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Abstract

Owing to their potential for systematic analysis, complex networks have been widely used in proteomics. Representing a
protein structure as a topology network provides novel insight into understanding protein folding mechanisms, stability
and function. Here, we develop a new feature to reveal correlations between residues using a protein structure network. In
an original attempt to quantify the effects of several key residues on catalytic residues, a power function was used to model
interactions between residues. The results indicate that focusing on a few residues is a feasible approach to identifying
catalytic residues. The spatial environment surrounding a catalytic residue was analyzed in a layered manner. We present
evidence that correlation between residues is related to their distance apart: most environmental parameters of the outer
layer make a smaller contribution to prediction; and (ii) catalytic residues tend to be located near key positions in enzyme
folds. Feature analysis revealed satisfactory performance for our features, which were combined with several conventional
features in a prediction model for catalytic residues using a comprehensive data set from the Catalytic Site Atlas. Values of
88.6% for sensitivity and 88.4% for specificity were obtained by 10-fold cross-validation. These results suggest that these
features reveal the mutual dependence of residues and are promising for further study of structure–function relationship.
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Introduction

Enzymes participate in various cellular processes by temporarily

binding to reactants, significantly decreasing the activation energy

required and accelerating the reaction. Enzyme structure provides

an insight into such catalytic mechanisms. Since the advent of

structure genomics projects, many enzyme structures have been

explored; however, determining the correlation of functional

information with structural data and extrapolation to a catalytic

mechanism remains a challenging task. Commonly, only a few

amino acids in the active site of an enzyme are involved directly in

such bioreactions. The prediction of catalytic residues in newly

solved protein structures is highly desirable in structural

proteomics and should help to further our understanding of

catalytic mechanisms, which will be useful in protein engineering

and in functional annotation.

Many studies have been devoted to the identification of active

enzyme residues. Various features have been mined for active site

description and can be roughly divided into several categories.

Sequence [1] or structure [2] conservation analysis performs well

in correlating residues with function because functionally impor-

tant residues under high selective pressure usually exhibit a higher

degree of conservation than other residues. Other properties for

singling out active site residues have been investigated extensively.

As reported by Bartlett [3], catalytic residues have relatively low

solvent accessibility, tend to be charged or polar, are less flexible,

are located in an appropriate cavity [4] and occur in coil regions.

Moreover, most catalytic residues are involved in hydrogen

bonding via amino acid main chains or side chains [3]. Ben-

Shimon et al. found that catalytic residues are frequently located

close to the enzyme center [5]. Thus, sequential and structural

features characterizing catalytic residues, such as residue type,

physicochemical properties, hydrogen bonding, secondary struc-

ture, solvent accessibility and B-factors, have been investigated in

depth. Combination of these properties with information on

evolutionary conservation has led to the development of numerous

prediction models [6–14].

The three-dimensional structural patterns of catalytic residues

are usually shared by functionally similar enzymes and prediction

can be made by searching for spatial patterns or templates

resembling known catalytic sites [15–18]. Phylogenetic motifs,

which are regions around key functional sites that are conserved in

the overall phylogeny of a family, are promising for functional site

prediction [19]. A mechanical study revealed high force constants

for catalytic residues [20] and theoretical titration has proved

useful by indicating the location of active sites [21–23]. Therefore,

it is desirable to develop effective methods for describing such

mutual restraints between catalytic and other residues, as well as

the spatial environment around a catalytic residue.

Protein structure, as a type of complex system, can be analyzed

by complex network approaches whereby the structure is

represented as a residue contact network in which vertices are

the residues and edges are their interactions. This method provides

a novel insight into protein folding mechanisms, stability and

function. Studies by Bagler et al. have indicated the small-world

and even scale-free [24] properties of such a network, which is

independent of the structural class [25]. Vendruscolo et al.

determined that a limited set of vertices with large connectivity,
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which they termed hubs, play a key role in protein folding [26–28].

In another study, hubs were defined as residues with more than

four links that bring together different secondary structural

elements, suggesting that these hubs contribute to both protein

folding and stability [29]. Together, these studies have demon-

strated that complex networks provide a convenient approach for

systematic analysis of protein structure. Particularly high residue

closeness values are associated with sequence conservation and

reflect the key role in protein structure [30]. By definition, closeness

score of a vertex is relative to its distances from all other vertices in

a network, which reflects the global role of a residue in the global

structure. These concepts are widely accepted as important

features and have been combined with other features for the

prediction of active sites [7–9,12]. In this study, several other

network topological parameters were calculated and used to

predict catalytic residues.

We determined the extent to which catalytic and non-catalytic

residues differ in terms of their interactions with other residues. For

this purpose, we developed the novel descriptor description of network

signal communication (DNSC) for catalytic residues to reveal the effects

imposed on catalytic residues by other residues. Here, effects from

only a few key residues are taken into account, because proteins

have evolved to a relatively optimized design that is robust to

mutations and changes of the environment and extremely sensitive

to perturbations at crucial sites. Moreover, Amitai et al. [30] and del

Sol et al. [31] revealed that several central residues are vital for signal

communication in the protein structure networks assumed for

integration and transmittance of signals from and to the other

residues. Our analysis demonstrates that these few residues are

informative for the identification of catalytic residues.

To investigate the environmental influence on catalytic

residues, a multi-layer strategy based on the shortest path

concept was used to characterize the environment surrounding

catalytic residues. Several studies have revealed that catalytic

residues are usually found in an unfavorable environment.

Mutations of functional residues usually decrease enzyme activity

but often increase stability at the same time [32,33]. Thus, the

free energy difference between naturally occurring and mutated

amino acids at each position is useful for imposing constraints on

functionally and structurally important residues [34]. We found

that catalytic residues are affected by the outer layer (the second

and third layers) environment and the effects of environmental

features are steadily decreased as the layer number is increased.

Finally, a prediction model was constructed by combining these

new features with several features reported earlier. Our model

yielded satisfactory performance and was robust when imple-

mented for a comprehensive non-catalytic residue set.

Results

We used 10-fold cross-validation for the construction and testing

of the model and the dataset was split at the protein level. To avoid

an imbalance between catalytic and non-catalytic residues, the

model was trained on a dataset with a ratio of 1:1 between catalytic

and non-catalytic residues. Each residue was represented by a 130-

dimensional vector. Details of the features used for encoding a

catalytic residue are given in Materials and Methods. The LIBSVM

package was used for training the model (http://www.csie.ntu.edu.

tw/,cjlin/libsvm) and we measured the results in terms of

sensitivity (recall), specificity, accuracy, precision and area under

the curve (AUC) of the receiver operating characteristic (ROC).

Analysis of residue interactions for catalytic and non-
catalytic residues

First, we analyzed the interactions between keyAAs (central

amino acids in a protein structure network; see Materials and

Methods) and catalytic and non-catalytic residues. The five

highest-ranked keyAAs were investigated for each enzyme.

Interactions with a distance of #5 were considered, whereas

those .5 were regarded as uninformative and were not used. The

suitability of this approach was confirmed by analysis. Fig. 1

shows that catalytic residues exhibited a strong tendency to

approach keyAAs, especially with direct contact (or is the keyAA

itself) or at an interval of one residue. The rates for these two

Figure 1. Observed frequency distribution of the shortest path between keyAAs and catalytic and non-catalytic residues.
doi:10.1371/journal.pone.0016932.g001
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cases were significantly lower for non-catalytic residues, at only

,1/5 and ,1/2 of the rates for catalytic residues, respectively.

However, the opposite was true when the interaction distance

increased. It was found that the length of the shortest path

between non-catalytic residues and keyAAs was usually .2. These

results are in accord with our hypothesis that keyAAs are vital for

catalytic activity and their effect on catalytic residues decreases as

the interaction distance increases. Each keyAA was the subject of

detailed investigation (in Fig S1). Interestingly, the difference of

distribution for each keyAA was quite small suggesting that several

residues play key roles during protein folding and more than one

position participates in formation of the exquisite scaffold for

effective activity, some of which have a direct and others an

indirect effect.

The shortest path between catalytic residues was analyzed

(Fig. 2). In most cases, intimate interactions were observed

between catalytic residues. The fraction of interactions with direct

contact and those with an interval of one residue are ,57% and

,26%, respectively, which indicates collaboration between

catalytic residues for effective function. In this method, some

catalytic residues were also scored highly by closeness and were

therefore treated as keyAAs. In this sense, correlations among

catalytic residues are also, at least partially, implied by DNSC.

A detailed case study of dihydropteroate synthase (PDB:1aj0) is

presented (Fig. 3). Residues Met18, Asn115, Leu215, Ile253 and

Arg255 are distant in the sequence but spatially close and were

identified as the keyAAs in this structure. The catalytic site consists

of the catalytic residues Asn22, Arg63 and Arg255, which was

observed adjacent to keyAAs. The local interaction network for

keyAAs and catalytic residues is shown in Fig. 3b. Arg255 was

determined as a keyAA with direct interactions with other keyAAs.

Asn22 has direct contact with Arg255, whereas the length of its

shortest path to the other keyAAs is 2. Arg63 was far from the

keyAAs; however, close connections were found between this and

the two other catalytic residues.

Feature evaluation
To gauge the resolution limits of classification by our novel

features in this prediction task, each feature alone was used to

construct a prediction model for catalytic residues and compared

to other features used in earlier studies (Table 1). Models based on

these individual features were trained using the scheme described

above. DNSC achieved an average sensitivity of 69.6% and

specificity of 79.0%. Its specificity is ,6% higher than the value

for closeness. This means that, for identification of a catalytic

residue, these limited keyAAs are as informative as all the rest of the

residues in a protein together suggesting that not all residues

within a protein are equally important for structure and/or

function. The conservation score performed best, with 76.4%

sensitivity and 82.5% specificity. Catalytic residues are usually

provided by charged and polar residues. So, the AA_Identity (a 20-

dimensional vector used to denote a residue type) performed well

in identifying catalytic residues. However, it determined only

67.4% of non-catalytic residues.

In Table 1, Layer1, Layer2 and Layer3 denote environmental

features in layers 1, 2 and 3, respectively. Layer1 achieved the best

performance with 82.8% sensitivity and 80.2% specificity. The

performance of environmental features decreased steadily as the

layer number increased. The environmental features of Layer2

correctly predicted 70.3% of catalytic residues and 70.3% of non-

catalytic residues. This is in agreement with earlier reports and

highlights the different selection pressure on the spatial environ-

ment of catalytic residues to maintain an efficient scaffold. The

performance was enhanced when using features of all three layers,

with 84.0% sensitivity and 83.9% specificity, which imply the

dependence of catalytic residues on the neighboring environment.

Network topological features were found to predict .76% of

residues correctly. The AUC values for these features were

calculated and are given in Table 1. These results suggest the

feasibility of studying structure–function relationship by revealing

interactions between several residues.

Figure 2. Observed frequency distribution of the shortest path between catalytic residues.
doi:10.1371/journal.pone.0016932.g002
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Cross-Validation and Feature Selection
A prediction model was constructed for catalytic residues, by a

combination of DNSC and network topological and environmental

features with several conventional features (for a detailed

description see Materials and Methods). The average results over

the 10-fold cross-validation are given in Table 2 and the sensitivity

and specificity were 88.6% and 88.4%, respectively. The ROC

performance is shown in Fig. 4. Using our data set, our method

achieved a recall value of 66.8% at a precision of 15%.

To further analyze the impact of features on prediction

performance and choose an optimized subset, feature evaluation

was done by using the select attributes module in Weka 3.6.1 [35]

according to the square of the weight assigned by the SVM [36].

In this step, elements in the vector of DNSC and AA_Identity

features were treated individually. The merit of features is given in

Table S1. It is evident that conservation score, polar and closeness make

the greatest contributions to prediction. The environmental

features, especially those in the first and second layers, appear to

be very important for catalytic residues. Network topological

features and physiochemical properties of amino acids in the first

layer made great contributions to prediction. High scores were

observed also for AA_Identity, PSSM and weighted frequencies.

Interestingly, accessible surface area and relative accessible surface area

made limited contributions to prediction, although they were used

as the major predictors in earlier studies [30,37].

The first 34, 70 and 88 features yielding the greatest

contributions were selected to develop prediction models for

catalytic residues. A 10-fold cross-validation was done and the

average results are given in Table 2. Sensitivity and AUC were

improved when the uninformative features were eliminated and

Figure 3. The spatial structure and local contact network for dihydropteroate synthase (1aj0). (a) The local structure of the catalytic
residues (yellow) and keyAAs (red). (b) The local contact network for the catalytic residues and keyAAs. Here, Asn22, Arg63, and Arg255 are catalytic
residues, which were observed adjacent to keyAAs Met18, Asn115, Leu215, Ile253 and Arg255 and their interactions are shown.
doi:10.1371/journal.pone.0016932.g003

Table 1. Performance for each feature by 10-fold cross-
validation.

Feature set Sensitivity (%) Specificity (%) Accuracy (%) AUC

Conservation 76.4 82.5 82.5 0.829

Layer1a 82.8 80.2 80.2 0.894

Layer2b 70.3 70.3 70.3 0.778

Layer3c 68.4 69.0 69.0 0.749

Neigsd 84.0 83.9 83.9 0.907

AA_ Identity 75.8 67.4 67.5 0.753

Network
parameter

77.1 76.7 76.7 0.835

Closeness 76.7 73.2 73.2 0.826

DNSC 69.6 79.0 79.0 0.781

aEnvironmental features in the first layer.
bEnvironmental features in the second layer.
cEnvironmental features in the third layer.
dEnvironmental features of all layers.
doi:10.1371/journal.pone.0016932.t001

Table 2. Performance for each feature set by 10-fold cross-
validation.

Feature set Sensitivity (%) Specificity (%) Accuracy (%) AUC

All 88.6 88.4 88.4 0.945

88 89.5 88.7 88.7 0.951

70 91.3 88.3 88.3 0.952

34 91.1 88.8 88.8 0.954

Here, the first 34, 70 and 88 features yielding the greatest contributions were
selected to construct the prediction model for catalytic residues.
doi:10.1371/journal.pone.0016932.t002
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PLoS ONE | www.plosone.org 4 March 2011 | Volume 6 | Issue 3 | e16932



both sensitivity and specificity were increased by using the 88-

feature set,. The sensitivity value of the 70-feature set and the 34-

feature set was enhanced significantly by ,3%; however,

specificity for the 70-feature set was slightly decreased. Using the

34-feature set, the best performance was obtained with a sensitivity

value of 91.1% and a specificity value of 88.8%. In this set,

features in the second and third layer environment as well as the

element of DNSC were included. The corresponding AUC values

are 0.945, 0.951, 0.952 and 0.954. The ROC performance is

shown in Fig. 4 where the curve for the all-feature set can be seen

to be dominated by that for the 34-feature set.

Model Evaluation
Six benchmark datasets that allow direct comparison with well-

established methods were used to assess the performance of our

method (in Table 3). Models constructed by using the all-feature

set (model1) and the 34-feature set (model2) were used for

comparison. We used 10-fold cross-validation on these datasets

except for the data set from Chea et al. [37], on which 5-fold cross-

validation was used instead. For the three datasets from Youn et al.

[12], significant improvement of recall was observed for our

methods at a precision corresponding to that reported by Youn et al.

Our methods attained .10% greater recall: at a precision of 14.9,

Chea et al. obtained a recall value of 54.0%, while model1 and model2

found 67.2% and 66.4% recall, respectively. Gutteridge et al.

achieved a recall of 56.0% at a precision of 14.0% and the

performance was enhanced remarkably by using spatial clustering

with a recall of 68.0% and a precision of 16.0%. We found our

methods also performed well on their data set with .10% greater

recall at 14.0% precision. The model2 achieved a recall even

slightly higher than the refined result reported by Gutteridge et al.

Petrova et al [7] reported a high recall value of 90% at a precision of

,7%. For this dataset, the recall was 64.1% for model1 and 67.3%

for model2 at a precision of 18.0% on the basis of the cross-

validation. The satisfactory performance confirmed the robustness

of our method. Thus, it is reasonable to believe that identifying

Figure 4. The ROC curves for the all-feature set and the 34-feature set.
doi:10.1371/journal.pone.0016932.g004

Table 3. Comparison with competing methods.

Method/Data set EF familya EF superfamilyb EF foldc HA superfamilyd NNe PCf

gRecall18.5 Recall16.9 Recall17.1 Recall14.9 Recall14.0 Recall16.0 Recall7.0

All-feature 60.62 63.94 63.3 67.2 69.8 64.2 64.1

34-feature set 66.01 59.24 60.87 66.4 73.4 68.7 67.3

Competing methods 57.02 53.93 51.11 54.0 56.0 68.0 90.0

aResults on the data set from Youn et al. at the SCOP family level.
bResults on the data set from Youn et al. at the SCOP superfamily level.
cResults on the data set from Youn et al. at the SCOP fold level.
dResults on the data set from Chea et al. at the SCOP superfamily level.
eResults on the data set from Gutteridge et al.
fResults on the data set from Petrova et al. at the SCOP superfamily level.
gRecall at the corresponding precision reported in earlier studies.
doi:10.1371/journal.pone.0016932.t003
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catalytic residues by analyzing their interactions with other

residues is both feasible and promising.

Discussion

Identification of catalytic residues can help to further our

understanding of the catalytic mechanism of biological reactions.

A great deal of effort has been devoted to the development of

effective prediction models, for which good descriptors are a

prerequisite. Complex networks enable systematic analysis of

enzyme structure. On the basis of the results of the present study,

we propose a novel feature, DNSC, which is based on an enzyme

structure network. Unlike the reported closeness centrality, this feature

focuses on the communication between keyAAs, instead of all the

other residues and catalytic residues. Its satisfactory performance

suggests its promise in describing the correlation between residues.

Moreover, environmental parameters, especially those in Layer1 and

Layer2, do help to discriminate between catalytic and non-catalytic

residues. The limited contribution from Layer3 implies that more

variation might occur in residues far from the catalytic site.

Our results confirm that systematic analysis has great potential

for the analysis of protein structure. But the present study is only an

initial step in this direction. Further studies will be complicated by

virtual variations in protein structure. Residues interact mutually in

various ways, including hydrogen bonding, p2p interactions and

hydrophobic interactions. The fact that two residues can be

connected by more than one shortest path should be considered.

Earlier research revealed that catalytic residues tend to be located in

unfavorable environments which might be an important clue in

distinguishing catalytic from neighboring residues. In conclusion,

investigation of the correlations among residues and their links to

protein structure and function remains an important challenge.

Materials and Methods

Dataset
The study data set was derived from PDB according to annotations

in the Catalytic Site Atlas (CSA) database (version 2.2.10) [38]. An

enzyme entry was selected if: (i) its PDB structure resolution is better

than 2.5 Å; and (ii) it was taken from the literature. The final data set

consists of 140 enzyme structures that cover the six top-level EC

classifications and is filtered at the SCOP superfamily level. For

comparison with previous methods, six benchmark data sets were

prepared, including those from Petrova et al. [7] and Gutteridge et al.

[6], the SCOP superfamily dataset from Chea et al. [37], and three

datasets at different SCOP levels from Youn et al. [12].

Protein Structure Network
In this study, each chain was considered as a self-governed

complex system, regardless of the possible interactions between

chains. An enzyme structure was modeled as a network system in

which residues are the vertices and connections between residues

are the edges. Here, edges are defined such that two residues have

a connection if the distance between any pair of atoms, one from

each residue, is smaller than the sum of their van der Waals’ radii

plus a threshold value of 2 Å.

Feature extraction
Description of Network Signal Communication (DNSC).

The protein structure was treated as a self-governed complex

system, and the active residue was treated as a terminus of the signal

network (i.e. the protein structure network) that receives informative

signals from other residues (we call them signal sources in this

context) via direct and/or indirect contacts. We attempted to

quantify the intensity of these signals by postulating that the

intensity decreases as distance between signal sources increases. It

arises from the physiochemical intuition that a residue has stronger

impacts on its closer neighbors. The signal transduction mode was

generated for the protein structure network constructed according

to the following assumptions: (i) signal flows along the shortest path;

and (ii) the signal intensity is attenuated when passing through a

vertex. Here, we postulate that the signal is regularly dampened and

the intensity on reaching a vertex can be calculated as:

fi,j~
gs
:d{a

i,j (i=j)

gs (i~j)

�
ð1Þ

where fi,j is the signal intensity at vertex j received from vertex i

represented as a function of di,j, the shortest path length between i

and j. A power function was used to simulate signal attenuation with

the exponential of 2a (here a = 1); gs is the signal intensity at the

signal source that was assumed to be 1 in this study. To illustrate this

attenuation, the network representation of the whole structure of

glutaredoxin 1 (1qfn) is shown in Fig. 5a. The bold line depicts the five

shortest paths to Arg8 and the signal intensity along these paths is

shown in Fig. 5b.

Although most residues are coupled by a shortest path of either

long or short distance (in this context, distance refers to the length of

the shortest path), only information from residues playing a major

role in protein structure (key residues) was considered. As reported,

residues with high closeness values are considered to play a key role in

protein folding. So, we used closeness of a residue as the measure of its

structural importance. The question remains of how large a

threshold is appropriate? It is hard to establish a rigorous criterion

because of the variety of protein structures. In the present study,

residues in a protein were ranked by closeness and the top-ranked

residues were taken into account (in this context we call them

keyAAs). Five keyAAs were used for protein encoding and this yielded

satisfactory performance. A residue can therefore be described by a

vector of signal intensities. For example, the catalytic residue Lys34

in DNA ligase (1a0i) can be represented by the vector:

f149,34,f236,34,f32,34,f219,34,f35,34½ �

where residues Leu149, Trp236, Glu32, Leu219 and Tyr35 are the

top residues ranked by closeness.

Conventional Properties of Residues. Several conventional

features were used to characterize the residues, including sequence

conservation, amino acid type, polarity, hydrophobicity, volume, accessible surface

area, relative accessible surface area, secondary structure, degree, cluster coefficient,

hubscore, cocitation, coreness, constraint, betweenness and closeness. The last

eight parameters were derived from the protein structure network. A

detailed description of the features is given below.

Sequence conservation. Residues essential for protein

function are conserved during evolution. Thus, conservation

scores were calculated as one of the most important properties.

Position-specific iterated BLAST (PSI-BLAST) [39] has been

generally used in studies on proteomics. Here, it was implemented

against the 90% non-redundant protein database with an E-value

cutoff of 1E-3 and 3 iterations. The output position-specific

scoring matrix (PSSM) and weighted observed percentage were

used to characterize a catalytic residue. Furthermore, the

conservation score is defined as:

Scorei~{
X20

j~1

pi,j log2 pi,j ð2Þ

Network-Based Description for Catalytic Residues

PLoS ONE | www.plosone.org 6 March 2011 | Volume 6 | Issue 3 | e16932



where pi,j is the frequency of amino acid j at position i. A lower

value suggests lower entropy (more conserved) at a position and

vice versa.

Amino Acid Properties. As defined by Bartlett et al. [3],

catalytic residues are directly involved in catalytic reactions as

donors or acceptors or assist in reactions by exerting effects on the

catalytic mechanism or the structural stability of the enzyme.

Thus, residues occupying catalytic sites are usually polar or

charged. A feature called AA_Type encodes charged (DEKHR),

polarity (CNQSTY) and hydrophobic residues (AFGILMPVW) as

Figure 5. Description of residue interaction based on the protein structure network. (a) Network representation of Glutaredoxin 1 (1QFN).
(b) Depiction of signal attenuation model by power function. Here, vertex 8 was taken for advance and vertices 35, 39, 49, 75 and 82 were selected
with the different shortest path length to vertex 8.
doi:10.1371/journal.pone.0016932.g005

Network-Based Description for Catalytic Residues
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(0 0), (0 1) and (1 0), respectively. Physicochemical properties such

as polarity and hydrophobicity and volume are used to further

characterize catalytic residues quantitatively.
Accessible surface area and secondary structure. It is

considered that catalytic residues are usually restricted in their

correct position for enzyme function. Thus, in most cases catalytic

residues exhibit a relatively low level of solvent accessibility.

Accordingly, the accessible surface area and the relative accessible surface

area were calculated for residues using DSSP [40]. As mentioned

above, a single chain was regarded as an independent unit. Thus,

values for chains were calculated separately, with ligands excluded

for protein complexes. The secondary structure type for a residue

was also derived by DSSP.
Network parameters. Translation of a protein structure to a

network facilitates systematic analysis of the protein structure. In

the present study, the igraph (version 0.5.1) software package [41]

was used to calculate network parameters. Eight network

parameters, degree, cluster coefficient, hubscore, cocitation, coreness,

constraint, betweenness and closeness, were used to describe residues.

These parameters are described in detail by Watts and Newman

et al. [42–45]
Layered Description of the Structural Environment.

Functional residues tend to be located in unfavorable

environments and therefore do not always satisfy structural

requirements. Thus, it would be useful to introduce

environmental parameters into schemes for the identification of

catalytic residues. Moreover, as observed by Bartlett et al. [3],

residue conservation is inversely proportional to the distance from

catalytic residues. Thus, it is reasonable to believe that catalytic

residues are more affected by residues that are closer. For this

reason, we used a layered description of the structural

environment. The structural network constructed in this study

makes partition easy to implement. Based on the shortest path to

catalytic residues, the surrounding residues naturally fall into three

layers. The first layer consists of residues with a shortest path of 1;

namely, in direct contact with the catalytic residues. The second

and third layers comprise residues with shortest paths of 2 and 3,

respectively. A sketch map of this layered description is shown in

Fig. 6.

The average values for all these features were used to reflect the

physicochemical properties of surrounding residues and their

importance in maintaining protein structure. Thus, a single layer

of the environment can be represented simply by a 14-dimensional

vector. For each, a suffix of the layer number is added to each

feature name as a distinctive mark. Thus, the layered environment

was encoded by a 42-dimensional vector.

Supporting Information

Figure S1 Observed frequency distribution of the
shortest path between keyAA and catalytic and non-
catalytic residues. Distribution of (a) shortest path to the first

ranked keyAA; (b) shortest path to the second ranked keyAA; (c)

shortest path to the third ranked keyAA; (d) shortest path to the

fourth ranked keyAA; (e) shortest path to the fifth ranked keyAA.

(TIF)

Table S1 The merit score for each feature.

(DOC)
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