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Humans show a unique capacity to process complex information from multiple sources.
Social perception in natural environment provides a good example of such capacity as
it typically requires the integration of information from different sensory systems, and
also from different levels of sensory processing. Here, instead of studying one isolate
system and level of representation, we focused upon a neuroimaging paradigm which
allows to capture multiple brain representations simultaneously, i.e., low and high-level
processing in two different sensory systems, as well as abstract cognitive processing
of congruency. Subjects performed social decisions based on the congruency between
auditory and visual processing. Using multivoxel pattern analysis (MVPA) of functional
magnetic resonance imaging (fMRI) data, we probed a wide variety of representations.
Our results confirmed the expected representations at each level and system according
to the literature. Further, beyond the hierarchical organization of the visual, auditory
and higher order neural systems, we provide a more nuanced picture of the brain
functional architecture. Indeed, brain regions of the same neural system show similarity
in their representations, but they also share information with regions from other systems.
Further, the strength of neural information varied considerably across domains in a
way that was not obviously related to task relevance. For instance, selectivity for
task-irrelevant animacy of visual input was very strong. The present approach represents
a new way to explore the richness of co-activated brain representations underlying the
natural complexity in human cognition.

Keywords: multisensory, audio-visual, multivoxel pattern analysis, orthogonal design, hierarchical brain, social
norm, mentalizing

INTRODUCTION

Humans have an extraordinary capacity to integrate complex multidimensional information.
A first challenge arises from the brain’s hierarchical structure, with multiple dimensions being
represented at different levels (Op de Beeck et al., 2008). For example, to process the visual
dimensions aspect ratio and symmetry, a nonlinear combination of simple features computed in
earlier sensory levels is needed. Humans excel in such nonlinear tasks, while animals like rats fail
(Bossens and Op de Beeck, 2016).

A second challenge involves the combination of information across different sensory systems
(McGurk and MacDonald, 1976; Pourtois et al., 2005). For instance, to read printed words,
the human brain associates visual information of letters to auditory representations of sounds
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and higher-order representations of meaning (Dehaene et al.,
2010). A third challenge involves the combination of information
from multiple sensory systems as input for more high-level
cognitive processing. For instance, the understanding of everyday
social situations, a kind of ‘‘social reading’’, requires the
simultaneous processing of visual cues—e.g., face expressions
(Vuilleumier and Pourtois, 2007), auditory cues—e.g., prosody
(Bestelmeyer et al., 2014; Sammler et al., 2015) and higher-order
social information—e.g., mentalizing others’ goals, desires or
mental states (Frith and Frith, 2006; Mitchell, 2009; Schurz et al.,
2014). In the scientific literature all these different processes are
typically studied in separation.

In the current study, we aimed to uncover the multiple
representations that are activated in complex social tasks. We
focus upon a neuroimaging paradigm which implements a
complex example of social understanding, requesting people to
infer how most people would judge the congruency of vocal
reactions to visual scenes, a high-level social norm inference
task (see Pegado et al., 2017). Here we analyze the data in
such a way that we can disentangle multiple representations
in different systems and hierarchical levels, at the same time.
In other words, instead of focusing upon either visual, auditory,
or social processes separately, we aim to capture them all at
once. Our goal is to provide a demonstration of principle
that it is possible to investigate multiple neural systems at
different hierarchical levels simultaneously in an ecologically
valid way. Accordingly, we expect to find a variety of neural
representations in a network of brain regions. In visual regions,
we expect a hierarchy of representations, from low-level visual
characteristics in primary visual cortex (Kamitani and Tong,
2005; Kay et al., 2008) to high-level category-related properties in
lateral and ventral occipito-temporal cortex (Kriegeskorte et al.,
2008b; Bracci and Op de Beeck, 2016). In auditory regions, we
expect to find representations of multiple aspects of auditory
stimuli, including low-level acoustic properties and higher-level
emotional content (Formisano et al., 2008; Ethofer et al., 2009).
Further, high-level inferences of social norm are expected to
be represented in the core mentalizing network, including the
temporo-parietal junction (TPJ), precuneus (PC) and medial
prefrontal cortex (mPFC; Amodio and Frith, 2006; Frith and
Frith, 2006; Mitchell, 2009; Schurz et al., 2014). In an earlier
manuscript we already reported the representation of social
congruency in these data. Here we focus on the many other
representations that are co-activated and the resulting similarities
between brain regions in which information they represent and
which not.

MATERIALS AND METHODS

Participants
Twenty-five healthy subjects (seven females, 23.16 ± 3.32 years
old, seven left-handed) took part in this functional magnetic
resonance imaging (fMRI) study. They all reported normal or
corrected-to-normal vision, normal hearing and no neurological
or psychiatric disorders. They received a financial compensation
for their participation. The study was approved by the Medical
Ethics Committee UZ/KU Leuven University and all methods

were performed in accordance with the relevant guidelines
and regulations. Prior to scanning, all participants provided
written informed consent in accordance with the Declaration of
Helsinki.

Task
Participants were lying in the scanner while watching a
visual display and hearing auditory input through headphones.
They were instructed to imagine they were seeing images
(photographs) together with other unknown people. For each
image, after a short delay, participants hear a vocal reaction
(emotional utterance) that could be more or less congruent
with the particular scene. The task was to evaluate the
congruency of the vocal reaction in relation to the visual
context. Yet, they did not have to judge this congruency
from their own personal perspective, but instead they were
explicitly instructed to evaluate whether most people would
consider this vocal response appropriate or not (mentalizing
the ‘‘social norm’’) and respond accordingly. The two assigned
buttons (congruent vs. incongruent) were switched after three
runs out of six, and the assigned order was balanced across
subjects. Note that our paradigm was previously validated at
the behavioral level (Pegado et al., 2017). Indeed, as there
is no ‘‘correct answer’’ for this task but only subjective
judgments, we analyzed the subjects’ agreement on these
subjective judgments of audio-visual congruency. Crucially,
we showed that when subjects performed the task inferring
what most people would answer (instead of themselves) the
correlation of the response choices across subjects increased,
relative to when participants judged using their own perspectives.
This demonstrates the sensitivity of the paradigm for the
perspective taken by the participants. Here we used the
‘‘social norm perspective’’ task, as this particular aspect of
mentalizing (infer the ‘‘common knowledge’’) has not been
investigated previously. We used a multisensory social situation
to increase ecological validity (as our everyday life environment
is multisensorial) and to able to capture multiple neural
systems representations at once. In this way, we could obtain a
richer representation of the brain activity during this complex
cognition.’’

Visual Stimuli
Twelve images were selected from the standardized and widely
used emotional pictures set International Affective Picture
System (IAPS; Lang et al., 2008), based on extreme valence
ratings (positive vs. negative) and on animacy categorization
(animate vs. inanimate). The six animate (e.g., humans,
animals. . .) and the six non-animate pictures (e.g., landscapes,
objects. . .) were orthogonal to the image valence, with half
of them rated positively (e.g., happy baby), and half of them
negatively (e.g., people being threatened with a gun). Based upon
the quality of the brain responses evoked by a larger dataset
of 24 IAPS images present in the pilot fMRI study (see infra),
this final set of 12 images was selected: numbered 2341, 1710,
1750, 5760, 5825, 7492, 3530, 1300, 1930, 9290, 9300, 9301 in the
IAPS database. Figure 1 provides an illustration of the stimulus
set. As IAPS policy requests not to publish the original images,
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FIGURE 1 | Experimental design. (A) Audio-Visual stimuli combinations. Visual images were combined with auditory stimuli (vocal utterances), simulating social
reactions for different scenarios. In every run, all 12 images were combined with all eight vocal utterances, enabling an orthogonal analysis of each dimension: visual,
auditory and social congruency. F = female voice; M = male voice. (B) Experimental trials. Participants were asked to judge the appropriateness of the social
reactions, responding “congruent” or “incongruent” with assigned buttons. They were explicitly instructed not to use their own personal opinion (self-reference) but to
infer what most of people would think about the social appropriateness (“social norm” mentalizing) and to respond accordingly. To mimic a natural timing of social
reactions, vocal utterances started 0.6 safter the visual scene. Respecting the International Affective Picture System (IAPS) policy, the images presented here are not
the original ones.

we depicted here a series of similar image examples found on
the internet, in the same order as the original ones mentioned
above.

Auditory Stimuli
Eight different non-verbal vocal utterances were used, inspired
in previous work (Sauter et al., 2010). They express four different
emotional reactions that could be more or less congruent with
the pictures previously selected. Utterances expressing disgust,
fear, admiration and cuteness, were recorded in an expressive
but still natural manner (not an exaggerated caricature). Each
emotional vocalization was performed by one male and one

female actor. They were recorded in a sound-proof room
at 96 kHz sampling rate and 32-bit resolution and were
down-sampled to 44 kHz and 16-bit mono-recordings to reduce
the size of the audio files. All stimuli had a fixed duration
of 700 ms and an equivalent total Root Mean Square (RMS)
power (–17.4 ± 0.17 dB). Stimuli were slightly manipulated in
Cool Edit Pro software and Adobe Audition CC 2015 software.
Identical 600 ms silent periods were added before the onset
of each auditory stimulus to create a natural delay from
the visual stimulus onset, and a 100 ms silent period was
added after the end of the utterance to provide stable ending
transitions.
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A pilot fMRI study (see infra) aided us in determining the
low-level auditory features that had to be controlled for, such
as the duration and sound level, which very much determined
responses in early auditory areas. Stimuli can be found here:
https://osf.io/t7xp9/.

Experimental fMRI Runs
The fMRI session consisted of six runs, each with 96 pseudo-
randomly presented experimental trials, i.e., all 12 visual
stimuli paired with all eight auditory stimuli, to make the
design orthogonal for each sensory dimension (see Figure 1).
Additionally, 10 silent fixation trials were included among them,
as well as three initial and three final dummy trials, making
a total of 112 trials, with 4.5 s of Stimulus Onset Asynchrony
(SOA), totalizing 504 s of duration per run. Each experimental
trial started with a visual image for 2.5 s during which an
auditory utterance was played via headphones (from 0.6 s to
1.3 s to simulate a natural delay before the vocal reaction. A 2-
s fixation cross was then displayed until the end of the trial (see
Figure 1B). Subjects could respond any time within the trial and
were instructed to press the buttons as soon as they know the
answer.

Pilot fMRI Experiment
A pilot fMRI study was conducted with 13 subjects, using
a very similar design. The main difference between the
pilot and the actual experiment was that the pilot did not
contain a counterbalancing of response button in terms of
congruency, which made it impossible to dissociate congruency
representations from motor responses. There were a few other
more minor differences, such as the use of 24 instead of 12 visual
stimuli, 4-button responses instead of two, and less stringent
calibration of the auditory stimuli (not all stimuli had the
same duration and RMS power). The pilot study was useful
to determine and optimize several important aspects (design,
analysis) for our main study in order to avoid circular analyses
(Kriegeskorte et al., 2009) and will be mentioned at the relevant
points in the manuscript.

fMRI Data Acquisition
Imaging data were acquired using a 3T Philips Ingenia
CX scanner (Department of Radiology of the University of
Leuven) with a 32-channel head coil. Each functional run
consisted of T2∗-weighted echoplanar images (EPIs), with voxel
size = 2.52 × 2.58 × 2.5, interslice gap 0.2 mm, TR = 2550 ms,
TE = 30 ms, matrix = 84 × 82, 45 slices, field of view
(FOV) = 211 × 211 × 121. In addition to the functional images
we collected a high-resolution T1-weighted anatomical scan for
each participant (182 slices, voxel size = 0.98 × 0.98 × 1.2 mm,
TR = 9.6 ms, TE = 4.6 ms, 256 × 256 acquisition matrix). Stimuli
were presented using Psychtoolbox 3 (Brainard, 1997). Visual
stimuli were displayed via an NEC projector with a NP21LP
lamp that projected the image on a screen the participant
viewed through a mirror. Viewing distance was approximately
64 cm. Auditory stimuli were presented through headphones at a
comfortable hearing level.

fMRI Preprocessing
Imaging data were preprocessed and analyzed using the
Statistical Parametrical Mapping software package (SPM 8,
WelcomeDepartment of Cognitive Neurology, London, UK) and
MATLAB. Functional images underwent slice timing correction
(ascending order; first image as reference), motion correction
(3rd degree spline interpolation), co-registration (anatomical to
functional images; mean functional image as reference), and
spatial normalization to the standard Montreal Neurological
Institute (MNI) brain space. Functional images were resampled
to a voxel size of 2.2 × 2.2 × 2.7 mm and spatially smoothed
by convolution of a Gaussian kernel of 5 mm full-width at
half-maximum (Op de Beeck, 2010). One run of one subject was
not considered due to excessive head movement.

General Linear Models (GLMs)
We analyzed the fMRI data through GLMs. For each participant
and run, pre-processed images were modeled for each voxel.
They included regressors for each experimental condition and
the six motion correction parameters (x, y, z for translation and
rotation). Each predictor’s time course was convolved with the
canonical hemodynamic response function (HRF) in SPM. In
order to analyze the three manipulated dimensions (i.e., visual,
auditory and social congruency), we built three separate GLMs.
First, in the visual GLM, the 12 visual stimuli were declared
as conditions, with onsets and duration corresponding to the
visual presentation time (i.e., from 0 s to 2.5 s. Second, the
auditory GLM contained the eight auditory stimulus conditions,
with the corresponding auditory presentation time (from 0.6 s
to 1.3 s. Third, the social congruency GLM had two conditions
(congruent vs. incongruent), modeled from the beginning of the
auditory presentation (0.6 s from trial onset) until the end of the
trial (4.5 s. The detailed results of the social congruency GLM are
reported in full elsewhere (Pegado et al., 2017) but we still present
here the essential information of methods and results for the sake
of completeness.

Note that a priori we considered two possible approaches
to analyze the data, the here described approach with three
separate GLMs (visual, auditory, congruency), and a ‘‘full-
GLM’’ modeling approach with the 96 Audio-Visual (A-V)
combinations of conditions, with each trial modeled as an
event. We tried both approaches on the data from the pilot
experiment. Although both approaches provided a very similar
pattern of results, the full-GLM approach seemed to result in less
stable results with a lower Signal-to-Noise Ratio (SNR), possibly
because each A-V combination only had a single presentation
per run. Moreover, by creating separate GLMs we could use
more precise onsets and durations of each processing involved
(visual, auditory and social congruency processing). Based on
these considerations, the main experiment was analyzed with
three separate GLMs.

Regions of Interest (ROIs)
As regions of interest (ROI) analysis can be more sensitive than
searchlight analysis (Bulthé et al., 2014), à priori ROIs were
selected based on the literature, restricted to key brain regions
involved in visual, auditory and social inference processing.
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FIGURE 2 | Hierarchical regions of interest (ROI). A priori ROIs were selected according to the hierarchical organization of the neural systems underpinning the
processing of the manipulated dimensions: low and high-level sensory areas in each sensory modality and higher-order “mentalizing network” areas. All ROIs were
defined using independent masks, either from anatomical atlas or functional parcels from other laboratories: Broadman’s Areas (BA) for low-level sensory areas and
Precuneus (PC), “Temporal Voice Areas” (TVA) from Belin’s lab (Pernet et al., 2015; http://neurovault.org/collections/33/), Lateral Occipital Cortex (LOC) from
Kanwinsher’s lab (Julian et al., 2012), and parcels from functional connectivity studies for medial Prefrontal Cortex (mPFC; anterior vs. posterior mPFC: amPFC vs.
pmPFC; Sallet et al., 2013) and Temporo-Parietal Junction (TPJ; Mars et al., 2011; only right-hemisphere parcels are available for the latter two ROIs). The final
subject-specific ROIs were made by a conjunction of these predefined ROI masks with all the active voxels (details in “Materials and Methods” section).

While taking into account the hierarchical organization of these
three neural systems, we included low- and high-level visual
and auditory areas, and a higher-order mentalizing network
(Figure 2). Our approach was to select the best available
templates to delineate brain areas corresponding to each level
of processing in each neural system, avoiding in that way both
manual delineation of ROIs and the use of several functional
localizers. For brain regions where anatomical landmarks are
known to provide a proper approximation of functional regions
(e.g., Brodmanns’ area BA 17 and 18 for early visual cortex,
EVC), anatomical masks were used, from the anatomical atlas

WFU PickAtlas Toolbox (Wake Forrest University PickAtlas1).
For other regions where pure anatomical delimitation were
less appropriate than functionally-defined regions, e.g., Lateral
Occipital Complex (LOC) for high-level visual processing (Julian
et al., 2012), we used parcels obtained by other laboratories (see
details below). These general masks were combined (by means
of a conjunction analysis) with individual functional data that
specify voxels modulated by our task: the F-contrast of all task
trials against fixation trials, at a threshold of 0.0001 (uncorrected

1http://fmri.wfubmc.edu/cms/software

Frontiers in Human Neuroscience | www.frontiersin.org 5 April 2018 | Volume 12 | Article 153

http://neurovault.org/collections/33/
http://fmri.wfubmc.edu/cms/software
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Pegado et al. Hierarchical Multisensory Brain Representations

for multiple comparisons), using a separate ‘‘neutral GLM’’
where all task trials were modeled as a single condition (fixation
was implicitly modeled). ROIs with at least 20 active voxels were
included. If a given participant ROI did not meet these criteria,
his/her data was not used in the group analysis for this ROI.
This situation only took place for two subjects in the anterior
mPFC.

For sensory processing, a low level visual ROI (Early Visual
Cortex-EVC) was defined based on Brodmann’s areas (BA)
17 and 18 as they are widely accepted landmarks for low level
visual processing. As a high-level visual ROI, a functional parcel
of the LOC from the Kanwisher lab was used (Julian et al.,
2012). The low-level auditory ROI (Early Auditory Cortex, EAC)
was composed by BA 41 and 42. The high-level auditory ROI
was based upon the ‘‘Temporal Voice Area’’-TVA probabilistic
map from Belin’s lab (Pernet et al., 2015) concerning more than
200 subjects, available at neurovault2. The two low-level ROIs
(EVC and EAC) presented very thin configurations. This would
lead to unrealistic delimitations of early processing cortex given
the spatial uncertainty involved when comparing brains across
subjects. We thus made them thicker by 1 voxel in all three
directions. This procedure is nowadays already incorporated in
PickAtlas through the 3D dilatation function. For higher-order
cognition ROIs, since we used a mentalizing task we targeted
the mentalizing neural network: mPFC, TPJ and PC. Note
that these regions are also known to process representations of
emotions and valence in both visual and auditory modalities
(Peelen et al., 2010; Klasen et al., 2011). Following the same
approach as a recent meta-analysis of different mentalizing
tasks (Schurz et al., 2014), we used the same parcels that were
obtained in functional connectivity studies, both for mPFC
(Sallet et al., 2013) and TPJ (Mars et al., 2011). Note that
only right hemisphere parcels are available for these two ROIs.
Further, as we did not have particular hypotheses for the
two subdivisions of TPJ (anterior and posterior parcels) we
grouped them together in a single ROI. In contrast, for the
mPFC, we kept this distinction as the literature shows a clear
functional dissociation between anterior vs. posterior parts for
self-related vs. others-related mentalizing processes respectively
(Mitchell et al., 2006; Saxe et al., 2006; Denny et al., 2012;
Sul et al., 2015), by integrating the four original parcels into
two. Finally, for PC, we used the anatomical mask in WFU
Pickatlas (SPM). Given its role in emotional processing, an
amygdala ROI was initially included (using anatomical atlas) in
the analysis of the pilot fMRI experiment. Yet, as it did not show
detectable information in any dimension, it was not included
here.

To ensure that no overlap occurs between ROIs, we visually
inspect ROI borders of each ROI pair. As a first measure, we
restricted the TVA probabilistic map to the most significant
voxels by imposing an arbitrary threshold of t = 50, which
restricted the ROI to their classical temporal cortex disposition
and reduced considerably its overlap with other regions
(e.g., TPJ). The resulting map was then transformed in a binary
mask. As an additional measure, for this and all the other ROIs

2http://neurovault.org/collections/33/

(all binary masks), we excluded the remaining overlapping voxels
from the largest ROI of each pair. Only the following ROI
intersections presented some overlap: EVC × LOC, EVC × PC,
EAC × TVA, EAC × TPJ and TVA × TPJ (the first of each
pair being the largest one). This procedure ensured a complete
separation of the ROIs, without ‘‘denaturing’’ their original
spatial configuration.

Correlation-Based Multivoxel Pattern
Analysis
We used correlation-based multivoxel pattern analysis (MVPA)
to explore how the spatial response pattern in individual ROIs
differs between experimental conditions (Haxby et al., 2001).
For each GLM and participant, we extracted the parameter
estimates (betas) for each condition (relative to baseline) in each
voxel of the ROIs. These obtained values for each run were
then normalized by subtracting the mean response across all
conditions (for each voxel and run separately), to emphasize the
relative contribution of each condition beyond global activation
level, as previously done in the literature (Op de Beeck et al.,
2008; Bracci and Op de Beeck, 2016). The full dataset (six runs)
were randomly divided into two independent subsets of runs
(using ‘‘randperm’’ function in Matlab). Thus, typically three
runs were randomly assigned set 1 and three other runs to
the set 2 of the classification procedure. In the single case of
incomplete data (five runs instead of six), only two runs were
assigned as set 1. The multi-voxel patterns of activity associated
with each condition in set 1 (runs averaged) were pairwisely
correlated with the activity patterns in set 2 (runs averaged) by
using the ‘‘corrcoef’’ function in Matlab (Persons’ r correlation
coefficient). This procedure of splitting the data in two parts
followed by correlating the multi-voxel patterns was repeated
100 times. The final neural similarity matrix for each ROI
was obtained by averaging these 100 matrices. Representational
Similarity Analysis (RSA; Kriegeskorte et al., 2008a) could then
be used to estimate informational content in the neural matrices.
The matrix size varied as a function of the GLM: 12 × 12 for
visual, 8 × 8 for auditory and 2 × 2 for social congruency
GLMs.

MVPA Pipeline
We adopted a hierarchical step-by-step approach to analyze the
data to address three successive questions: (1) Which regions
contain information of a given dimension? (2) What kind of
representation do they contain? (3) How much information is
shared with other regions?

Selection of Informative ROIs
To test whether a certain region contained information about
a given dimension (visual, auditory, or social congruency), we
applied the following procedure. First, we calculated for each
ROI, the mean correlations in the diagonal and non-diagonal
cells of the neural similarity matrix. Then, we performed a
two sample two-tailed t-test across participants for diagonal
vs. non-diagonal mean correlations. This procedure is based
on the fact that the same condition will typically show higher
similarity across runs relative to different conditions (i.e., higher
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correlations for diagonal vs. non-diagonal cells (Ritchie et al.,
2017). Lastly, a Bonferroni correction for multiple comparisons
(i.e., the number of ROIs) was applied.

Comparing Neural Representations With Theoretical
Models of Visual and Auditory Processing
For each ROI containing information of a given dimension
(i.e., significant t-test in the previous step), we compared the
neural similarity matrices with similarity matrices of explicit
models, to understand the kind of representational content of
each ROI. In order to avoid the influence of the correlation
of each stimulus with itself (diagonal cells) we only included
the non-diagonal cells, averaging upper and lower triangles
of the neural similarity matrix. This final vector was used in
all further representational analysis. Each theoretically-relevant
model targeted a specific parameter of the stimulus set. The
values of each condition were compared pairwise with all the
other conditions to establish the similarity between each pair,
leading to 12 × 12 visual, 8 × 8 auditory and 2 × 2 social
congruency similarity matrices.

Visual models
Four visual models were included for the RSA in this study. (1) a
pixelwise model: based on pixel values of each visual stimulus;
(2) a luminance model: based on mean luminance values; (3) a
visual valence model: based on group average ratings of valence
(1–9 level) obtained outside the scanner; and (4) an animacy
model: a binary model based on animacy of images (animate vs.
inanimate).

Auditory models
We also included four auditory models for RSA purposes.
(1) a fundamental frequency (F0) model: based on fundamental
frequency of audio stimuli; (2) an auditory valence model: based
on group valence ratings obtained outside the scanner; (3) an
utterance emotion model: based on the four emotions conveyed
by the utterances (fear, disgust, admiration and cuteness-like
expressions); and (4) a voice gender model: based on the gender
of the voice.

To capture the specific contribution of each model explaining
the neural pattern, we used partial correlation analysis, instead
of simple correlations (testing the significance of coefficient
estimates with t-tests against zero). This is particularly
important when some models correlate with each other.
Additionally, a neural SNR was estimated based on the
correlation of each participant’s neural representational matrix
(averaged over upper and lower triangle of non-diagonal
cells) with all the other participant’s matrices averaged
(Bracci and Op de Beeck, 2016). The average of these
correlations across all subjects is represented by dashed lines in
Figures 3D, 4C.

Investigating Information Shared Across ROIs (2nd
Order Correlations)
Finally, we investigated how information was shared across brain
regions. For each ROI, we concatenated the matrix values of the
three manipulated dimensions into a single vector, using only
the non-diagonal cells (Figure 6A). In order to compensate for

differences in the number of vector elements from the three
dimensions, we used a weighting procedure: the values from
the smaller matrices were multiplied by the square root of the
number of observations in the largest dimension, i.e., in the
visual dimension (66 observations), divided by the number of
observations in the smaller dimension. The results obtained
are equivalent of those produced by multiplying the values of
each dimension or by replicating the cells for each dimension
as many times as the Least Common Multiple (LCM). Then,
we used this concatenated vector to test how the information
pattern contained in each ROI correlated to those in the other
ROIs, tested in a pairwise way (Figure 6B). Complementary, we
also performed Multidimensional Scaling (MDS) to check how
these ROIs cluster together when using the full informational
concatenated vector. The MDS algorithm (‘‘mdscale’’ function
in Matlab) received as input the dissimilarity between the ROIs
computed as 1 minus the correlation between vectors as shown
in Figure 6A. All the pairwise dissimilarities between ROIs result
in the matrix shown in Figure 6B. We used 1000 iterations,
as it was a sufficient number for reliable results, to avoid the
influence of the random initial values of the iterative fitting
procedure used in MDS (indeed, even 100 repetitions provided
already very stable results). To obtain a visual estimation of the
relative contribution of each dimension in each brain region,
we plotted pies instead of dots in the MDS figure, using
the diagonal minus non-diagonal values in each dimension
normalized to create the relative proportions in the pie. The
pies were scaled using the sum of these three values. Thus, a
region with large differences between diagonal and non-diagonal
will have a large pie (Figure 6C). Note that non-diagonal cells
in neural matrices can have significant information of a given
dimension (e.g., visual), specially to qualitatively characterize
the type of representation (visual animacy). However, for a
quantitative estimation of information in that dimension, we
used the diagonal minus non-diagonal values, as correlations for
the same condition across runs can be expected to be higher than
for different conditions, on average, if the ROI cares about that
dimension. In other words, the difference between diagonal vs.
non-diagonal cells indicates the level of information sensitivity
on a given dimension, without entering in the consideration of
what kind of representation.

Searchlight MVPA Analysis
Searchlight MVPA analysis was used as a complementary way to
check for potential missing anatomical areas outside our a priori
ROIs, notably for unisensory valences, a feature that we could
not capture well in our ROIs (significant but small correlations
for visual valence, no correlations for auditory valence). We
used ‘‘cosmo MVPA’’ searchlight scripts (Oosterhof et al., 2016)
to perform individual analysis on each separate dimension,
using the default parameters (e.g., spherical neighborhood of
100 voxels). The searchlight results were smoothed to 8 mm
full-width at half-maximum and a 2nd level analysis was
performed (both using SPM). One participant was excluded from
this analysis because of a missing run (excluded for excessive
movement). No extra brain region captured unisensory valence
or the other studied dimensions.
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FIGURE 3 | Visual dimension. (A) ROIs with visual information (diagonal vs. non-diagonal). Using a “visual GLM” where only the 12 visual conditions are declared and
applying correlation-based Multivoxel Pattern Analysis (MVPA), we calculated neural similarity matrices for each subject and ROI (left panel). To verify which ROI
contain visual information, we contrasted pair of trials with the same visual image (diagonal cells, in black) against pairs of trials with different images (non-diagonal
cells, in gray). If particular visual information would be present in the ROI, the correlations in the diagonal cells would be significantly higher than in non-diagonal cells.
(B) Explicit models. To investigate the kind of visual representation present in each informative ROI we built explicit models in relation to specific stimulus parameters:
pixel-by-pixel values, mean luminance, group average visual valence ratings and animacy (animate vs. inanimate images). We also calculated the correlation among
the models (extreme right). (C) Neural patterns on informative ROIs. Group average neural similarity matrices for each ROI are plotted. (D) Partial correlations of
informative ROIs with models. To test the best predictive models of neural patterns, we performed partial correlations of neural and model matrices (using only
non-diagonal cells, averaged across upper and lower triangles). Horizontal dashed lines represent Signal-to-Noise Ratio (SNR) estimations (see “Materials and
Methods” section). Note that the SNR for TVA is close to zero (5.6e-04) and cannot be visualized. P-values of paired t-tests across subjects were
Bonferroni-corrected, considering the number of ROIs, leading to the following thresholds: ∗p < 0.0063; ∗∗p < 0.0013; ∗∗∗p < 1.25e-04. Error bars = ± SEM.

Univariate Analysis
Correlations between activity patterns (MVPA) are not
necessarily related to overall differences in activity level between
conditions (univariate analysis). Nevertheless, it is relevant to
know whether MVPA findings are found in the context of effects
that can also be picked up by a univariate voxel-level difference
in activity (FWE corrected at p < 0.05). One distinction was
very obvious in a univariate analysis, namely animate vs.
inanimate visual pictures, which is to be expected given the

extensive literature on category selectivity. Interestingly, we
could observe univariate effects when contrasting negative
minus positive images in high-level visual areas (LOC and
ventral temporal cortex; peak at 31, −60, −13), but not in
the opposite direction, which can be potentially linked to a
relative attentional enhancement provoked by negative images.
Other tested distinctions failed to reveal significance in a
whole-brain univariate analysis. The limited sensitivity of
the univariate analyses is overcome by correlational MVPA
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FIGURE 4 | Auditory dimension. (A) Auditory information. (B) Explicit models. (C) Neural patterns on informative ROIs and partial correlations with models. As for the
visual domain, we created for the auditory dimension, an “auditory GLM” declaring the eight auditory conditions, and then applying correlation-based MVPA. Models
were built based on Fundamental Frequency (F0), group average auditory valence ratings, emotional content (fear, disgust, admiration and cuteness like) and voice
gender. See caption of Figure 3 for equivalent explanation (C,D panels are collapsed here). ∗p = 0.05; ∗∗∗p = 0.001 (Bonferroni-corrected).

which allows us to capture the richness of multiple neural
representations.

Data Availability
The files needed to replicate the analyses (e.g., ROI definitions
and individual subject representational similarity matrices) are
available on the Open Science Framework website3. Other
aspects of the data (e.g., raw data files, other steps in the analyses)
are available from the corresponding author on reasonable
request.

RESULTS

We will first report the results from the visual dimension (low
and high-level visual representations), then those of the auditory
dimension (low and high-level auditory representations),
followed by the results concerning the congruency between these

3https://osf.io/t7xp9/

two dimensions (social congruency representations). Finally,
we will report the similarities of neural representations between
brain areas, by using the informational content from all three
dimensions at once.

Low- and High-Level Visual
Representations
First, to determine which ROI represented visual information,
we compared the diagonal vs. non-diagonal cells in visual
GLM neural similarity matrices (see ‘‘Materials and Methods’’
section). This analysis revealed several regions with significant
visual representations (Figure 3A): EVC (r = 0.61 vs. −0.05;
p < 0.0001), LOC (r = 0.68 vs. −0.06, p < 0.0001), TVA
(r = 0.05 vs. −0.005, p = 0.0009), PC- PC (r = 0.24 vs. −0.02;
p < 0.0001) and TPJ (r = 0.09 vs. −0.01, p = 0.0007). All t-tests
comparing the consistency of MVPA representations in diagonal
vs. non-diagonal cells’ were Bonferroni-corrected for the number
of ROIs tested and results were considered significant if bellow
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p = 0.05 after correction;all reported p-values in the text are
corrected). Other regions did not show significant results: EAC
(r = 0.02 vs. −0.002, p = 0.66), posterior mPFC (r = 0.03 vs.
−0.003; p = 0.60) and anterior mPFC (r = 0.04 vs. −0.003;
p = 0.77).

Next, we determined what types of visual representations
were captured in the different ROIs. Therefore, explicit visual
models (Figure 3B) were compared to the neural similarity
matrices (Figure 3C) to characterize the kind of representation in
visually-informative ROIs, using Pearsons’s partial correlations
(Figure 3B). EVC data was significantly explained by the
low-level feature models for pixels (correlation coefficient
r = 0.09; p < 0.0001) and luminance (r = 0.20; p = 0.0009) but
also by the high-level animacy model (r = 0.17; p = 0.0002),
while no effect was found for the visual valence model
(r = −0.02; p > 0.9). All partial correlations were Bonferroni-
corrected for the number of models tested. LOC data was
most strongly explained by the animacy model (r = 0.85;
p < 0.0001), confirming that high-level visual cortex (LOC)
made a clear distinction between animate vs. inanimate images.
The luminance model showed non-significant results in LOC
(r = −0.003; p > 0.9). As it partially co-varied with the animacy
model, the luminance model could have been overshadowed by
the substantial amount of variance explained by the animacy
model. Further, LOC also represented low level pixelwise features
(r = 0.07; p < 0.0001) and visual valence (r = 0.14; p < 0.0001).
PC showed positive partial correlations for luminance (r = 0.20;
p < 0.0001), valence (r = 0.08; p = 0.02) and animacy (r = 0.17;
p = 0.003), but not for the pixelwise (r = 0.01; p> 0.9) model. TPJ
data was significantly explained by the animacy model (r = 0.12;
p = 0.008), but not by the other models (pixelwise: r = −0.004;
p> 0.9; luminance: r =−0.02; p> 0.9; valence: r = 0.001; p> 0.9).
Finally, none of our visual models captured the kind of visual
information represented in TVA (pixelwise: r = −0.005; p > 0.9;
luminance: r = 0.004; p> 0.9; valence: r = 0.06; p = 0.41; animacy:
r = 0.07; p = 0.28). Note that the SNR in this region (horizontal
dashed line) for the visual dimension was very low.

Low- and High-Level Auditory
Representations
As for the visual dimension, we first determined which
brain regions contained auditory information by performing
a correlational MVPA. Three regions hosted significantly
distinguishable auditory representations: EAC (r = 0.15 vs.
−0.02; p < 0.0001), TVA (r = 0.15 vs. −0.02; p < 0.0001)
and posterior mPFC (r = 0.07 vs. −0.01; p = 0.045). For the
other ROIs, we did not observe auditory information: EVC
(r = 0.02 vs. −0.003; p > 0.9), LOC (r = 0.003 vs. −0.0002;
p> 0.9), PC (r = 0.03 vs.−0.004; p> 0.9), TPJ (r = 0.06 vs.−0.01;
p = 0.13) and anterior mPFC (r = 0.03 vs. −0.005; p = 0.52; see
Figure 4A).

Partial correlations with the explicit auditory models
(Figure 4B) revealed that only the ‘‘utterance emotion’’ model
significantly explained TVA data (r = 0.24; p < 0.0001), in
contrast to the other models which did not demonstrate this
effect (F0: r = 0.06; p = 0.19; auditory valence: r = −0.1; p = 0.36;

voice gender: r = −0.05; p = 0.81 (see Figure 4C). A similar
pattern was found for EAC, however it did not reach significance
level for any of themodels (F0: r = 0.07; p= 0.30; auditory valence:
r = −0.06; p > 0.9; utterance emotion: r = 0.11; p = 0.29; voice
gender: r = −0.04; p > 0.9). Also for pmPFC, utterance emotion
was the model explaining most of the variance but did not
reach significance with correction for multiple comparisons: F0:
r =−0.01; p> 0.9; auditory valence: r =−0.02; p> 0.9; utterance
emotion: r = 0.11; p = 0.16; voice gender: r = −0.01; p > 0.9.
Note the lower SNR (dashed horizontal lines) for both EAC and
pmPFC relative to TVA. It is worth noting that we did quite some
effort to equate stimuli on various low-level dimensions. We did
not do this to the same extent in the pilot experiment, where
stimuli varied in sound duration and RMS power, which resulted
in much stronger auditory representations in EAC.

Representations of Social Congruency
These results have been reported in full elsewhere (Pegado et al.,
2017). Consistent with the analysis of the previous dimensions,
we again used the diagonal vs. non-diagonal approach to
determine the regions hosting social congruency information
(Figure 5). As expected, regions of the neural mentalizing
network host significant informational content: PC (p = 0.046),
TPJ (p = 0.01) and posterior mPFC (p = 0.009). However, this
was not the case for the anterior mPFC (p > 0.9) nor for any of
the other sensory regions: EVC (p > 0.9), LOC (p > 0.9), EAC
(p > 0.9), TVA (p = 0.12; Bonferroni-corrected as previously).
Note that for two participants no active clusters were even found
in the anterior mPFC.

Shared Information Across Brain Regions
In order to uncover the differences and similarities between brain
regions in what they represent and what not, we concatenated

FIGURE 5 | Social congruency dimension. The “social congruency” GLM had
two conditions: congruent and incongruent. ROIs with social congruency
information (diagonal vs. non-diagonal; see caption of Figure 3 for equivalent
information). ∗p = 0.05.
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FIGURE 6 | Shared information across brain regions.(A) Concatenated vector of all three dimensions. To evaluate how information was shared across brain regions,
we built a concatenated vector from the neural similarity matrices of the three manipulated dimensions (visual, auditory and congruency), using only non-diagonal
cells (upper and lower triangles averaged). Each dimension vector was weighted to compensate for the different number of values. (B) Correlation across brain
regions. Pairwise Pearson correlations across brain regions were performed using the group average concatenated vector. (C) MultiDimesional Scaling (MDS) for all
dimensions. MDS was applied (1000 iterations) to the same concatenated vectors to verify the clustering of ROIs based on common information. To visualize the
specific informational content of each ROI we plotted pies instead of dots, showing the relative contribution of each dimension (diagonal minus non-diagonal). Pies
are scaled in proportion to the total amount of information (sum of diagonal minus non-diagonal in all experimental dimensions).

non-diagonal cells of similarity neural matrices of the three
manipulated dimensions (Figure 6A) and then tested how the
global informational content was shared among brain regions.
First, by running pairwise correlations between ROIs with
the full informational vector, a dissociation between the two
sensory systems was noticed: high correlations among visual
areas on the one hand (r = 0.50; p < 0.0001) and among
auditory areas on the other hand (r = 0.80; p < 0.0001) but
very low correlations between different sensory modalities (see
Figure 6B). Further, PC shares information with visual areas,

especially with EVC (r = 0.56), and TPJ with auditory areas (with
EAC: r = 0.66; with TVA: r = 0.89; all p < 0.0001), a pattern
that follows anatomical distance. Also following the anatomical
distance principle, anterior and posterior mPFC showed high
correlation between them (r = 0.69, p < 0.00001), despite
previously observed differences in social information content
(see Figure 5). This is important to ensure that informational
content detected in anterior mPFC is not merely random noise
and that differences of social information between posterior and
anterior mPFC can be meaningful.
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Besides anatomical proximity, functionally related distant
regions also presented similarity of neural representations. Areas
of the mentalizing network show high information similarity:
PC×TPJ: r = 0.88; PC× posteriormPFC: r = 0.86; PC× anterior
mPFC: r = 0.67; TPJ × posterior mPFC: r = 0.95; TPJ × anterior
mPFC: r = 0.67; all p < 0.0001). Finally, TVA also show similar
patterns of information content relative to mentalizing network
areas: TVA× PC: r = 0.80; TVA×TPJ: r = 0.89; TVA× posterior
mPFC: r = 0.87; and TVA × anterior mPFC: r = 0.59; all
p < 0.0001.

MDS analysis using the concatenated vector illustrates these
informational similarities between the ROIs (Figure 6C). By
using scaled pies instead of dots, we illustrate the differences
between ROIs in their specific (percentage on each dimension)
and total (size) informational content.

DISCUSSION

To shed light upon how the human brain performs complex
tasks requiring integration of multiple information as typically
performed in natural social environments, we investigated
brain representations at different hierarchical levels and neural
systems, all at once (i.e., within the same trial) by using an audio-
visual social perception paradigm. We manipulated the visual,
auditory and social processing dimensions in an orthogonal
way, aiming to obtain a more holistic view of how the brain
process these multiple levels of information together. We showed
already before that ‘‘social norm’’ inferences are processed in
the brain regions involved in theory of mind judgments, the
so-called mentalizing network: PC, TPJ and posterior (but
not anterior) mPFC. In the same data we find characteristic
hierarchical neural patterns in the visual and auditory systems.
By analyzing these representations together we could observe
that: (1) brain regions clearly differed in the representations
that they host as no two regions of interest represented the
same combination of features; (2) brain regions could host
multiple types of representations, either within one dimension
(e.g., EVC represents luminance, pixel value and animacy status
of the images), or across dimensions (e.g., see representations
of TVA or of the mentalizing network in Figure 6); and
(3) robustness of neural representations is not determined
by task-relevance, e.g., high-level visual cortex (LOC) strongly
distinguishes animate from inanimate pictures despite its task-
irrelevance, while task-relevant auditory valences were much
weaker.

Our approach provides a rich view of the brain
representational architecture. In the visual domain, we
confirmed the processing hierarchy, albeit with overlap between
low and high-level visual cortex representations. We noticed that
EVC represents several low-level visual features (Figure 3D),
as well as higher level animacy distinction. In line with the
literature (Kriegeskorte et al., 2008b; Bracci and Op de Beeck,
2016), this animate vs. inanimate distinction was much stronger
in LOC (Figures 3C,D), but importantly, we also observed
here representations of low-level features (pixel values), as has
recently been high-lighted (Hong et al., 2016). In addition, LOC
showed a significant representation of visual valence.

In the auditory domain, the EAC showed significant
sensitivity to auditory information. However, the exact
representations could not be explained by any of the low-level
auditory models. Indeed, as we have a small number of stimuli,
we tried to control low-level parameters, such as power and
duration, especially because in our pilot fMRI study, EAC
responses were massively driven by variations in stimulus
duration. Previous research has demonstrated the capacity of
MVPA to decode basic non-verbal utterance information in the
auditory cortex, such as vowels (Formisano et al., 2008). Here,
we could confirm that TVA can differentiate emotional content
in vocal utterances (Figure 4C) as previously reported (Ethofer
et al., 2009).

Further, social norm inference information was found in
all three ROIs of the core mentalizing network (Amodio and
Frith, 2006; Frith and Frith, 2006; Mitchell, 2009; Schurz et al.,
2014): PC, TPJ and mPFC (in posterior but not in anterior part;
see Figure 5). Given that we used an allocentric perspective
task during the scanning, which was validated behaviorally as
described in Pegado et al. (2017), these results are in accordance
with previous works showing a dissociation between anterior
vs. posterior mPFC for egocentric vs. allocentric mentalizing
processes respectively (Mitchell et al., 2006; Saxe et al., 2006;
Denny et al., 2012; Sul et al., 2015) and further extends this notion
for a quite abstract (instead of concrete) ‘‘other’’ used as the
mentalizing target, i.e., ‘‘most of people.’’

Interestingly, our approach could provide a more nuanced
picture of brain representations. For instance, visual and
auditory information were not exclusively found in the two
visual and the two auditory ROIs, respectively. TVA, PC
and TPJ also represent visual information. Despite our efforts
to constrain the regions of interest (see ‘‘Materials and
Methods’’ section), we cannot exclude the possibility that part
of the signal would originate from nearby (visual) regions
that, at the group level, overlap with PC and TPJ. Further,
even if normalization is perfectly performed, the limited
resolution of fMRI could still generate overlap, as shown
by Schwarzlose et al. (2005) that one needs high resolution
to (partially) distinguish between body and face selectivite
regions. Importantly however, our approach enables us to verify
that regions such as TVA, PC and TPJ present a distinct
overall functional profile of information relative to visual
regions (Figures 6B,C). There are other examples where some
regions show high levels of information outside the expected
dimension. For instance, TVA seems to contain representations
that go beyond auditory information. Interestingly, in the
correlations between brain areas using the full informational
vector (Figure 6B), TVA showed high similarity with other
regions of the mentalizing network, despite the fact that TVA
only showed a marginally significant effect of social congruency.
This observation illustrates the added value of this 2nd-order
similarity analysis (Figure 6) beyond the classical unidimensional
threshold-based one.

In addition, the naturalistic multisensory social scenario
adopted here sheds light on how task-relevance influenced the
strength of neural representations across multiple systems. Our
results suggest that task-relevance is not very critical. Indeed,
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the task-irrelevant animacy distinction in LOC was very robust
(Figures 3C,D). In contrast, task-relevant features such as
auditory valence could not be detected in any of the ROIs, and
both visual and auditory valence could not be detected with a
whole-brain searchlight analysis. A possible explanation is that
valence and emotion can be represented in a very distributed
way across brain regions (for recent studies and meta-analysis
see Wager et al., 2015; Kragel and LaBar, 2016; Lindquist et al.,
2016; Saarimäki et al., 2016). Another possibility is that one
or more of the higher-order ROIs (mPFC, TPJ and PC) would
represent valence in a supramodal way (Peelen et al., 2010; Klasen
et al., 2011). Thus, valence in one sensory modality could have
suffered a direct interference of the valence signal from the
other modality, and in this case only valence congruency across-
modalities (Klasen et al., 2011) would be detectable.

In conclusion, the present study illustrates the possibilities
of RSA-RSA (Kriegeskorte et al., 2008a) by exploring multiple
brain representations simultaneously, and in a more ecologically
valid set-up. Future studies could benefit from such multi-
level perspective, for instance, in multisensory research where
hierarchical levels of each sensorial modality are rarely
considered simultaneously. Further, the present strategy can
also provide a different and more comprehensive perspective in
domains where different processing levels are typically studied
separately. The present strategy could for instance be particularly
interesting to study sensory (low and high) and higher-order
social processing in Autism SpectrumDisorders (ASD) aiming to

verify potential differences relative tomatched controls in each of
these levels, all at once.
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