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Abstract: Magnesium alloys exhibit superior biocompatibility and biodegradability, which makes
them an excellent candidate for artificial implants. However, these materials also suffer from lower
corrosion resistance, which limits their clinical applicability. The corrosion mechanism of Mg alloys is
complicated since the spontaneous occurrence is determined by means of loss of aspects, e.g., the basic
feature of materials and various corrosive environments. As such, this study provides a review of the
general degradation/precipitation process multifactorial corrosion behavior and proposes a reason-
able method for modeling and preventing corrosion in metals. In addition, the composition design,
the structural treatment, and the surface processing technique are involved as potential methods
to control the degradation rate and improve the biological properties of Mg alloys. This systematic
representation of corrosive mechanisms and the comprehensive discussion of various technologies
for applications could lead to improved designs for Mg-based biomedical devices in the future.

Keywords: magnesium-based alloys; biodegradability; corrosion behavior; corrosive mechanism;
corrosion resistance

1. Introduction

Biomedical implants are typically composed of non-degradable metals, including
stainless steel, titanium, and cobalt–chromium alloys. Degradable metals, such as magne-
sium, calcium, and zinc-based alloys, are also used. Non-degradable (permanent) materials
have been widely used in biomedical applications for decades but exhibit certain limitations
and challenges. For example, in orthopedics, the mismatched Young’s modulus between
implants and surrounding tissue can produce serious stress-shielding, potentially causing
unexpected bone atrophy [1]. The retained bulky implants can also irritate surrounding
tissue and alter the forces and pressure on a joint complex [2]. The possibility of toxic ion
release is another drawback of using permanent metals [3–8], which should be prevented
to avoid unnecessary inflammation and infection.

In addition, traditional implants generate significantly more artifacts in common
imaging modalities (e.g., digital radiography, magnetic resonance imaging, and computed
tomography) and can create more artifact-induced noise and signal distortion in postopera-
tive imaging [9,10]. Prior research has attempted to overcome these limitations, the most
effective of which is the utilization of biodegradable metallic devices. Due to their inher-
ent bioactive properties, the corresponding degradation products can actually improve
the healing process in local tissue. As such, it is vitally important to develop practical
degradable metals to meet clinical requirements.

Magnesium (Mg), the fourth most abundant cation in the human body, is mostly
stored in the bone (60~65%) and soft tissues (35~40%, and mainly ~27% in the mus-
cle) [11,12]. The U.S. Food and Nutrition Board recently established a recommended di-
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etary allowance for magnesium of 420 mg/day for males and 320 mg/day for females [13].
Excess Mg ions can be stored in intracellular matrices, new bone formations, or dispersed
into the circulatory system. This is often followed by excretion in urine to prevent hyper-
magnesium [14,15]. When the degradation rate of an implanted device matches human
metabolic capacity, a second surgical process (to remove the device) can typically be avoided.
This can substantially reduce costs to healthcare providers and trauma to patients [13,16,17].

Mg also plays an important role in the synthesis of proteins and nucleic acid, the in-
tegrity of mitochondria and enzymes, the stabilization of biological membranes, and the
modulation of transport functions [12,18,19]. The elastic modulus of Mg is ~45 GPa [20–23],
which is close to the value of cancellous bone (10–30 GPa). Mg is also lightweight and
exhibits a high strength-to-weight ratio. These suitable mechanical properties make Mg-
based alloys a popular choice for medical devices requiring high biocompatibility, such as
prosthetics and artificial implants [24,25]. However, these materials also exhibit a lower cor-
rosion resistance, which leads to increased degradation rates. This can result in a premature
loss of mechanical strength that limits the clinical applicability of these devices.

The investigation of medical Mg-based alloys began in 1878. However, the funda-
mental issues hindering its extensive application still remain. Specifically, higher chemical
reactivity in physiological (pH = 7.4–7.6) environments leads to rapid degradation and
subsequent implant failure [26–28]. This process is likely to induce a local accumulation of
alkaline ions, causing cytotoxic effects and inflammation [29–31]. The production of hydro-
gen (H2) gas during degradation is another critical issue [32,33], which can result in a bal-
looning effect [30,34]. These accumulated gas bubbles can block normal blood flow, disrupt
the balance of blood cell parameters, damage adjacent tissue, and cause infection [35–38].
A continued excess of Mg2+ may also decrease the crystallinity of hydroxyapatite (HA) and
inhibit mineralization during the early phases of embryonic development [18]. Localized
corrosion is another concern for the clinical application of Mg alloys. It can result from the
formation of galvanic cells [39], high-strain regions [22], or corrosive conditions [31] that
contribute to a rapid reduction in mechanical integrity [40,41]. These issues are the primary
factors limiting the use of Mg-based devices in clinical settings.

Great progress has been made in the field of biodegradable Mg alloys in the last
decades. However, a review, which covers the latest conceptions of the dynamic corrosion
behavior, the domination of the degradation, and the bioactive degradation product, is not
comprehensive. Accordingly, this work reviews the corrosion mechanism in Mg alloys, es-
pecially the degradation/precipitation reactions and influential factors in the physiological
conditions. In addition, the related factor, which affects the application of the biomedical
device, is also discussed. A systematic improving technique is proposed for the fabrication
of these devices, which could improve their compatibility in clinical applications (Figure 1).
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an elastic modulus close to that of natural bone [43]. (3) Enhanced alkalinization is not only benefi-
cial for the synthesis and crosslinking of collagen, but it also supports the formation of HA, which 
provides excellent bioactivity and osteoconductivity [44–46]. 
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Mg ↔ Mg2+ + 2e− (anodic partial reaction), (1)

Figure 1. A summary of the advantages of biodegradable Mg-based implants. (1) The balance of
magnesium ions can be precisely controlled by the kidney [14,24,42]. (2) Mg and its alloys exhibit an
elastic modulus close to that of natural bone [43]. (3) Enhanced alkalinization is not only beneficial for
the synthesis and crosslinking of collagen, but it also supports the formation of HA, which provides
excellent bioactivity and osteoconductivity [44–46].

2. Corrosion Behavior

Mg and its alloys are generally known for degrading in aqueous environments, primar-
ily through electrochemical reactions (corrosion) that produce Mg hydroxide and hydrogen
gas. The specific corrosion reactions are shown below:

Mg↔Mg2+ + 2e− (anodic partial reaction), (1)

2H2O + 2e− ↔ H2 + 2OH− (cathodic partial reaction), (2)

Mg + 2H2O↔Mg2+ + H2 + 2OH− (overall reaction), (3)
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Mg + 2OH− ↔Mg(OH)2 (product formation). (4)

Anodic partial reactions, with a slight decrease in pH [47], typically occur in the corro-
sive Mg matrix adjacent to cathodic zones (e.g., impurity particles, noble elements enriched
regions, second phases) [48–51]. This Mg matrix is prone to be internal galvanic attacked
due to a very negative electrode potential [52–54]. Localized alkalinization also occurs at
cathodic sites [47,55], with an increased pH value of up to 10–11 [55]. This can approach the
passivity region of Mg [53] and lead to the formation of a partially protective outer porous
Mg(OH)2 film and a dehydrated MgO inner layer [47,56–59]. Additionally, selective corro-
sion occurs in Mg-base alloys, and usually, active Mg atoms dissolve preferentially [60,61],
contributing to the enrichment of noble elements’ atoms in the inner layer [62,63].

In physiological liquid or serum, the dissolved metallic ions and dissociative calcium
(Ca2+) ions can react with other anions in the medium and form products such as carbon-
ates, phosphates, chlorides, etc. [59,64,65]. These compounds with low solubility product
constant (Ksp) precipitate as insoluble in the corrosion layer [66–69], which is beneficial for
slowing the corrosion rate [59,70] and stabilizing the local pH [55,56,71]. However, in this
process, the hydroxide film can gradually become unstable [72], facilitating the penetration
of Cl− ions in this quasi-protective film [73–75]. As a result, Mg(OH)2 is converted into a
soluble substance (MgCl2) through the following reaction [32,58,70]:

Mg(OH)2 +2Cl− ↔MgCl2 + 2OH−. (5)

When the dissolution of hydroxide opens up the inner layer, the hydration effect easily
converses the magnesium oxide to laminar hydroxide with a volume twice as original
oxide [60,76]. They were expected to slow down the corrosion rate by blocking the anodic
areas. On occasion, compressive rupture of the film may also arise, resulting in continual
exposure of the inner layer or fresh metal surface [76]. Alternatively, with a low Pilling–
Bedworth ratio < 1 (PBR; the ratio of the volume of oxide to the volume of metal) [59,77,78],
the exposed discontinuous magnesium oxide promotes the anodic dissolution of Mg alloy,
via porosity acting as paths for Mg cations [59,79]. Although supported by supersatu-
ration and subsequent precipitation, a filamentous Mg(OH)2 film grows subsequently,
the high surface and porous morphologies permit continued access of electrolyte to the
inner regions [78,80].

Therefore active degradation of Mg-based alloys still takes place, even as the corrosion
rate decreases gradually with time. This contributes to a continuous cycle of corrosive
film formation and decay [55], which consequently increases the coverage of corrosion
product layers on metal surfaces [73]. Specific corrosion processes for Mg-based alloys are
discussed in the following sections (Figure 2).

2.1. Galvanic Corrosion

Galvanic corrosion, also called coupled corrosion, typically occurs during physical
or electrical contact in which two types of metals with different electrochemical potentials
interact in an ion-conducting fluid medium [81]. It is one of the major obstacles to the appli-
cation of magnesium components in chemically active environments. Galvanic corrosion
in Mg-based alloys can generally be attributed to the poor quality of alloys developed from
the enrichment of noble metals [82,83], poor device design, or inadequate assembly prac-
tices [84–86]. Due to the relatively low solubility of elements in Mg, second phase particles
can develop when the alloy is in excess of the solubility limit [87]. Subsequent inter-galvanic
effects can strongly influence the initial stages of corrosion in Mg alloys [48,49] (Table 1).
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Figure 2. A schematic illustration of corrosion mechanisms in Mg-based alloys in a simulated body
fluid (SBF) solution [70].

Table 1. Solubility data for binary Mg-based alloys [88–90].

Element. Atomic% Weight% System Ref.

Lithium 17 5.5 Eutectic [88,89]
Aluminum 11.8 12.7 Eutectic [88,89]

Silicon ~0.00 ~0.00 Eutectic [90]
Calcium 0.82 1.34 Eutectic [89,90]
Titanium 0.1 0.2 Peritectic [88,89]

Manganese 1 2.2 Peritectic [88,89]
Iron ~0.00 ~0.00 Eutectic [90]

Copper 0.02 0.04 Eutectic [90]
Zinc 2.4 6.2 Eutectic [88,89]

Strontium 0.03 0.11 Eutectic [90]
Zirconium 1 3.8 Peritectic [88,89]

Silver 3.8 15 Eutectic [88,89]
Cadmium 100 100 Complete SS [88,89]

Indium 19.4 53.2 Peritectic [90]
Tin 3.35 14.48 Eutectic [88,89]

Gold 0.1 0.8 Eutectic [88,89]
Yttrium 3.75 12.47 Eutectic [90]
Cerium 0.09 0.52 Eutectic [90]

Neodymium 0.52 ~3.00 Eutectic [90]
Samarium 0.9 5.3 Eutectic [90]

Gadolinium 4.53 23.49 Eutectic [90]
Dysprosium 4.76 25.34 Eutectic [90]

Erbium 6.91 33.8 Eutectic [90]
SS = Solid solubility.

The development of precipitate phases directly affects corrosion rates in Mg-based
alloys due to the limited solubility of magnesium [87]. These secondary phases are typically
nobler than pure Mg [52,91], contributing to the formation of internal galvanic couples
that increase the degradation rate. For instance, Zhou et al. observed an AlCuMg phase



Materials 2022, 15, 2613 6 of 31

that served as a micro-cathode site and was a primary cause of accelerated degradation
rates in AZ31-xCu alloys [82]. In addition, Song and Xu [92] reported on precipitated
Al8Mn5 intermetallic phases occurring during heat treatments. Such phases are responsible
for the reduced corrosion resistance of AZ31 and can supersede the influence of grain
size or crystallographic orientation. However, decreased corrosion rates produced by
secondary phases were also reported [93]. When the volume fraction of secondary phases
is sufficiently large and a continuous network of precipitated phases is formed, it can
retard the corrosion process through a barrier mechanism [94,95]. As such, continuous
secondary phases can inhibit the development of corrosion from one grain to another [96].
Furthermore, dual effects in precipitated phases can be affected by distribution morphology
when the potential difference is small between the second phases and the Mg matrix.
For instance, the polygonal type Mg2Si decreases the corrosion current density, while the
Chinese script type Mg2Si can increase [97,98].

2.2. Pitting Corrosion

Localized corrosion occurs preferentially in adjacent Mg matrix [50] since noble sec-
ondary phases often act as cathodic regions. This leads to trenching and pitting effects
where particles fall out of the substrate, accelerating the rate of corrosion [49,99]. Pitting
corrosion is typically aggravated in chloride solutions and exhibits a positive correlation
with increasing duration and chloride content [100]. As such, it is often associated with a
breakdown in passivity [101]. In addition, the growth of pits tends to spread laterally rather
than perpendicularly, covering the entire surface. The inward alkalinization stabilizes the
local magnesium hydroxide film and, in turn, decreases the perpendicular pitting corrosion
tendency [58].

2.3. Stress Corrosion

Magnesium-based implants will possess adequate resistance to failure when applied
in the corrosive physiological fluid with a synergetic influence of mechanical loading [102].
The mode of the stress loading can be static or cyclic, which can result in the complications
of sudden fracture of implants via the stress corrosion cracking (SCC) and the corrosion
fatigue (CF) [103,104]. Generally, SCC is related to anodic dissolution and hydrogen em-
brittlement [105–109]. It is suggested that the anodic dissolution with intergranular stress
corrosion feature can be attributed to the micro-galvanic activity between grain boundary
second phases and the adjacent matrix [105,108,110–112]. The corresponding corrosion sus-
ceptibility can be increased by the electrochemical thermodynamic activity, rupture of the
surface layer, and dislocations piling up in grain boundaries or internals [113], accompanied
by localized corrosion/pits [108]. The mechanism of the hydrogen embrittlement implies
that hydrogen generated during anodic dissolution can be absorbed by the matrix, in turn,
inducing hydrogen-assisted cracking [105,113,114]. Transgranular stress corrosion cracking
is often attributed to hydrogen interactions [107,114]. However, until now, the exact role of
the hydrogen in the SCC of Mg alloys is not fully understood [115]. Recently, research has
shown that most parts of the hydrogen were contained in the corrosion products compared
to the matrix [116,117].

CF is another type of metallic damage produced by accumulated cyclic loads in
high-strain environments. It is caused by the interaction of irreversible cyclic plastic
deformations with localized chemical or electrochemical reactions. Meanwhile, it is a
critical factor in determining the lifespan of metallic implants. Specifically, devices used
for orthopedic or cardiovascular applications must perform higher resistance to corrosion
fatigue due to the high-frequency use. Implant lifespans are also heavily affected by the
immersion duration [118], the microstructure [119], corrosive phases, and pits [120–122].
Kannan et al. suggested the formation of passive films can slow the crack initiation and
also the subsequent propagation of fractures [123]. Jafari et al. [124] further proposed that
pits often serve as initiation sites for CF cracking, with nucleation and growth influenced by
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electrochemical conditions and applied stress levels. Therefore, enhanced pitting resistance
plays an important role in improving CF resistance in Mg-based alloys [125].

2.4. Hydrogen Evolution (HE)

In the magnesium corrosion reactions shown in Equation (3), the evolution of hydrogen
results in further structural degradation [59,119]. Immersion in a chloride-containing
aqueous solution, along with the initial cathodic activation [126], results in dissolution as
the surface progressively darkens in color [61,127]. These corroded regions are cathodically
activated and further perpetuate hydrogen evolution [61].

Possible explanations for this process are as follows. First, localized dark regions are
likely to accumulate noble elements, thereby enhancing the cathodic reaction rate [72,128].
Second, the disruption of unstable surface films further exposes catalytically active sites [72].
In addition, the unstable and porous Mg(OH)2 as the main product induces continuous
corrosion on the metallic surface [129,130], and the pores or cracks in MgO film may serve
as capillary action [59]. Thereby, recent research has suggested the Mg(OH)2 layer plays a
dual role in corrosion. It serves as a catalyst for HE but also passivates Mg, which explains
the decline of hydrogen evolution reactions (HERs) after prolonged immersion times [131].

2.5. Corrosion Behavior in Different Corrosive Environments
2.5.1. Corrosive Electrolytes

Implants are continually subjected to a complex environment containing water, in-
organic ions, organic molecules, and proteins. A comprehensive understanding of the
interactions between these species and Mg-based alloys is therefore critical to the devel-
opment of biodegradable metallic implants with optimal biocompatibility and controlled
degradation rates.

Corrosion rates are directly influenced by the concentration of aggressive ions. Specifi-
cally, Mg-based alloys corrode locally in chloride solutions where the number of pitting
sites correlates directly with the concentration of chloride ions [100,132,133]. This effect can
be attributed to the involvement of such ions in inhibiting the growth and contributing
dissolution of hydroxide, phosphates, and carbonates [75,98]. Contrary, the phosphate
anions promote the precipitation of magnesium phosphate, which further decreases the
corrosion rate and delays the formation of pitting sites. In addition, the existence of hydro-
gen carbonate ions stimulates the corrosion of Mg alloys during early immersion stages.
However, passivation on the surface can be rapidly induced as well. For instance, the cor-
rosion product MgCO3 precipitates on the surface and subsequently suppresses pitting.
Protective layers can thereby form more rapidly and effectively with higher concentrations
of hydrogen carbonate ions, as evidenced in SBF solutions with HCO3

− of 27 mmol/L [69].
However, sulfate ions induce the stimulated dissolution of magnesium, as evidenced in
solutions with different anions, including 1#Cl−, 2#Cl− and HPO4

2−, 3#Cl−, HPO4
2− and

CO3
2−, 4#Cl−, CO3

2−, SO4
2− and HPO4

2− [134] (Figure 3).
Physiological pH is essentially maintained at 7.4 in vivo due to an equilibrium be-

tween bicarbonates, carbonic acid, and carbon dioxide. In plasma, buffered systems
include plasma proteins and hemoglobin [135,136]. In contrast, zwitterionic buffers, such
as 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) or tris (hydroxymethyl)
aminomethane (Tris) are commonly used to maintain a constant pH value for in vitro
immersion studies, without the effects of ionic interactions [137,138]. Corrosion behavior
in Mg alloys differs in various buffer systems. For example, previous studies reported an
increased corrosion rate for Mg in HEPES buffered solutions, compared with those of CO2
buffered solutions (i.e., Earle’s balanced salt solution, minimum essential medium (MEM),
or MEM-containing bovine serum albumin) [139]. Analogously, the degradation of Mg–
2Y–1Zn–0.25Ca–0.15Mn (WZ21) alloys in SBF-Tris is approximately five times faster than
that of SBF-CO2. However, in HEPES (100 mmol/L), the rate of degradation increases by
approximately 60 times [140]. This accelerated corrosion rate contributes to a lower-density
protective layer, which results in the increased diffusion of aggressive ions [137]. The use of
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Tris-HCl in SBF lowers the corrosion potential of pure magnesium slightly but accelerates
the early degradation of pure magnesium by teens times. Tris-HCl also increases pitting
corrosion sensitivity in magnesium [141] (Figure 4).
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Figure 4. In vitro degradation performance for an SBF-CO2 WZ21 alloy, which is in agreement with
the average in vivo degradation rate based on µCT (computed tomography) data. The pH values
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media; (B) Corresponding pH values evolution in the testing solutions over immersion time [140].

Proteins are generally adsorbed on surfaces through complex processes (e.g., Van
der Waals forces, hydrophobic, electrostatic interactions, and hydrogen bonding). Con-
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flicting reports of both increasing and decreasing corrosion rates with protein addition
were published [137]. These increased corrosion rates were explained by protein chela-
tion of Mg2+ [75], which increases the dissolution of Mg(OH)2 film on the surface and
decreases the precipitation of other corrosion products, such as phosphates and carbonates.
These decreased corrosion rates can be attributed to the adsorption of protein in corrosion
products [142], as proteins are negatively charged when pH values exceed 7 [143,144].
This diffusion of ions from interfaces can be successfully prevented by adsorption. Conse-
quently, an intermediate passive layer with amino acid protein debris could be produced to
form a buffer between the environment and the material [145].

2.5.2. In Vitro and In Vivo Environments

The influence of cells on corrosion behavior in Mg-based biomaterials is normally dis-
cussed from two competing perspectives. First, corrosion can be alleviated using a physical
barrier produced by the cell body and extracellular matrix, consequently hindering the
encroachment of corrosive ions. Seuss et al. cultured a human cervical cancer cell line
(HeLa) on the surface of an AZ91D alloy and used electrochemical impedance spectroscopy
to observe the increased impedance caused by adherent cell layers, which slowed electro-
chemical reactions during corrosion [146]. Second, cells can disturb microenvironments
between metal and medium interface during metabolization (e.g., pH alteration, ion trans-
port, and the secretion of inorganic or organic molecules), which decreases the corrosion
resistance of Mg-based alloys [29]. Kannan cultured mouse fibroblast L929 cells on the
surface of an Mg–Ca alloy and found that polarization resistance decreased with increasing
culture periods. Pitting also occurred in the vicinity of the L929 cell bodies, which was
attributed to a reduction in pH caused by cell metabolism [147]. Zhang et al. [148] cultured
RAW264.7 macrophages on an Mg–Nd–Zn–Zr alloy. The reactive oxygen species (ROS)
produced and secreted by macrophages diffused through the corrosion product layer and
presumably enhanced the formation of cavities through a reaction with the Mg-based
alloy matrix.

In vivo degradation rates depend strongly on the location of an implant within the
body [15,149]. Previous studies suggested that the degradation rate accelerates in sur-
rounding tissues with higher degrees of vascularization, as the enhanced exchange of
bodily fluid promotes the degradation of materials [31]. For instance, the medullary cavity
(a region with higher vascularization) exhibits higher rates of degradation than cortical
bone (with lower vascularization) [33,150]. A similar effect can be observed in liver tissues
and the rectus abdominis muscle [34]. Load bearing conditions also play an important
role in degradation rates due to the possibility of stress corrosion and corrosion fatigue.
Willbold et al. observed that magnesium screws composed of an AZ31 alloy exhibited a
higher corrosion rate in bone than in overlying muscle or connective tissue [151]. In addi-
tion, crevice-enhanced corrosion can occur in bone–bone plate interfaces, thereby increasing
corrosion rates through absorbing chloride ions into the crevice [152].

3. Influential Factors for Corrosion Behavior in Magnesium
3.1. Alloy Composition

The existence of two competing mechanisms via altering composition leads to a
complicated corrosion process in Mg-based alloys [96,153]. Micro-galvanic corrosion
can be induced by the formation of intermetallic phases, consequently increasing the
degradation rate [82,96,99,154]. In contrast, the formation of a more protective surface layer
can effectively protect the substrate, which decreases the corrosion rate [73,74,155,156].
The corrosion behavior of Mg-based alloys is thus directly affected by the content of
elements and the formation of corrosion products [157]. Additional details for processes
involving various elements are provided in the following sections.
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3.1.1. Non-Rare Earth (RE) Elements

Calcium (Ca) is a major component in human bone and is essential in cellular chemical
signaling [158]. Prior studies showed that existing forms of Ca can heavily influence the
corrosion rate of the Mg matrix [159]. Corrosion resistance remains high provided Ca is
available in the form of dissolved atoms in a solid solution. At the eutectic temperature
of 517 ◦C, Ca has a maximum solubility of 1.34 wt% in Mg, and another constituent β
phase, Mg2Ca, forms with Ca content over Mg solid solubility [160]. Compared with pure
Mg-based alloys, Mg2Ca is highly reactive [161]. It exhibits a pretty negative corrosion
potential and sustains a dissolution rate approximately one order of magnitude higher than
pure Mg. Therefore, the increasing content of the Mg2Ca phase results in a higher corrosion
rate in Mg-based alloys [32,162]. The use of potentiometric micro-probes has revealed
several noteworthy effects. For example, in the presence of HPO4

2− and HCO3
−, calcium

ions play a major role in stabilizing local pH and decreasing degradation rates [163],
which contributes to the enhanced formation of calcium phosphate on a surface [25].
Previous studies have indicated that improved corrosion resistance can be achieved in
multi-component Mg-based alloys with a reduced addition of Ca (≤1 wt%), which results
in stabilization of the corrosion layer and increased corrosion resistance [96,159,164,165].

Zinc (Zn) is the second most abundant transition metal in the human body and is an
essential element for biological functions such as nucleic acid metabolism, signal trans-
duction, apoptosis regulation, gene expression, modulation of brain excitability, endocrine
regulation, and interactions with a wide range of organic ligands [166]. The limited ad-
dition of Zn in Mg-based alloys can also cause a reduction in the degradation rate [167].
As reported by Bakhsheshi-Rad, the corrosion rate for Mg–Zn binary alloys significantly
decreased with increasing Zn content (up to 4 wt%) due to the formation of a more compact
Zn containing inner oxide layer [168]. However, the max solubility for Zn in Mg is 6.2 wt%
at eutectic temperature (Table 1), which becomes lower at room temperature. The further
increases in Zn decreased corrosion resistance due to increased precipitation phases at
grain boundaries and enhanced galvanic effects [169]. Similar processes were observed in
Mg–Zn–Zr systems [153].

Silver (Ag) exhibits an outstanding antibacterial reactivity in a variety of chemical
states [170,171]. The presence of Ag in Mg–Ag binary alloys was identified in the forms of
Mg3Ag and Mg54Ag17, which provide higher corrosion resistance than the α-Mg matrix.
They can also serve as highly active micro-cathodes, which form numerous micro-corrosion
cells on a material surface, promoting electrochemical reactions [172]. An increased electro-
chemical corrosion rate was also observed in Mg–9Al–Zn–xAg (x = 0.12, 0.5 in wt%) alloy
with relatively high Ag content (0.5 wt%), owing to enhanced cathodic kinetics sustained
in the Mg4Ag phase [173]. Nevertheless, the development of pitting corrosion could be
restricted by the formation of AgCl in corrosion products and a decreased grain size with
Ag addition [65].

Strontium (Sr) is a necessary component of human bone and has been used to enhance
mineral density in osteoporosis treatments. The solid solubility of Sr in Mg is 0.11 wt%,
making it easy to segregate. The mean grain size in Mg-based alloys can thus be refined
with small additions of Sr (<1 wt%) [174–176], contributing to a decreased corrosion rate.
However, excess Sr produces the opposite effect, increasing the corrosion rate at concentra-
tions above 1 wt% [177].

Tin (Sn) has a high liquid solubility in molten Mg (14.85 wt% at 561 ◦C) and low solid
solubility (0.17 wt%) at room temperature [178,179]. When Sn is dissolved in the magnesium
matrix using heat treatments, the porous outer layer on the surface film becomes more
compact, and Sn enriching in the inner layer can significantly lower the HE rate [180].
Increasing Sn content can also decrease the defect density of surface films. As a result,
the adsorption of chloride ions is inhibited, and the corrosion resistance is correspondingly
enhanced [181]. However, further addition of Sn (up to 2 wt%) brings out a great cathodic
effect with excessive Mg2Sn phases, which can achieve accelerated degradation [179].
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Although manganese (Mn) has limited solid solubility in Mg (~0.95 at% at 650 ◦C),
it improves corrosion resistance through decreasing free Fe contain and formation of relative
innocuous intermetallic compounds (e.g., Alx(Mn,Fe)y) in Mg–Al alloys [182–184]. Mn has
also displayed moderating effects on Fe and cathodic kinetics in Al-free systems [185,186].
On the one hand, the cathodic activation behavior of pure Mg is inhibited in Mg–Mn
alloys via forming Mn(Fe) phases, which not only creates a buffer zone with a weakened
micro-galvanic effect but also inhibits the redeposition of the Fe element to the magnesium
surface [187–189]. On the other hand, metallic Mn has a standard electrode potential
closed to the Mg (Mn: −1.185, Mg: −2.372, Fe: −0.447); thereby, the cathodic activation
induced by the Mn element is relatively weak, and consequently, HER is inhibited via
the formation of dense Mn-rich corrosion layer [187,190]. Additionally, the element of
Mn was reported to contribute to the formation of the transition layer at the interfaces of
Fe/Mg diffusion couples at 700 ◦C, which effectively inhibits the diffusion of Fe atoms in
the Mg–2Mn melt [191]. However, Yang et al. observed that the evolution of H2 increased
in Mg–3Zn–xMn alloys when the content of Mn was higher than 0.5 wt% [192].

Zirconium (Zr) acts as a Fe scavenger and a grain refiner in Mg-based metals [193,194].
In Mg–Zr alloys, the degradation rate depends primarily on Zr concentrations and dis-
tributions. A high Zr content in solid solutions (~0.5 wt%) can activate anodic reactions,
thereby accelerating the general corrosion of the alloy matrix and increasing the long-term
corrosion rate [186,195–197]. In addition, barrier effects in the second phase can be weak-
ened as superfluous Zr particles congregate at grain boundaries [198]. However, in several
ternary (and higher-order) alloys, the addition of Zr can result in the stabilization of solid
magnesium solutions, inactivating the material during anodic dissolution and reducing
cathodic hydrogen evolution [50,193,199].

3.1.2. Rare Earth (RE) Elements

Rare earth elements (REEs) often display ‘scavenger’ tendencies [200,201], leading
to the formation of more stable oxide films. This can decrease the occurrence of micro-
galvanic corrosion between Mg and impurity elements, such as alloying with La, Ce, Er,
Ho, etc. [96,202–204]. While light REEs are toxic [205–209], heavy REEs are often used for
biomedical materials owing to their high solubility and resistance to forming intermetallic
phases. The degradation rates of binary Mg–Y, Mg–Dy, and Mg–Gd alloys depend on the
concentration of each alloying element. Optimal amounts for Y, Dy, and Gd are 2 wt%,
10 wt%, and 15 wt%, respectively. In Mg–Y binary alloys, intermetallic compounds can
accelerate micro-galvanic corrosion. In contrast, oxide films containing Y can enhance
surface protection [210–213]. The presence of Dy in Mg–Dy alloys can lead to the formation
of protective layers. The corresponding oxide product (Dy2O3) can effectively increase
degradation resistance [214]. In addition, the Mg2Dy phase formed at grain boundaries
during non-equilibrium cooling is able to reduce galvanic effects [215], achieving enhanced
corrosion resistance. Gadolinium (Gd) has a higher affinity to oxygen compared with Mg.
As such, the corresponding corrosion products (Gd2O3 and MgGd2O4) exist in the form of
particles on the surface and act as a diffusion barrier to prevent further oxidation.

3.2. Organizational Structure
3.2.1. Crystal Structure

In crystalline Mg alloys, grain size plays a significant role in the formation of oxide
films [216,217]. Ralston et al., showed that the corrosion rate of metals is proportional to
the reciprocal square root of the grain size [218]. In addition, thin inner-magnesium oxides
can form on surface corrosion layers. Grain refinement increases the volume fraction at
grain boundaries and consequently decreases the mismatch between crystal lattices in
the Mg matrix and oxide layers, which creates a more adhesive interface [219]. As such,
denser grain boundaries result in higher corrosion resistance [161,218,220]. In addition,
grain-refined Mg surfaces exhibit accelerated passivation kinetics in chloride-containing
electrolytes, which can effectively withstand breakdowns through the rapid formation
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of magnesium oxide films [221,222]. Huang et al. demonstrated that grain refinement
could also delay the propagation of stress corrosion cracks, which are hindered at grain
boundaries [220].

Crystallographic orientation is an important microstructural characteristic of metals.
Different crystallographic planes exhibit varying surface energy levels, leading to various
corrosion behaviors in a given environment [223,224]. Closely packed planes exhibit higher
binding energies due to increased atomic coordination. This results in lower surface
energy with weakened anodic dissolution and adsorption for water or protons [225].
The surface energies in Mg (0 0 0 1), (1 0 1 0), and (1 1 2 0) (here x represents negative x
value) planes are 1.808, 1.868, and 2.156 eV/nm2, respectively [226]. These values can be
converted to 1.54× 104, 3.04× 104, and 2.99× 104 J/mol, respectively [227]. In comparison,
other crystallographic planes exhibit much larger electrochemical degradation rates than
that of the base plane (0 0 01) [92,228]. This indicates that exposed surfaces containing
primarily (0001) planes exhibit higher corrosion resistance compared to surfaces composed
primarily of (1 0 1 0) or (1 1 2 0) planes [225]. Although orientation was recommended as a
first-order effect for Mg-based alloy degradation [225], it could be less significant compared
with the effects of precipitation and varying grain size [49,92,229] (Figure 5).
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3.2.2. Amorphous Structures

Compared with crystals, amorphous Mg-based alloys offer increased solubility for
alloying elements and exhibit a homogenous structure without defects such as grain
boundaries, dislocations, or precipitates, thus providing excellent corrosion resistance.
Known amorphous alloy systems include Mg–Cu–Y [230,231], Mg–Zn–Ca [232–234], and other
Mg–TM–RE [235,236] alloys (where TM refers to a transition metal). These amorphous
alloys process relatively positive corrosion potentials when compared with other crystalline
Mg-based alloys in quiescent 0.1 M NaCl solutions, which is evidence of a lower corrosion
tendency [52]. Zberg et al. developed a successful Zn-rich MgZn35−xCa5 (x = 0–7) system
with the same biocompatibility as crystalline Mg implants, significantly reducing the
evolution of hydrogen [237].
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4. A Methodology for Improving Corrosion Resistance
4.1. Composition Design

The primary objective of composition design is to improve corrosion resistance by
optimizing the size and number density of intermetallic particles and scavenging impurity
transition elements, to enhance the stability of surface films. Kirkland et al., found the
degradation of Mg alloys can be slowed by tailoring compositions, lowering the mass loss
rate in SBF by three orders of magnitude [238] (Figure 6).
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Recent studies suggested that hydrogen evolution can be prevented when alloying
elements (Ca, Sc, Ti, Y, and Zr) bind with adsorbed hydrogen. Additionally, hydrogen
absorption can also be inhibited by the addition of Al, As, Cd, Ga, Ge, In, Si, Sn, Sb,
and Zn [239]. For example, Liu et al., demonstrated that micro-alloying additions (Bi, Ge,
Pb, Sb, and Sn) could decrease cathodic kinetics in binary Mg alloys.

Given the dual effect of Mg hydroxides in HER, the structural optimization of corrosion
films should be investigated further. Previous research suggested that the presence of Al in
films and Zn at metal-film interfaces can reduce the degradation rate of Mg alloys [127].
These elements are less active and show PBR ranging from 1 to 2, which induces a more
dense inner oxide layer [77]. In addition, the proportion of quasi-passivate Mg corrosion
products in the surface layer can also be reduced when the Ksp of the alloying element
corrosion products is lower than that of Mg counterparts [67,68] (Table 2).

4.2. Heat Treatment

Solution treatment, also called T4 treatment, is the most frequently used heating
technique for improving corrosion resistance in Mg-based alloys [242]. The process involves
heating an alloy and maintaining the sample at a suitable temperature for a sufficient time
period in order to promote the desired constituent formation into solid solutions. This is
followed by rapid cooling to fix the constituent in the solid solution, sufficiently decreasing
the precipitates and redistributing elements in the Mg matrix [192]. This process can further
reduce galvanic corrosion [243,244]. However, T4 treatment is not suitable when the second
phase acts as a corrosion barrier [212,245].

T6 treatment, also known as precipitation heat treatment, involves the use of a solution
treatment at high temperatures and subsequent artificial aging [242]. T6 produces a slightly
lower corrosion resistance than T4, as the precipitates enhance galvanic couples [169,246].
Given the dual influence of secondary phases in corrosion, such precipitates may also
provide further corrosion resistance. Li et al., investigated the effects of heat treatments on
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microstructure and corrosion resistance in Mg–5Zn–1Mn alloy tubes [246]. Although the
resistance of T6-treated ZM51 alloys was lower than that of T4-treated alloys, it was superior
to that of extruded samples. Wang et al., demonstrated the ZYbK620-T6 alloy also exhibits
a favorable corrosion resistance, which may be attributed to the corrosion barrier effect in
more uniform and compact passive films induced by dispersed nanoscale precipitates [247]
(Figure 7).

Table 2. The solubility product constant Ksp values at 25 ◦C [240,241].

Formula Ksp Formula Ksp Formula Ksp

Ag3PO4 8.89 × 10−17 Ag2CO3 8.46 × 10−12 Ag(OH)2 2.00 × 10−8

AlPO4 9.84 × 10−21 BaCO3 2.58 × 10−9 Al(OH)3 1.30 × 10−33

Ba3(PO4)2 3.40 × 10−23 CaCO3 3.36 × 10−9 Au(OH)3 5.50 × 10−46

Ca3(PO4)2 2.07 × 10−33 CdCO3 1.00 × 10−12 Bi(OH)3 6.00 × 10−31

Cd3(PO4)2 2.53 × 10−33 CuCO3 1.40 × 10−10 Ca(OH)2 5.02 × 10−6

Cu3(PO4)2 1.40 × 10−37 CoCO3 1.40 × 10−13 Cd(OH)2 7.20·10−15

Li3PO4 2.37 × 10−11 FeCO3 3.13 × 10−11 Ce(OH)3 1.60 × 10−20

Mg3(PO4)2 1.04 × 10−24 Li2CO3 8.15 × 10−4 Ce(OH)4 2.00 × 10−28

Ni3(PO4)2 4.74 × 10−32 MgCO3 6.82 × 10−6 Cu(OH) 1.00 × 10−14

AgCl 1.77 × 10−10 MnCO3 2.24 × 10−11 Ca(OH)2 2.2 × 10−20

AuCl 2.00 × 10−13 Nd2(CO3)3 1.08 × 10−33 Co(OH)2 5.92 × 10−15

AuCl3 3.20 × 10−46 NiCO3 1.42 × 10−7 Co(OH)3 1.60 × 10−44

CuCl 1.72 × 10−7 SrCO3 5.60 × 10−10 Cr(OH)3 6.30 × 10−31

Y2(CO3)3 1.03 × 10−31 Cu(OH)2 2.20 × 10−20

ZnCO3 1.46 × 10−10 Eu(OH)3 9.38 × 10−27

Ga(OH)3 7.28 × 10−36

Fe(OH)2 4.87 × 10−17

Fe(OH)3 2.79 × 10−39

Pb(OH)2 1.43 × 10−20

La(OH)3 2.00 × 10−19

Mg(OH)2 5.61 × 10−12

Mn(OH)2 1.90 × 10−13

Ni(OH)2 5.48 × 10−16

Pr(OH)3 3.39 × 10−24

Tl(OH)3 1.68 × 10−44

Sn(OH)2 5.45 × 10−27

Sn(OH)4 1.00 × 10−56

Y(OH)3 1.00 × 10−22

Zn(OH)2 3.00 × 10−17

4.3. Severe Plastic Deformation (SPD)

In recent years, SPD technology has become increasingly popular for processing Mg
alloys and isolating fine- and ultra-fine-grained (UFG) materials. This includes hot ex-
trusion [219], equal channel angular pressing (ECAP) [101], isothermal extrusion [248],
and high-pressure torsion (HPT) [249]. SPD also induces complex microstructure features,
thereby modifying the size, distribution, and morphology of grains and precipitates [49,250].
Zhang et al., reported this process increased the corrosion rate of AZ31B alloys by more than
30% while decreasing the extrusion ratio (ratio of the cross-sectional area of the pressure
cylinder cavity to the total cross-sectional area of the extruded product) from 44.4 to 11 [251].
Lin et al., observed that extruded Mg–Zn–Zr alloys with fine grains displayed favorable
degradation (with corrosion rate of 5.0 mmy−1), cytocompatibility, and hemocompatibil-
ity [248]. Similarly, pure magnesium processed by HPT exhibits an improved corrosion
resistance [249]. However, SPD includes inherent limitations due to the inevitably of defects
such as dislocations, grain boundaries, unfavorable orientations (e.g., exposed (1 0 1 0)
basal planes primarily to the electrolyte), segregation of alloying additives, and residual
stress [49,252]. Ultimately, these changes to the surface affect the electrochemical behavior
and consequently increase corrosion susceptibility [49,101,249,253].
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4.4. Surface Modifications

Surface modification is an effective approach to improving corrosion resistance and
surface bioactivity [254–256]. It can be used to improve surface integrity, fabricate physical
barriers, and isolate the underlying Mg matrix from corrosive media, thereby maintaining
the mechanical integrity of Mg-based alloys before healing is completed.

4.4.1. Surface Machining Processes

Cryogenic machining is a hybrid manufacturing process that focuses on modifying
the surface integrity of components, contributing to the improved corrosion resistance of
Mg alloys [257,258], owing to the generation of a grain refinement layer with compressive
residual stresses [259]. It was reported that the pitting resistance could be improved by
cryogenic machining due to the presence of a grain refinement layer, larger compressive
residual stresses, and a faster formation of passivating surface oxides [260]. Cryogenic
cooling in combination with ultrasonic vibration-assisted turning has been explored in
recent years, which not only improves the surface integrity, texture, and wettability but
also modifies a complex and isotropic texture for the following coating process [261].
Additionally, the burnishing process is another kind of surface process for reducing surface
roughness, which is able to increase the hardness and introduce the beneficial compressive
residual stresses near the surface [262]. Reduction in the grain size can be apparent during
burnishing applied with the liquid nitrogen [263]. It is also suggested that strong basal
texture evolution occurs on the burnished surface, suggesting the basal plane could be
much larger by cryogenic burnishing [264]. After the burnishing process, the improvement
of the corrosion resistance occurs via a modified surface roughness, the grain size, and the
crystal orientation [265].

4.4.2. Ion Implantation

Ion implantation is regarded as an important surface modification technique to obtain
a non-abrupt interface with a combination of enhanced physical and chemical properties.
When the plasma-treated Mg alloy is immersed in a physiological liquid, the surface-
ionized metals with positive charges will interact with the negatively charged microbial
cell membranes, producing good antimicrobial properties [266]. Meanwhile, the oxygen
vacancies produced in the plasma treatment can result in ROS generation to enhance the
antibacterial properties [267]. The decelerated and accelerated degradation effects were
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reported previously. Yang Liu et al., divided implanted ions into two groups: type I refers
to the ions prone to remain in a metallic state, serving as severe cathodic sites and inhibiting
the formation of the dense oxidized layer, such as Zn, Ag, and Fe. On the contrary, type
II indicates implanted elements are likely to form compact oxidized layers, such as Al, Ti,
Zr, and Y. It was suggested that dual ion implantation of the metallic ion and the oxygen
promote corrosion resistance. In addition, the post-oxidation treatment combined with ion
implantation can be another solution [190,268].

4.4.3. Coating Technology

The oxidative form of some nontoxic or bioactive metal elements can be used to modify
the degradation properties of Mg-based alloys in the deposition layer, known as metal oxide
implantation [269,270]. For example, the deposition of a 100-nm-thick ZrO2 coating on an
AZ31 Mg alloy was shown to reduce corrosion rates and hydrogen evolution, which is a
result of lower SCC susceptibility for the ceramic coating [271]. Besides, no toxic compact
metal oxides with bioactive degradation products are recommended, as they can not only
act as a physical barrier but also result in an increase in cell growth and a reduction in cell
death [272]. In addition, physical vapor deposition of an Ag–ZnO coating on the substrate
can considerably reduce corrosion rates and improve antimicrobial properties [171].

Hydroxyapatite is a primary component of natural bone with excellent bioactivity
and osteoconductivity [44,45]. HA coatings on Mg alloys provide superior mechanical
stability and stimulate bone growth in vitro, which improves biological response (e.g., cell
attachment, proliferation, and differentiation) [273]. In addition, the bonding between bone
and implants can be enhanced significantly [274], owing to the retarded degradation of the
implant, which has been proven by clinical, radiological, histological, and hematological
evaluations [27].

Biocompatible polymer coatings such as chitosan [275,276], polylactic acid (PLA) [277,278],
and polycaprolactone (PCL) [278,279] can effectively decrease the degradation rates of im-
planted materials and facilitate the healing of bone [279,280]. This also supports improved
biological performance without affecting the flexibility of Mg alloys by increasing chemical
compatibility with surrounding tissue and promoting the growth of new bone [279,280].
However, adhesion between polymeric coatings and Mg-based alloys is poor, which can
cause problematic detachment during use [278]. Many papers have covered this in recent
years. It was demonstrated the adhesion strength could be improved by some pretreat-
ments, such as cryogenic cooling in combination with ultrasonic vibration-assisted turning,
alkaline-treatment, and ceria embedded microarc oxidation process [261,281,282].

Besides the corrosion resistance and the biocompatibility, the bio-functional property
has raised a great deal of concern in recent years. By means of introducing specific ions,
ceramics, compounds, proteins, etc., or loading commercial drugs on surface coatings,
the design of complex and composite coatings has been stimulated [283–287]. For in-
stance, Fe3O4–HA–chitosan coatings can be prepared by electrophoretic deposition, which
displays a superior antimicrobial efficacy than HA coating since Fe2+ can induce the gener-
ation of H2O2, damaging the DNA and proteins in bacteria [288]. Moreover, electrospun
PCL fibers loaded with coumarin and ZnO on the AZ31 Mg alloy perform a positive
inflammatory response and an exerted effect on the macrophage–osteoclast differenti-
ation process [289]. Recently, the etidronate and 3-aminopropyl trimethoxysilane was
successfully explored, where the etidronate was known as bisphosphonates applied in
the treatment of bone loss and osteoporotic fractures [290]. Furthermore, some studies
demonstrated that graphene oxide–chitosan coating with the incorporation of heparin
and the bone morphogenetic protein could synergistically improve corrosion resistance,
anticoagulation, and osteogenesis [291].
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5. The Positive Biological Effects of Mg Alloys
5.1. Magnesium Ions

Recent research focused on the mechanism of induced osteogenesis with Mg2+ ions,
suggesting that Mg alloys improve bone formation via the CGRP-mediated cross-talk
pathway. The activated CGRP receptor can trigger phosphorylation of CREB1 via cAMP
and promote the expression of genes promoting osteogenic differentiation [292]. In addition,
Mg2+ ion suppresses osteoclastogenesis in dependence on the concentration. Additionally,
a high Mg2+ concentration in culture media exhibits a significant inhibitory effect on
osteoclast formation because of its inhibiting effects on osteoclastogenesis-related gene
(NFATc1) expression [293]. In addition, Mg2+ simultaneously improves the phosphorylation
of ERK (enhanced c-fos levels) and GSK3β (enhanced β-catenin levels). It was also proposed
that magnesium can promote distraction osteogenesis consolidation via regulating Ptch
protein activating Hedgehog-alternative Wnt signaling [294]. As such, dissolved Mg2+

promotes the proliferation and differentiation of osteoblasts, producing positive biological
effects in stimulating bone formation [295]. Meanwhile, in terms of inhibiting cancer
aspects, a high concentration of Mg2+ (≥30 mmol/L) has shown an inhibiting effect on the
proliferation of gallbladder cancer cells and induces apoptosis [296].

5.2. Hydroxyl Ions

Due to the presence of hydroxyl ions, enhanced alkalinization is not only beneficial for
the synthesis and crosslinking of collagen but also supports the formation of hydroxyapatite,
which effectively promotes bone growth and repair in vivo [297]. Furthermore, related
alkaline pH is sufficient to induce antibacterial effects, promoting a modest reduction
in bacterial activity in vivo [298–300]. Hydroxyl ions were also reported to inhibit the
proliferation or induce apoptosis of gallbladder cancer cells when the medium pH was
greater than or equal to 7.8 [296].

5.3. Corrosion Layers

Undissolved surface hydroxide layers in Mg-based alloys provide favorable sites for
HA nucleation [301]. This nucleation activity can be accelerated by improving the supersat-
uration of hydroxyapatite in solutions with an accompanying increase in pH value [32,302].
This is evidenced by the superior osteoconductivity of the phosphate layer, which maintains
tight contact between implants and bone [15]. Specifically, the accumulation of corrosion
products gradually exerts pressure on adjacent bones, stimulating the fortification and
growth of bone according to Wolff’s law [46] (Figure 8).
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between the bone and the the magnesium pin were measured; (C) Such Mg pins exhibited an
increased pull-out resistance in the absence of live cells. Abbreviations are as follows: Med, group
incubated in freshly prepared cell culture medium; Sup, group incubated in cell culture supernatant;
KH2PO4, group incubated in 100 mM KH2PO4 buffer; Ctr, group incubated in fresh cell culture
medium [46]. A p value < 0.05 was considered statistically significant, where 0.01 ≤ p < 0.05 marked
by *, 0.0001 ≤ p < 0.001 marked by ***.

6. Outlook

Increasing the corrosion resistance of degradable materials is critical for developing
improved Mg-based alloys for biomedical applications. Reduction in the degradation rate
of magnesium not only creates a relatively stable interface for cell adhesion and growth but
also declines the release of corrosion products that can compromise cytotoxicity. The spe-
cific implants (e.g., cardiovascular stents and orthopedic devices) require a minimized
degradation rate and high mechanical support. In terms of imparting natural corrosion
resistance to alloys, composition design is the most fundamental method. On the one hand,
reducing the galvanic effects is critical; for instance, select elements with low cytotoxicity
and high solubility for alloying. Besides, the potential difference between the main alloying
elements and magnesium is better minimized [62]. In addition, non-equilibrium techniques
and solution treatment are promising to inhibit precipitates [303]. Moreover, REEs, Mn,
and Zr can be involved in scavenging impurities.

On the other hand, increasing the stability and density of corrosion products layers
is also important, and the reasonable method is to reduce the fraction of Mg corrosion
products. First, the element with lower Ksp of corrosion products than Mg counterparts (as
shown in Table 2) should raise more concern, as they will induce a more stable and insoluble
film on the surface layer. Second, replacing Mg with other elements with PBR ranging from
1 to 2 can potentially induce the formation of a more compact oxide’s inner layer [59,77].
Third, elements with decreasing cathodic kinetics effect are also promising to serve as
alloying candidates because it suppresses the film disruption caused by increasing volume
and pressure of hydrogen [59]. Lastly, comprehensive utilization and further optimization
of composition design, heat treatments, and various surface modification techniques are
needed to overcome magnesium alloys’ poor resistance [261,304].

By considering the complexity of in vivo environments, comprehensive research on
synthetic body fluids is necessary to achieve a sufficient understanding of the corrosion
mechanisms present in Mg-based alloys. The most essential task is identifying critical
parameters and factors (e.g., aggressive ions, buffered systems, proteins, and cells) that
strongly affect corrosion behavior, providing more practical information for simulating
in vivo measurements [134,141,305]. Given the recent progress of first-principles meth-
ods, it is promising to describe the thermodynamic stability of the formation of complex
corrosion products, which is able to reevaluate the electrochemical phase diagrams in
physiological fluid [305]. It will bring a new sight for the composition design of Mg alloys,
further contributing to the exploration of Mg-based biomaterials with enhanced corrosion
resistance, desired corrosion products, and improved clinical applications.

7. Conclusions

In this review, we focused on the complicated, influential factors behind corrosion
behaviors and possible routes to optimize the intrinsic effect. The main conclusions are
as follows:

(1) An attempt was made to describe the corrosion behavior of Mg alloys based on
the dynamic degradation/precipitation model, which is applicable for Mg alloys with Mg
hydroxides as one of the main passivation layers in physiological conditions;

(2) Generally, the inherent low corrosion resistance of Mg alloys can be attributed
to a dramatic negative electrode potential and quasi-passivate corrosion product layers.
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The latter process a multi-layered structure with Mg(OH)2 film function as a medium layer,
which is less compact/insoluble, and serves as a catalyst for HE. It is important to reduce
the fraction of Mg corrosion products through alloying passivating elements into a matrix,
conducting ions/oxide implantation on the metallic surface;

(3) The effective factors behind Mg corrosion behavior can be classified into intrinsic
and extrinsic factors. With regard to the intrinsic influence, it is significant for the determi-
nation of the corrosion behavior in the given condition, which implies the basic feature, e.g.,
the composition, the microstructure, and the surface condition. The composition design
combined with non-equilibrium techniques (heat treatment, SPD, and surface treatments)
is critical for improving degradation resistance and pitting susceptibility. The comprehen-
sive utilization of modification methods is promising to meet the need of the degradation
resistance in vivo.

(4) In terms of biodegradation, the application of Mg alloys is promising and chal-
lenging due to their positive biological effects. The degradation rate is still needed to be
modified by means of innovative fabrication techniques and surface treatments in order to
fit the tissue growth.
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Glossary

CGRP Calcitonin gene-related polypeptide-a
CREB1 CAMP-responsive element-binding protein 1
CT Computed tomography
CF Corrosion fatigue
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
H2 Hydrogen
HE Hydrogen evolution
HERs Hydrogen evolution reactions
HA Hydroxyapatite
MEM Minimum essential medium
NFATc1 Osteoclastogenesis-related gene
PBR Pilling–Bedworth ratio
PLA Polylactic acid
T6 treatment Precipitation heat treatment
RE Rare earth
REEs Rare earth elements
ROS Reactive oxygen species
SPD Severe plastic deformation
SBF Simulated body fluid
Ksp Solubility product constant
T4 treatment Solution treatment
SCC Stress corrosion cracking
TM Transition metal
Tris Tris (hydroxymethyl) aminomethane
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