national disease and

quality improvement registry capturing all acute coronary syndrome

events across England. MINAP contains diagnostic, severity and

treatment information using 120 structured data fields.50 The Office

for National Statistics (ONS) contains socioeconomic deprivation

using the Index of Multiple Deprivation51 and physician-certified

cause-specific mortality (underlying and up to 14 secondary causes

using International Classification of Diseases–Ninth Revision [ICD-

9] or ICD-10).

Data quality
Primary care

Our analyses incorporated primary care EHR data quality metrics

across 2 dimensions: at the patient level and at the primary care

practice level.41

Patient-level data quality. In line with previous research using UK

primary care EHRs from the CPRD and CPRD guidance, we only

utilized patients which were marked as “acceptable for research” by

the CPRD. Patients are labeled as acceptable through an algorithmic

process that identified and excludes patients with noncontinuous

follow-up and patients with poor data according to a predefined list

of data quality metrics (for example, empty date of first registration,

first registration before date of birth, invalid gender, missing or in-

correct dates across all recorded healthcare episodes). We addition-

ally excluded records in which the date was invalid or malformed or

in the future occurring after the last date of data collection.

Practice level. The overall quality of the data recorded in a primary

care practice is algorithmically marked by an “up to standard

Figure 1. The CALIBER platform (https://www.caliberresearch.org) links national structured electronic health records (EHRs) across primary care, secondary care,

and mortality for research. EHR-derived phenotypes are created using an iterative methodology and 6 independent approaches of evidence are generated to as-

sess algorithm accuracy. More than 50 phenotypes are published in an open-access resource, the CALIBER Portal (https://www.caliberresearch.org/portal), and

are used in >60 publications.
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(UTS)” date by the CPRD. The UTS date is deemed as the date at

which data in the practice are considered to have continuous high-

quality data fit for use in research. The algorithm used to derive this

date is based on 2 concepts: (1) gap analysis (assurance of continuity

in data recording and establishing if any unexpected and prolonged

gaps in recording exist) and (2) death recording (observing the

expected and actual deaths recorded at a practice over time by

taking into account season and geographical variation in death rates

and establishing if any gaps in recording exist). In both of these

cases, the UTS date is set to the latest of these dates.

Completeness patterns of key clinical covariates such as risk

factors (for example, smoking status, blood pressure, body mass in-

dex) has been previously shown to have rapidly increased after the

introduction of a financial incentives framework (Quality and Out-

comes Framework) that encourages GPs to record key data items.41

Secondary care

The HES Admitted Patient Care data are collected for all admissions

to all NHS secondary healthcare providers. The NHS funds 98%-

99% of hospital activity in England. HES Admitted Patient Care

data are administrative data collected for reimbursement of hospital

activity and are postdischarge derived by clinical coders according

to standardized rules for translating information from discharge

summaries into diagnosis (ICD-10) and surgical procedure terms

(Office of Population Censuses and Surveys Classification of Surgi-

cal Operations and Procedures, Fourth Revision) terms.48 The over-

arching reimbursement framework, Payment-By-Results (a fixed-

tariff case mix–based payment system)52 provides financial incen-

tives for hospitals to improve their coding accuracy and depth and

ensure accurate reimbursement. This has led to an increase in the

number of diagnosis terms recorded and coding accuracy (primary

diagnoses accuracy was 96% [interquartile range, 89.3%-96.3%])

when compared with expert review of case notes.53 The NHS Digi-

tal Data Quality Maturity Index provides a per hospital overall

score for clinical data quality in term of data field and hospitaliza-

tion episode completeness on a quarterly basis.54

Algorithm development
The development pipeline was a collaborative and iterative process

involving researchers from a diverse set of scientific backgrounds

(for example, clinicians, epidemiologists, computer scientists, public

health researchers, statisticians). An iteration refers to an adjustment

in the computational strategy to derive the phenotype in question,

based on data-driven examinations of its internal validity and

according to the clinical context. The number of development itera-

tions was proportionate with the complexity of the clinical pheno-

type: algorithms leveraging multiple sources required multiple

iterations and substantially more clinician input.

We initially defined search strategies for identifying relevant di-

agnosis terms and their synonyms which were selected based on in-

put from clinicians, existing literature, national guidelines and by

consulting medical vocabulary repositories (for example, Unified

Medical Language System Metathesaurus.)55,56 Two clinicians inde-

pendently classified identified terminology terms (disagreements re-

solved by third) into nonoverlapping categories: (1) prevalent (for

example, “history of heart failure”), (2) possible (for example,

“congestive heart failure monitoring”), and (3) incident (potentially

subclassified [for example, “chronic congestive heart failure,”

“acute left ventricular failure,” “heart failure not otherwise spec-

ified”]). Similarly, we identified and classified coded symptoms

recorded in primary care EHR. Many CALIBER phenotyping algo-

rithms combine coded diagnosis, symptom information, continuous

measurements (for example, laboratory values or other physiologi-

cal measurements), and medication prescription information in a

rule-based fashion (for example, hypertension is defined using con-

tinuous blood pressure, coded diagnoses, blood pressure–lowering

prescriptions, and comorbidities). We generated ad hoc rules to rec-

oncile (1) coding differences across EHR sources with respect to the

granularity of diagnosis, (2) the presence of multiple terms (for ex-

ample, multiple different ethnicity entries, and (3) transience in cod-

ing (for example, ICD-9 was used for recording the cause of death

before 2000). In primary care EHR, identified Read terms were eval-

uated in terms of their information content and subsequent ability

to ascertain a phenotype reliably.

Primary care EHRs contain over 450 structured data items for

recording continuous measurements (for example, blood markers).

For continuous phenotypes (for example, blood pressure), we nor-

malized data quality by identifying the relevant units, specified unit

conversions (where required), and defined valid value ranges. For

example, the neutrophil count structured data area contained both

the absolute values and percentages, and these had to be differenti-

ated by supplementary Read terms and by checking the distribution

of values by unit. Sometimes values were obviously on the wrong

scale (for example, hemoglobin) in which some values were distrib-

uted as if measured in grams per liter but had (presumably incorrect)

units recorded as grams per deciliter. Zero values caused particular

problems; they could be impossible and represent missing data in

some cases (for example, ferritin) but might be true zeroes represent-

ing undetectable values in other cases (eg, basophils). Careful inves-

tigation by units and Read term was required to avoid creating

Missing Not at Random data (if the zeroes were true) or false data

(if the zeroes were false). Definition of valid ranges for values was

also problematic, as we wanted to exclude erroneous values without

excluding true physiologically extreme values.

Validation: systematic evaluation using 6 approaches
Obtaining and curating evidence of phenotype validity is an essential

component of the phenotyping process. We evaluated EHR-derived

phenotypes across up to 6 different approaches of providing of evi-

dence of phenotype validity, acknowledging that that the use case

will inform which validation(s) are most important. For example,

phenotyping algorithms developed for disease epidemiology (for ex-

ample, screening or disease surveillance) might be designed for

higher sensitivity whereas those used in genetic association studies

might be designed to maximize positive predictive value (PPV). We

provide details of these validation approaches in the following

sections.

Cross-EHR source concordance

For EHR-derived cases of AMI, HF, and bleeding, we quantified the

percentage of cases identified in each source, quantified the overlap

between sources, and evaluated per-source completeness and diag-

nostic validity. Additionally, we used a disease registry (MINAP) as

a reference to derive the PPV of AMI diagnoses recorded in hospital

EHR (HES), that is, the probability that an AMI diagnosis recorded

in HES was indeed an AMI as ascertained by MINAP (that contains

information on AMI ascertainment such as electrocardiogram

results and troponin measurements) rather than unstable angina or a

noncardiac diagnosis. We did not calculate sensitivity and specificity

relative to MINAP given that MINAP does not include all cases of

1548 Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12



AMI, as it is a disease registry that requires bespoke data entry by

audit staff separate from clinical care or coding. It is therefore not

possible to use MINAP as a gold standard to evaluate hospital EHR

(HES) in relation to completeness of detection of AMI (sensitivity)

or non-MI (specificity). However, there is a concern that HES data

may be inaccurate, and MINAP can be used to evaluate its PPV for

the subset of cases with a MINAP record for the event, in which the

exact diagnosis in MINAP can be considered a “gold standard.”

Case note review

We evaluated the performance of the secondary care component of

the bleeding phenotype by assessing the ability of the diagnosis terms

(ICD-10) utilized by the phenotype to correctly identify hospitalized

bleeding events in 2 independent hospital EHR sources. Two clini-

cians (blinded to the ICD-10 diagnosis terms) reviewed the entire hos-

pital record (charts, referral letters, discharge letters, imaging reports)

for 283 completed patient hospital episodes across 2 large hospitals

(University College London Hospitals, King’s College Hospital).

Bleeding assignments from the clinicians review was compared with

those from the phenotyping algorithm and we estimated the PPV, neg-

ative predictive value (NPV), sensitivity, and specificity using the case

review data as the “gold standard.” We extracted hospital data

(14 364 947 words) using CogStack57 from the consented SIGNUM

(Stroke InvestiGation Network-Understanding Mechanisms) study.

Consistency of risk factor–disease associations from non-EHR

studies

For all exemplars, we produced and reported hazard ratios (HRs)

and 95% confidence intervals (CIs) of known risk factors from Cox

proportional hazards models adjusted for age, sex, and other cova-

riates. We evaluated the ability of obtaining consistent estimates (in

terms of direction and magnitude) with risk factor associations de-

rived from non-EHR research-driven studies.

Consistency with prior prognosis research

We produced Kaplan–Meier cumulative incidence curves at appro-

priate time intervals and endpoints and stratified by EHR source.

We evaluated the observed prognostic profiles with previously

reported evidence for example observing different survival patterns

between patients diagnosed with HF in CPRD but never hospitalized

compared with patients diagnosed in HES.

Consistency of genetic associations

Similar to previous studies, we attempted to replicate previously

reported associations between genetic variants and diseases discovered

from non-EHR studies (for example, research-driven observational

cohort studies or interventional studies). The ability of EHR-derived

phenotypes to replicate previously discovered associations derived

from non-EHR studies and observing similar direction and magnitude

of association reinforces the evidence toward the overall validity of

the EHR phenotype.58 Using PLINK,59 we extracted genetic variants

associated with AMI reaching genome-wide significance (P<5 �
10�8) from publicly available 1000 Genomes–based genome-wide

association study summary data (“CARDIoGRAMplusC4D -

mi.additive.Oct2015”) in the CARDIoGRAMplusC4D60 consortium.

In the UK Biobank, we identified AMI cases in linked hospital and

mortality EHR using the CALIBER AMI phenotype and defined con-

trols as noncase participants with no self-reported record of AMI at

baseline. We estimated the association of genetic variants and AMI us-

ing logistic regression with an underlying additive model in PLINK

adjusting for the first 10 principal components, age and sex. Replica-

tion was defined as the single nucleotide polymorphism being associ-

ated with AMI in the UK Biobank (Bonferroni-adjusted P< .0016)

with a concordant direction of effect with CARDIOGRAMPlusC4D.

External populations

We assessed the validity of developed algorithms by implementing

them in external data sources (UK or elsewhere) and examining con-

sistency of results in the evaluation criteria.

Phenotype dissemination
We generated textual descriptions of algorithms with explicit detail

on the logic behind the algorithm (preprocessing, cross-source rec-

onciliation, quality checks) in a clinician-friendly manner. We gener-

ated flowchart representations accompanied by pseudocode for

facilitating the translation of the algorithm to Structured Query Lan-

guage (SQL) queries. We created entries in the CALIBER Portal

(Figure 2) describing implementation details across sources, research

outputs, validation evidence and a Digital Object Identifier.61 We

created an open-source R library for manipulating clinical terminol-

ogies (http://caliberanalysis.r-forge.r-project.org/) using a custom

file format including metadata (for example, naming, version,

authors, timestamp).

Ethical approval
The CPRD has broad ethical approval for purely observational re-

search using pseudonymized linked primary or secondary care data

for supporting medical purposes that are in the interests of patients

and the wider public. Linkages were performed by NHS Digital, the

statutory body in England responsible for providing core healthcare

information technology and curating many of the national datasets.

This study was approved by the Medicines and Healthcare Products

Regulatory Agency Independent Scientific Advisory Committee

(protocol references: 11_088, 12_153R, 16_221, 18_029R2,

18_159R).

RESULTS

Using the CALIBER EHR phenotyping approach described here, we

curated over 90 000 terms from 5 controlled clinical terminologies

to create 51 validated phenotyping algorithms (35 diseases or syn-

dromes, 10 biomarkers, 6 lifestyle risk factors). In this manuscript,

we used 3 exemplar phenotypes: HF (https://www.caliberresearch.

org/portal/phenotypes/heartfailure), bleeding (https://www.caliber-

research.org/portal/phenotypes/bleeding), and AMI (https://www.

caliberresearch.org/portal/phenotypes/acutemyocardialinfarction).

Table 1 provides a complete list of published, peer-reviewed pheno-

types and the approaches of evidence supporting their validity. CAL-

IBER phenotypes have been used by 40 national and international

research groups in 60 peer-reviewed publications.62 The CALIBER

Portal (http://www.caliberresearch.org/portal) opened in October

2018 to the community and provides a centralized resource for cu-

rating EHR-derived phenotypes.

Cross-EHR source concordance

The PPV of AMI (the probability that the diagnosis recorded in

MINAP was AMI rather than unstable angina or a noncardiac diag-

nosis) was 92.2% (6660 of 7224; 95% CI, 91.6%-92.8%) in CPRD

and 91.5% (6851 of 7489; 95% CI, 90.8%-92.1%) in HES

(Figure 3). Among the 17 964 patients with at least 1 record of
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nonfatal AMI, 13 380 (74.5%) were recorded by CPRD, 12 189

(67.9%) by HES, and 9438 (52.5%) by MINAP. Overall, 5561

(31.0%) of patients had AMI recorded in 3 sources (32.0% within

90 days), with 11 482 (63.9%) in at least 2 sources. For 89 554 HF

cases, 26% were recorded in CPRD only, 27% in both CPRD and

HES, and 34% in HES only, and 13% had HF as cause of death

without a previous record elsewhere. In 39 804 bleeding cases,

59.4% were captured in CPRD and 50.2% in HES, with 3.8%

events in ONS. Allowing a 30 day window, only 13.2% of events

were captured in 2 or more sources. Similarly, a very small propor-

tion (13.2%) of bleeding cases identified were captured in multiple

data sources.

Case note review

We tested the validity of ICD-10 terms used in our bleeding pheno-

type and found an NPV of 0.94 (95% CI, 0.90-0.97) and a PPV of

0.88 (88% of bleeding events identified by the ICD-10 terms utilized

in the CALIBER bleeding phenotype were indeed bleeding events

according to the independent review of the entire hospital record by

2 clinicians, blinded to the term assignment. We found that ICD-10

coded events underestimate the occurrence of bleeding, with a sensi-

tivity estimate of 0.48, consistent with a previous study where 38%

of hospitalized bleeding events were not captured by coded terms.63

Specificity was found to be 0.99 (95% CI, 0.97-1.00), indicating a

very low number of false positive bleeding events.

Etiology

Figure 4 shows age- and sex-adjusted HRs from Cox proportional

hazards models for HF and CVD risk factors (smoking, type 2 dia-

betes, systolic blood pressure, heart rate) in CALIBER and non-EHR

studies.

Prognosis

In 20 819 AMI cases, we found that patients with events recorded in

only 1 source had higher mortality than did those recorded in more

than 1 source (age- and sex-adjusted HR, 2.29; 95% CI, 2.17-2.42;

P< .001).29 Among patients with AMI recorded in only 1 source,

those only in CPRD had the highest mortality on the first day but

the lowest mortality thereafter. Among patients with AMI recorded

in HES or MINAP, those in MINAP had lower coronary mortality

in the first month (age- and sex-adjusted HR, 0.33; 95% CI, 0.28-

0.39; P< .001) but similar mortality for noncoronary events (HR,

1.12; 95% CI, 0.90-1.40; P¼ .3). After the first month, patients

with AMI in CPRD had about half the hazard of mortality of

patients with AMI recorded in 1 of MINAP or HES (age- and sex-

adjusted HR, 0.49; 95% CI, 0.40-0.60; P< .001). In 89 994 HF

cases, we observed 51 903 deaths and generated Kaplan–Meier

curves for 90-day survival. Adjusted for age and sex, HF was

strongly associated with mortality, with HRs for all-cause mortality

ranging from 7.01 (95% CI, 6.83-7.20) to 7.23 (95% CI, 7.03-

7.43), and up to 15.38 (95% CI, 15.02-15.83) for patients in CPRD

with acute HF hospitalization, CPRD only, and HES only, com-

pared with an age- and sex-matched reference population. Age, con-

comitant chronic obstructive pulmonary disease, and diabetes were

among the strongest predictors of death. Compared with patients

with no bleeding, patients with bleeding recorded in CPRD and HES

were at increased risk of all-cause mortality and atherothrombotic

events (HR all-cause mortality for CPRD bleeding, 1.98; 95% CI:

1.86-2.11; and HR all-cause mortality for HES bleeding, 1.99; 95%

CI: 1.92-2.05).

Genetic associations

In the CARDIoGRAMplusC4D genome-wide association study

summary data, we identified 31 independent variants associated

with AMI by linkage disequilibrium clumping (R2 < 0.001, 250 kb)

genetic variants reaching genome-wide significance (P<5 � 10–8).

In the UK Biobank, we identified 8281 AMI cases and 394 933 con-

trols, and excluded 5266 participants from the analysis due to self-

reported AMI at baseline. From 31 previously reported single nucle-

otide polymorphisms, 31 (100%) had P< .05 with same direction,

with 26 (83.8%) passing Bonferroni correction (P< .0016) (Supple-

mentary Table 1).

External populations

We assessed the validity of the AMI, HF, and bleeding phenotypes

by comparing long-term outcomes (any cause death, fatal AMI or

stroke, hospital bleeding) in AMI survivors in England (n¼4653),

Sweden (n¼5484), United States (n¼53 909), and France

(n¼961).64 We found consistent associations with 12 baseline prog-

nostic factors (age, sex, AMI, HF, diabetes, stroke, renal disease, pe-

ripheral arterial disease, atrial fibrillation, hospital bleeding, cancer,

chronic obstructive pulmonary disease) and each outcome. In each

country, we observed high 3-year crude cumulative risks of all-cause

death (from 19.6% [England] to 30.2% [United States]), with the

Figure 2. CALIBER Portal entry for the heart failure phenotype (available at https://www.caliberresearch.org/portal/phenotypes/heartfailure). Each entry in the Por-

tal contains implementation details on the logic and the terms from controlled clinical terminologies associated with the phenotyping algorithm. Additionally, the

6 approaches of validation evidence are presented and the research output that has used the phenotype is provided.

1550 Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz105#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz105#supplementary-data
https://www.caliberresearch.org/portal/phenotypes/heartfailure


Table 1. Overview of published, peer-reviewed EHR phenotypes derived from the CALIBER platform and the approaches of validation evi-

dence - More information available on the CALIBER Portal https://www.caliberresearch.org/portal/phenotypes

Phenotype EHR data source Validation evidence

Primary care Secondary care Death Cross-source Case-note review Prognosis Etiology Genetic Cross-country

Disease or syndrome

AAA � � � � � �

AMI � � � � � � � �

AD � � � � �

AF � � � � � � �

Uveitis � � �

Bleeding � � � � � � � �

Bullous disorder � � � �

CHD � � � � �

Depression � � � �

Diabetes � � � �

Giant cell arteritis � � � �

HF � � � � � �

HIV � � � � �

Hypertension � � � � �

HCM � � � �

Influenza � �

MS � � � �

PAD � � � � � �

Polymyalgia � � � �

PBC � � � �

Psoriasis � � � �

Dementia NOS � � � � �

RA � � � �

SA � � � � �

Intracerebral hemorrhage � � � � � �

Ischemic stroke � � � � � �

SAH � � � � � �

Stroke NOS � � � � � �

SCD � � � � � �

Systemic sclerosis � � � �

TIA � � � � � �

UCD � � � � �

UA � � � � �

Vascular dementia � � � � �

Obesity � � � �

Biomarkers

Blood pressure � �

Eosinophils � �

Heart rate � �

Lymphocytes � �

Neutrophils � �

White blood cells � � �

LDL cholesterol � �

HDL cholesterol � �

Triglycerides � �

BMI � � �

Lifestyle risk factors and other

Alcohol � �

Ethnicity � � �

Pregnancy � � �

Sex � �

Smoking � �

Deprivation � �

AAA: abdominal aortic aneurysm; AD: Alzheimer’s disease; AF: atrial fibrillation; AMI: acute myocardial infarction; BMI: body mass index; CHD: coronary

heart disease; EHR: electronic health record; HCM: hypertrophic cardiomyopathy; HDL: high-density lipoprotein; HF: heart failure; HIV: human immunodefi-

ciency virus; LDL: low-density lipoprotein; MS: multiple sclerosis; NOS: not otherwise specified; PAD: peripheral arterial disease; PBC: primary biliary cirrhosis;

RA: rheumatoid arthritis; SA: stable angina; SAH: subarachnoid hemorrhage; SCD: sudden cardiac death; TIA: transient ischemic attack; UA: unstable angina;

UCD: unheralded coronary death.
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composite of AMI, stroke, or death (from 26.0% [France] to 36.2%

[United States]) and hospitalized bleeding (from 3.1% [France] to

5.3% [United States]). Adjusted risks were similar across countries,

but higher in the United States for all-cause death (Relative Risk

(RR) United States vs. Sweden, 1.14; 95% CI, 1.04-1.26) and hospi-

talized bleeding (RR United States vs. Sweden, 1.54; 95% CI, 1.21-

1.96). Similar analyses were performed for white blood cells, com-

paring all-cause mortality in England and New Zealand.65,66 High

white blood cells within the reference range (8.65-10.05�109/L)

was associated with significantly increased mortality compared with

the middle quintile (6.25-7.25�109/L; adjusted HR for England,

1.51; 95% CI, 1.43-1.59; adjusted HR for New Zealand, 1.33; 95%

CI, 1.06-1.65).

DISCUSSION

In this study, we describe the CALIBER phenotyping approach,

which has been used to produce 51 validated phenotyping algo-

rithms which capture disease status, biomarker values, and lifestyle

risk factors across 4 UK national EHR data sources spanning pri-

mary care, hospital admissions, a disease registry, and a mortality

register. Creating nationally applicable phenotypes leveraging mul-

tiple EHR sources has, until recently, been a challenging, time-

consuming, unreplicable, and somewhat opaque process without

any centralized resources. Research studies require precise pheno-

type definitions but phenotypic information found in EHR is typi-

cally inconsistent and of variable data quality. These problems are

exacerbated when linking data across healthcare settings (primary

care and hospital admissions), as each source records information

using different healthcare processes, disparate formats, and termi-

nologies and interact with fundamentally different patient popula-

tions. Complementary initiatives exist,19 but these are different

from CALIBER, as they focus on curating code lists. We have taken

a different approach and define an EHR phenotype as a combina-

tion of 3 essential elements: controlled clinical terminology terms,

implementation logic, and validation evidence, all of which are cu-

rated on the CALIBER Portal. Compared with the Phenotype

Knowledgebase developed by the eMERGE consortium, CALIBER

includes additional approaches of validation, such as etiological

and prognostic across population samples, but lacks comprehensive

detailed PPV or NPV measurements that are made possible by the

availability of text and access to case notes at scale in the United

States.

CALIBER phenotyping algorithms use structured information

on diagnoses, symptoms, referrals, prescriptions, and procedures,

which are recorded using 5 controlled clinical terminologies and

continuous measurements to extract disease onset and severity. The

actual phenotyping algorithm production was lengthy and labor in-

tensive and usually involved a large number of iterations although

the exact number of person hours was difficult to ascertain. A par-

ticular challenge was the need to reconcile differences in granularity

of diagnosis terms used in primary care and secondary care EHR, as

each healthcare setting utilizes different clinical terminologies to re-

cord information (Read in primary care, ICD-10 in secondary care).

For example, in HF, the Read controlled clinical terminology

allowed us to potentially distinguish between the 2 main congestive

heart failure types: heart failure with normal or preserved ejection

fraction (Read term “G583.11 HFNEF - heart failure with normal

Figure 3. Assessing the recording and concordance of 3 electronic health record (EHR)–derived phenotypes (heart failure, nonfatal acute myocardial infarction

[AMI], and bleeding) across 3 EHR data sources: primary care (Clinical Practice Research Datalink [CPRD]), hospital care (Hospital Episode Statistics [HES]), and

mortality (Office for National Statistics [ONS]) or disease registry data (Myocardial Ischaemia National Audit Project [MINAP]). Only a very small proportion (9%

for heart failure, 31% for AMI, and <1% for bleeding) of cases are identified concurrently by all 3 data sources. ICD-10: International Classification of Diseases–

Tenth Revision.
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ejection fraction”) and heart failure with reduced ejection function

or left ventricular systolic dysfunction (Read term “G5yy900 - Left

ventricular systolic dysfunction”). Conversely, ICD-10 terms are

substantially less specific (ICD terms “I50.0 Congestive heart fail-

ure” and “I50.9 Heart failure, unspecified”) and do not allow for

this distinction. As a rule, for overlapping diagnoses across multiple

sources, CALIBER phenotypes utilize the source with the highest

clinical resolution to ascertain disease status.

Figure 4. Risk factors for initial presentation of heart failure (HF) phenotype: hazard ratio (HR) and 95% confidence interval of smoking status, type 2 diabetes mel-

litus (T2DM), systolic blood pressure (BP) and heart rate based on previously published CALIBER studies29,75,76 compared with estimates obtained from investiga-

tor-led studies derived using manually curated research data.77–80 All individual analyses have been adjusted for age and sex and other covariates. Scale: 279 �
215 mm (72 � 72 dots per inch).
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We found that diagnosis terms in primary care using Read terms

were not always informative and could not directly be used to ascer-

tain particular phenotypes. For example, when attempting to create

a dietary phenotype, we identified 173 Read terms related to nutri-

tion, which were recorded across 5.6 million diagnosis events. Only

8% of these, however, were sufficiently informative to infer a partic-

ular nutritional diet (for example, low-fat diet, gluten-free diet, dia-

betic diet, or low-sodium diet). The majority of terms used were

generic terms that carried little information (“8CA4.00 Patient ad-

vised re diet” or “9N0H.00 Seen in dietician clinic”) and could not

be used for ascertaining a phenotype with reasonable performance.

While such terms could potentially be utilized as supporting infor-

mation for other phenotypes (for example, diabetic diet as evidence

of diabetes) they cannot be used to ascertain a phenotype directly.

We observed that clinically informed combinations of informa-

tion across EHR sources improves case detection. All disease and

syndrome phenotypes (n¼35) utilized information sourced from

primary care and hospital care EHR and roughly half (n¼18) uti-

lized cause-specific mortality information recorded in the national

death register. In general, we considered EHR sources complemen-

tary to each other with each providing a different aspect of a

patient’s disease state (chronic vs acute) rather than denote one as

the authoritative source of information. One notable exception to

this is mortality, in which we used the ONS date of death as the

“gold standard,” as studies have shown that discrepancies exist be-

tween the recorded death dates in primary care EHR and the date

recorded on the death certificate (ONS). A previous study67 of

118 571 deaths in England showed that a discrepancy existed in al-

most a quarter of deaths. Considerable variation was observed be-

tween GP practices on the degree of such discrepancies (in the

majority of cases, the date of death recorded by the GP was after the

date of death recorded on the death certificate). This is because GPs

do not routinely see the death certificate (which is the definitive re-

cord of time and cause of death) and there is no legal obligation for

them to record the date of death accurately. If there is a delay in

their receipt of notification of death, they might record the date of

death as the date of notification, or the date the patient’s record was

closed, rather than the actual date of death. In line with previous lit-

erature we therefore used the ONS as the “gold standard” for ascer-

taining mortality.

A major effort of CALIBER has been to create longitudinal dis-

ease phenotypes that capture early and late manifestations of dis-

ease. We observed that the proportion of cases contributed by each

EHR source differed by age at diagnosis: patients identified in sec-

ondary care EHR were substantially older than were those identified

in primary care. For example, substantially more atrial fibrillation

cases were identified in secondary care EHR rather than in primary

care (32 930 cases compared with 11 068 from primary care), and

using only a single source would have introduced bias and underesti-

mated the incidence of disease. Conversely, type 2 diabetes cases

were exclusively identified through primary care EHR with no cases

identified exclusively in hospital EHR due to the fact that, such as

other diseases such as hypertension, diagnosis, and management, is

almost entirely performed in primary care.

Validation (Table 2) was a critical step for assessing the accuracy

of EHR-derived phenotypes. We did not consider algorithm valida-

tion as a finite task, but rather as a constantly evolving process due

to the underlying complexity of EHR data and the processes which

generate them.68 We sought to address the spectrum of validation

views and developed an approach that captures 6 levels of evidence.

The majority of disease and syndrome phenotypes examined inci-

dence estimates across different EHR sources and consistency with

previous associations in terms of disease etiology and prognosis.

Validation was more restricted in biomarker and lifestyle risk factor

phenotypes because information was derived from only 1 particular

source (in the case of biomarkers, measurements were exclusively

identified in primary care). Clinician case note review was consid-

ered the “gold standard” of phenotype validation that enables PPV

or NPV calculations but access to medical records was not widely

available, and thus we could only perform this in a single instance.

Prognostic validation was one of the main validation approaches

where consistency with previously reported findings provided a

degree of confidence in terms of phenotype validity (for exposures,

outcomes, and covariates used in the analyses). Inconsistent results,

however, were possible and could be explained due to multiple fac-

tors such as different health settings and sources of data, healthcare

process factors and workflows and uncomparable definitions.

In terms of the complete hospital interaction, HES data are a

snapshot of the patient journey as data are collected for hospital re-

imbursement.8,52 Hospital records are converted into diagnosis and

procedure codes locally (following an existing protocol) at each hos-

pital and submitted to the NHS. HES data are provided to research-

ers with identifiers for hospitals removed to protect patient

anonymity as a common identifier is used across HES and CPRD GP

practices, which have a substantially smaller catchment area. As

such, we were unable to assess the effect of site-level variability in

terms of data capture and quality and phenotype validity. Multiple

initiatives, however, exist for obtaining raw hospital records for

research, such as the National Institute for Health Research Health

Informatics Collaborative, which links 11 intensive care units in 5

hospitals for research (>18 000 patients, >21 000 admissions, me-

dian 1030 time-varying measures).69 Crucially, these initiatives will

enable researchers to have access to raw hospital data, including free

text, for creating and validating phenotypes and will create a feed-

back loop with clinical care that will provide detailed information

on the healthcare processes generating the data (critical for pheno-

typing) and drive data standardization and quality.

CALIBER phenotyping algorithms are rule-based, deterministic,

and provide a framework on which future phenotypes can be cre-

ated. While our approach yields robust and accurate algorithms, it

does not scale with our ambition to create and curate thousands of

high-quality phenotypes (and their validation) that capture the en-

tire human phenome. To do this, research is required on high-

throughput phenotyping involving supervised and unsupervised

learning approaches and natural language processing.70 Such meth-

ods can generate thousands of phenotypes and discover hidden asso-

ciations within clinical data in a fraction of the current cost and

time requirements and with minimal human intervention. Robust

approaches for classifying phenotype complexity are required to en-

sure proportional resourcing for phenotyping.71 Finally, a key next

step is to use the 6 sites of the recently funded Health Data Research

UK national institute to scale up the number of phenotypes created

and curated using UK EHR.

The use of a common data model to map between the clinical

terminologies used across EHR sources, such as the Observational

Medical Outcomes Partnership Common Data Model can poten-

tially address some of the labor-intensive tasks associated with phe-

notyping. For example, the translation from phenotype definition to

SQL for data extraction was manual due to the lack of an estab-

lished storage format72 for the algorithms and variable schema

across EHR sources. Observational Medical Outcomes Partnership

Common Data Model can potentially act as Relational Database
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Table 2. Systematic validation of the CALIBER EHR-derived phenotypes for HF, AMI, and bleeding across 6 approaches of evidence: cross-

EHR concordance, case-note review, etiology, prognosis, genetic associations, and external populations

Validation domain Description What has been done

HF AMI Bleeding

Cross-EHR source

concordance

To what extent is the

phenotype concor-

dant across EHR

sources?

The proportion of HF

cases recorded in pri-

mary care and hospital

care EHR was 27%31

The proportion of nonfatal

AMI defined across pri-

mary care, hospital care,

and disease registry was

32%29

The proportion of bleeding

events recorded in primary

care and hospital care was

12%, with 47% of bleed-

ing events recorded only in

primary care and 12%

only in hospital care

Case-note review What is the PPV and

the NPV when

comparing the al-

gorithm with clini-

cian review of case

notes or “gold

standard” source of

information?

Compared with AMI defined

in the disease registry, the

PPV of AMI recorded in

primary care was 92.2%

(95% CI, 91.6%-92.8%)

and in hospital admissions

was 91.5% (95% CI,

90.8%-92.1%)29

Compared through indepen-

dent review by 2 clinicians,

the PPV of bleeding events

identified through the phe-

notyping algorithm was

0.88

Etiology Are the prospective

associations with

risk actors consis-

tent with previous

evidence?

Type 2 diabetes,84 sys-

tolic/diastolic blood

pressure,32 heart

rate,85 socioeconomic

deprivation,86 alcohol

consumption,87 smok-

ing,88 ethnicity,44

AMI,29 depression,89

neutrophil counts,90

eosinophil/lymphocyte

counts,91 atrial fibrilla-

tion,30 sex92

Type 2 diabetes,84 systolic/di-

astolic blood pressure,32

heart rate,85 socioeco-

nomic deprivation,86 alco-

hol consumption,87

smoking,88 ethnicity,44

AMI,29 depression,89 neu-

trophil counts,90 eosino-

phil/lymphocyte counts,91

atrial fibrillation,30 influ-

enza infection,93 ischemic

presentations,94 sex92

At 5 y, 29.1% (95% CI,

28.2%-29.9%) of atrial fi-

brillation patients, 21.9%

(95% CI, 21.2%-22.5%)

of myocardial infarction

patients, 25.3% (95% CI,

24.2%-26.3%) of unstable

angina patients and 23.4%

(95% CI, 23.0%-23.8%)

of stable angina had bleed-

ing of any kind

Prognosis Are the risks of subse-

quent events plausi-

ble?

Corrected for age and

sex, HF was strongly

associated with mortal-

ity, with HRs for all-

cause mortality ranging

from 7.01 (95% CI,

6.83-7.20) to 7.23

(95% CI, 7.03-7.43),

and up to 15.38 (95%

CI, 15.02-15.83) for

patients in primary

care with acute HF

hospitalization, pri-

mary care only, and

patients hospitalized

but no primary care re-

cord31

Patients with myocardial in-

farction identified in the

disease registry had lower

crude 30-d mortality

(10.8%; 95% CI, 10.2%-

11.4%) than did those

identified in hospital care

(13.9%; 95% CI, 13.3%-

14.4%) or in primary care

(14.9%; 95% CI, 14.4%-

15.5%) (Figure 3+). At 1

year, however, mortality

was similar in all 3 groups,

at around 20%29

Of the 24 479 patients with

AMI, 5775 (23.6%) devel-

oped HF during a median

follow-up of 3.7 years (inci-

dence rate per 1000 person-

years, 63.8; 95% CI, 62.2-

65.5)95

The HR for all-cause mortal-

ity was 1.98 (95% CI,

1.86-2.11) for primary

care bleeding with markers

of severity, and 1.99 (95%

CI, 1.92-2.05) for hospital-

ized bleeding without

markers of severity, com-

pared with patients with

no bleeding

Genetic

associations

Are the observed ge-

netic associations

plausible and con-

cordance with pre-

vious evidence?

Consistent direction and

magnitude of associations

were replicated in 67

(97%) of previously

reported genetic variants4

(continued)
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Management System agnostic schema which standardized analytical

tools can be deployed on and has been shown to be robust73,74 and

we are currently in the process of evaluating the fidelity of the data

transformation. We have additionally evaluated different

approaches (Semantic Web Technologies, openEHR)75,76 for storing

phenotype definitions in a computable format that can enable high-

throughput phenotyping and eliminate the need for manual human-

driven translation to SQL queries. Given that all of UK primary care

EHR data are hosted on 4 clinical information systems vendors,

there is a real opportunity to create computable phenotypes which

can be utilized across the NHS.77 To accomplish this, information

exchange standards (for example, Fast Healthcare Interoperability

Resources78) have to be utilized and combined with approaches

such as the Phenotype Execution and Modeling Architecture79 and

the Measure Authoring Tool.80

CONCLUSION

We have demonstrated the strengths and challenges of phenotyping

national UK EHR data using 3 exemplars (HF, AMI, bleeding) and

have exemplified the United Kingdom’s national EHR phenomics

platform. In this manuscript, we presented the CALIBER platform

as a framework for using national EHR from primary and secondary

health care, disease and national mortality registries. CALIBER is

analogous and complementary to other leading initiatives, (for ex-

ample, eMERGE), in that it ensures best practice and reproducibility

for creating and validating EHR-derived phenotypes.81,82 In con-

trast with eMERGE, however, which uses secondary care data

(higher proportion of disease), CALIBER exploits primary care

EHRs, which contain healthy and ill individuals. Importantly, the

approaches described here are potentially scalable or adaptable to

the entire UK population of 65 million.

Through CALIBER we provide a framework for the consistent

definition, use, and reuse of EHR-derived phenotypes from national

UK EHR sources for observational research: (1) high-resolution clin-

ical epidemiology using national EHRs examining disease etiology

or prognosis96 or (2) genetic epidemiology studies through the UK

Biobank and Genomics England investigating simple and complex

traits across populations. One of the primary audiences of CALIBER

phenotypes is international: U.S. investigators account for a third

of studies using UK primary care EHRs18 and two-thirds of UK

Biobank studies are carried out by U.S. investigators. Additionally,

the controlled clinical terminologies used in UK EHRs are directly

translatable and transferable to the United States, for example,

Read terms (CTV3 [Clinical Terms Version 3]) are part of

SNOMED-CT, and ICD-9 Clinical Modification to ICD-10 map-

pings exist. As Phenotype Knowledgebase and other

initiatives evolve, establishing links across national portals83 and in-

frastructure can enable cross-biobank analyses of complex or rare

phenotypes.7

The creation of a national phenomics platform through CALI-

BER provides an opportunity for the UK EHR community to inter-

act, nationally and internationally, and connects data producers and

consumers. Researchers can deposit phenotyping algorithms in the

Portal for others to download, refine, and use. EHR users (such as

clinicians) can view these algorithms and understand how the data

they record are being used for research.
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Table 2.. continued

Validation domain Description What has been done

HF AMI Bleeding

External

populations

Has the algorithm

been tested (in any

of the previous vali-

dation domains) in

different countries?

We observed high 3-y crude

cumulative risks of all-

cause death (from 19.6%

[England] to 30.2%

[United States]); the com-

posite of AMI, stroke, or

death (from 26.0%

[France] to 36.2% [United

States]); and hospitalized

bleeding (from 3.1%

[France] to 5.3% [United

States])64

AMI: acute myocardial infarction; CI: confidence interval; EHR: electronic health record; HF: heart failure; HR: hazard ratio; NPV: negative predictive value;

PPV: positive predictive value.
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