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Hyperbranched ethylene oligomers and polar functionalized co-oligomers

synthesized via ethylene chain walking (co) oligomerization is a very

attractive strategy. In this study, a series of dibenzhydryl iminopyridyl ligands

with benzocycloalkyl and naphthyl moieties and the corresponding Ni(II) and

Pd(II) complexes were synthesized and characterized. The Ni(II) complexes

were highly effective in ethylene oligomerization and ethylene oligomers with

hyperbranched microstructures were generated from this system. The

corresponding Pd(II) complexes showed moderate oligomerization activities

in ethylene oligomerization and hyperbranched ethylene oligomers were also

yielded from the system. More significantly, the Pd(II) complexes can also

effectively promote the co-oligomerization of ethylene with methyl acrylate

(MA) to obtain hyperbranched polar functionalized ethylene-MA co-oligomers.

The reaction temperature, catalyst ligand structure and metal type all have

significant effects on ethylene (co) oligomerization with respect to catalytic

activity, molecular weight and topology of the oligomers.
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Introduction

The ethylene chain walking (co) oligomerization is a very

attractive strategy for the direct synthesis of hyperbranched

ethylene oligomers and polar functionalized co-oligomers

(Stephenson et al., 2014; Wiedemann et al., 2014; Falivene

et al., 2018; Mecking and Schnitte, 2020). Over the years, an

impressive research effort has been conducted to rationally

design ligands that enable a better control of the ethylene

oligomerization and on the resulting oligomer microstructure

(Tomov et al., 2006; Junges et al., 2007; Mukherjee et al., 2009;

Albahily et al., 2011; Alzamly et al., 2013; Yang et al., 2014;

Hameury et al., 2015; Luo et al., 2016; Liu et al., 2017; Nifant’ev

et al., 2018; Sydora, 2019; Olivier-Bourbigou et al., 2020; Yeh

et al., 2021). In particular, a few late-transition metal catalysts

have made important advances in the preparation of branched

ethylene oligomers via the chain walking mechanism. For

example, a few N,N-iminopyrrolyl and N,O-salicylaldiminato

neutral Ni(II) catalysts with specially designed ligands

(Stephenson et al., 2014; Wiedemann et al., 2014; Falivene

et al., 2018; Mecking and Schnitte, 2020; Cruz et al., 2021)

and cationic Ni(II)- and Pd(II)-α-diimine catalysts with minor

steric hindrance (Xiang et al., 2011; Meduri et al., 2013; Guo et al.,

2019a) were used in the synthesis of hyperbranched ethylene

oligomers and hyperbranched ethylene-based polar

functionalized co-oligomers. Lately, a series of novel

iminopyridyl Ni(II) and Pd(II) catalysts have also been

developed to yield hyperbranched ethylene oligomers and

ethylene-based co-oligomers (D’Auria et al., 2017; Saki et al.,

2020; Li et al., 2021; Yan et al., 2021). Compared to the widely

used α-diimine systems, which are typically used to prepare

polyethylene or ethylene-based copolymers of high molecular

weights, these iminopyridyl catalysts possessing a unilateral steric

hindrance are known for the synthesis of low molecular weight

polyethylene (Chart 1A). (Laine et al., 1999; Meneghetti et al.,

1999; Laine et al., 2000; Bianchini et al., 2010) Many

improvements in terms of catalytic activity, thermal stability

and properties of the resulting polymer have been made via the

introduction of bulky ortho-aryl substituents, modification of the

pyridine backbone and electronic tuning (Chart 1) (Yue et al.,

2014; Huang et al., 2015; Chen et al., 2016; Dai et al., 2016; Huang

et al., 2016; Chen et al., 2018; Guo et al., 2019b; Dai and Li, 2020;

Ge et al., 2021; Li and Dai, 2021; Peng et al., 2021; Fan et al.,

2022a; Fan et al., 2022b; Yan et al., 2022a). Among all the

modified catalysts, a series of half “sandwich” iminopyridyl

Ni(II) and Pd(II) complexes bearing an 8-aryl-naphthyl

substituent (Chart 1B) and rotation-restricted iminopyridyl

Ni(II) and Pd(II) complexes with dibenzosuberyl groups

(Chart 1C) can effectively suppress chain transfer in ethylene

polymerization to yield high-molecular-weight polyethylene and

ethylene-based copolymers (Chen et al., 2016; Dai et al., 2016;

Dai and Li, 2020; Ge et al., 2021; Li and Dai, 2021; Peng et al.,

2021). In contrast, N-teraryl iminopyridyl Ni(II) and Pd(II)

catalysts with weak neighboring group interactions were prone

to simultaneous chain walking and chain transfer reactions, thus

facilitating the synthesis of hyperbranched ethylene oligomers

and ethylene-MA co-oligomers (Charts 1E,G) (Fan et al., 2022a;

Fan et al., 2022b; Yan et al., 2022a). More interestingly, the

hybridized form of the mentioned above two types (Charts 1C,E)

was also highly effective in suppressing chain transfer in ethylene

polymerization to yield high-molecular-weight polyethylene

(Chart 1F) (Ge et al., 2021).

In the present study, we designed and synthesized a series of

iminopyridyl Ni(II) and Pd(II) complexes (Chart 1H) with

benzocycloalkyl and dibenzhydryl moieties. These new

iminopyridyl complexes exhibited superior performance in

ethylene (co)oligomerization.

Results and discussion

Synthesis and characterization of
iminopyridine nickel and palladium
complexes

Unsymmetrical bulky dibenzhydryl anilines A1-A3

containing benzocycloalkyl or naphthyl moieties were

synthesized via condensation with 2 eq. of benzhydrol in

the presence of zinc chloride and hydrochloric acid

(Scheme 1). The anilines were obtained in high yields

(83–90%) with no need for chromatographic purification

and were characterized by using 1H and 13C NMR

(Supplementary Figures S1–S4) and mass spectrometries

(Supplementary Figures S15,S16). Further condensation

with 2-acetylpyridine using the template-type method

afforded the iminopyridine ligands L1-L3 (Scheme 1).

(Rosa et al., 2008; Guo et al., 2018) The ligands were also

prepared in high yields (69–83%) with no chromatography

involved and were characterized by using 1H and 13C NMR

(Supplementary Figures S5–S8) and mass spectrometries

(Supplementary Figures S17,S18). Ni(II) complexes Ni1-

Ni3 were obtained in excellent yields (88–96%) by reaction

with one equivalent of [NiBr2(DME)] (DME =

dimethoxyethane) (Scheme 1). The purity and identity of

complexes Ni1-Ni3 were examined by elemental analyses

and MALDI-TOF MS. Similarly, the corresponding Pd(II)

complexes Pd1-Pd3 were synthesized in outstanding yields

(90–92%) by exposing the ligands L1-L3 to PdClMe(COD)

(COD = 1,5-cyclooctadiene) (Scheme 1). The purity of the

obtained Pd(II) complexes was verified by 1H and 13C NMR

spectrometry (Supplementary Figures S9–S14), elemental

analyses and MALDI-TOF MS. The coordination of the

palladium precursor shifts the positions of the

characteristic peaks in the 1H and 13C NMR spectra of the

corresponding ligands. Due to the electron-absorbing nature

of the palladium metal, most of these characteristic peaks are
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shifted to lower fields. More interestingly, due to the

asymmetry of the palladium precursors, the resulting

complexes have two isomers with different ratios (cf. ESI).

Single crystals of complex Pd2 were obtained by layering its

CH2Cl2 solution with hexanes at room temperature. As shown

in Figure 1, the Pd2 complex adopts an approximate square-

CHART 1
Representative iminopyridine Ni(II) and Pd(II) catalysts (A–G), and new complexes described in the current work (H).

SCHEME 1
Synthesis of unsymmetrical dibenzhydryl iminopyridine ligands with benzocycloalkyl or naphthyl moieties and the corresponding iminopyridyl
Ni(II) and Pd(II) complexes.
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planar geometry around the palladium center and the phenyl

groups in the dibenzhydryl substituent deviate from the axial

position of the palladium center. This is responsible for the

facile chain transfer reaction observed during the

polymerization. In addition, the benzocyclohexyl group

exhibits a sterically distorted conformation to provide a

more favorable steric environment.

Ni(II) complexes catalyzed ethylene
oligomerization

Upon activation by 200 eq. of Et2AlCl, the Ni(II) complexes

demonstrated extremely high ethylene oligomerization activity

(level of 106–107 g mol−1 h−1) and yielded low molecular weight

(ca. 0.5–1.8 kg/mol) ethylene waxes with high branching

FIGURE 1
A view of the solid-statemolecular structure of Pd2 (2164023). Ellipsoids are drawn at the 30% probability level and hydrogen atoms are omitted
for clarity.

TABLE 1 Ni(II) catalysts for ethylene oligomerizationa.

Entry Precatalyst T/°C Yield/g Activityb Mn (NMR)
c Bd

1 Ni1 30 2.31 13.86 726 95

2 Ni1 50 1.53 9.18 543 105

3 Ni1 70 0.85 5.10 493 117

4 Ni2 30 1.59 9.54 1802 86

5 Ni2 50 1.58 9.48 1072 100

6 Ni2 70 1.08 6.48 792 102

7 Ni3 30 2.07 12.42 737 86

8 Ni3 50 1.46 8.76 645 99

9 Ni3 70 0.96 5.76 591 104

aConditions: 1 μmol Ni(II) complexes, 200 eq. Et2AlCl, 20 ml toluene, 1 ml CH2Cl2, 10 min polymerization time, 6 atm.
bActivity = 106 g/(mol Ni·h).
cMn (g mol−1) estimated from 1H NMR, peak intensities.
dB is the number of branches per 1000 carbons, B = 1000 × 2(ICH3)/3(ICH2+CH + ICH3), including saturated end groups.
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densities (86–117/1000°C) (Table 1). As the reaction temperature

increased, the catalytic activities of all the complexes in this

system gradually decreased (Figure 2A). This is probably due to

the decrease of ethylene solubility in toluene as the reaction

temperature increases. A faster catalyst deactivation at higher

temperatures may also play an important role. The molecular

weight of the resulting ethylene oligomers reduced (Figure 2B),

whereas the branching density elevated (Figure 2C) when the

reaction temperatures were increased for all these complexes.

Interestingly, compared to the benzocyclopentyl complex Ni1,

the benzocyclohexyl complex Ni2 produced higher molecular

weight ethylene oligomers with lower branching densities

(Figures 2B,C), which is caused by the fact that the cyclohexyl

group provides a larger steric hindrance than the cyclopentyl

group, since a larger steric hindrance in the α-diimine nickel

system helps to obtain higher molecular weight polymers (Gong

et al., 2019; Hai et al., 2021; Lu et al., 2021a; Zhao et al., 2021;

Wang et al., 2022). Moreover, compared with the rigid planar

naphthalene-based complex Ni3, the flexible stereoscopic

benzocyclohexyl complex Ni2 yielded higher molecular weight

ethylene oligomers with similar branching density (Figures

2B,C). This may also be due to the greater steric hindrance of

the cyclohexyl group over the phenyl substituent. In terms of

catalytic activity, complex Ni2 is less active than Ni1 and Ni3 at

low temperatures while the opposite trend is observed at high

temperatures (Figure 2A). This is most likely due to the greater

thermal stability of the bulkier nickel complex Ni2 at high

temperatures although it is not conducive to the coordination

and insertion of ethylene molecules. The above discussion

indicates that the introduction of a flexible stereoscopic

cyclohexyl group can improve the molecular weight and

thermal stability of the catalytic system. The microstructure of

FIGURE 2
Plots of yield (A), molecular weight (B), and branching density (C) of ethylene oligomers produced with Ni1-Ni3 relative to temperature at
30–70°C.

FIGURE 3
The 1H (A) and 13C (B) NMR spectral analyses of the hyperbranched ethylene oligomer obtained with Ni2 at 70°C. Assignments are numbered
based on ref. Cotts et al., 2000; Randall, 1989; Galland et al., 1999. Supplementary Figures S1−S4 are assigned to the chain ends. xBy delineates the
branches, where x is the carbon, beginning with 1 at the methyl end and y is the branch length. brBy denotes the methine groups for branches with
different lengths.
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a representative ethylene oligomer (Table 1, entry 6) was revealed

using 1H and 13C NMR analyses (Figure 3). The resonance

assignments for 1H NMR spectrum of the ethylene oligomer

reveal the existence of a high amount of terminal methyl groups,

a minor quantity of terminal double bonds, a major quantity of

internal double bonds and a C=C-CH2 group (Figure 3A).

Furthermore, the 13C NMR spectra reveal the existence of a

branch-on-branch structure, a double bond and the branches

with different chain lengths (ethyl, methyl, n-propyl, etc.)

(Figure 3B). The chain end groups and methyl branches were

the most common among the branches, and the presence of sec-

butyl groups indicated that the ethylene oligomer possessed

hyperbranched structures (Cotts et al., 2000).

Pd(II) complexes catalyzed ethylene (co)
oligomerization

The iminopyridine Pd(II) complexes were also used for the

ethylene oligomerization process, with activation by 2 equiv. of

sodium tetrakis (3,5-bis(trifluoromethyl)phenyl)borate

(NaBArF). All the Pd(II) complexes demonstrated moderate

catalytic activity and produced colorless oil with low density.

Notably, raising the temperature significantly increased the

catalytic activity, whereas the molecular weights of the

obtained ethylene oligomers significantly decreased. These

results indicate that a high temperature favors chain transfer

over chain propagation, and improves the rate of ethylene

insertion (Figure 4). The elevated temperatures could lead to

ethylene oligomers with significantly higher branching

densities, which was not in line with the similarly structured

α-diimine Pd(II) system, where the branching density of the

obtained polyethylene was generally independent of

temperature variations (Lu et al., 2022; Yan et al., 2022b).

This may be attributed to the markedly lower molecular

weights of the ethylene oligomers obtained at higher

temperatures, resulting in a large amount of end groups.

Interestingly, compared to the benzocyclopentyl complex

Pd1, the benzocyclohexyl complex Pd2 produced ethylene

oligomers with higher molecular weights and lower

branching densities (Figures 4B,C), similar to the

corresponding nickel system. Moreover, compared to the

rigid planar naphthalene-based complex Pd3, the flexible

stereoscopic benzocyclohexyl complex Pd2 yielded higher

molecular weight ethylene oligomers with lower branching

density. In terms of catalytic activity, complex Pd2 is less

FIGURE 4
Comparisons on yield (A), molecular weight (B), and branching density (C) of ethylene oligomers produced by Pd1-Pd3 at 30°C (bule) and
50°C (red).

TABLE 2 Pd(II) catalysts for ethylene oligomerizationa.

Entry Precatalyst T (°C) Yield (g) Activityb Mn (NMR)
c Bd

1 Pd1 30 0.60 2.00 1148 122

2 Pd1 50 3.36 11.20 271 148

3 Pd2 30 0.56 1.87 1797 102

4 Pd2 50 4.16 13.87 309 135

5 Pd3 30 0.68 2.27 1500 104

6 Pd3 50 4.07 13.57 250 149

aReaction conditions: 10 μmol Pd catalyst, 2.0 equiv. NaBArF, 4 atm Ethylene, 40 ml DCM, 3 h polymerization time.
bActivity is expressed as 104 g mol−1 h−1.
cMn (g mol−1) estimated from 1H NMR, peak intensities.
dB is the number of branches per 1000 carbons, B = 1000 × 2(ICH3)/3(ICH2+CH + ICH3), including saturated end groups.
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active than Pd1 and Pd3 at 30°C while the opposite is observed

at 50°C (Figure 4A). This is most likely due to the good thermal

stability of the bulky palladium complex Pd2 at high

temperatures, similar to the corresponding nickel system.

The above discussion indicates that the introduction of a

flexible stereoscopic cyclohexyl group can also improve the

thermal stability of the palladium system and the molecular

weight of the resulting ethylene oligomers. The microstructure

of a representative ethylene oligomer (entry 1, Table 2) were

determined by 1H and 13C NMR analyses (Figure 5). The

resonance assignments of 1H NMR spectrum of the ethylene

oligomer reveal a high amount of terminal methyl groups, a

C=C-CH2 group and an internal double bond (Figure 5A).

Furthermore, the 13C NMR spectra reveal the existence of a

branch-on-branch structure, an internal double bond, and the

branches of different chain lengths (ethyl, methyl, n-propyl,

etc.) (Figure 5B). The chain end groups and long-chain

branches were the most common among the branches, and

the presence of sec-butyl groups indicated that the ethylene

oligomer possessed hyperbranched structures (Cotts et al.,

2000).

The iminopyridyl Pd(II) catalysts have been shown to be

highly effective for copolymerizing olefins and polar

monomers, resulting in the production of polar

functionalized polyolefins with tunable molecular weights

and high incorporation ratios. (Dai and Li, 2020; Ge et al.,

2021; Li and Dai, 2021; Lu et al., 2021b; Peng et al., 2021; Fan

et al., 2022a; Fan et al., 2022b; Yan et al., 2022a). In the present

research, polar functionalized ethylene/MA co-oligomers with

low molecular weights and very high incorporation ratios (up to

23.67 mol%) were yielded using Pd1-Pd3 (Table 3). These

Pd(II) complexes demonstrated significantly lower co-

oligomerization activities (103 g mol−1 h−1) than their homo-

oligomerization activities, which might be attributed to the

FIGURE 5
The 1H (A) and 13C (B) NMR spectral analyses of a hyperbranched ethylene oligomer obtained with Pd1 at 30°C. Assignments are numbered
based on ref. Cotts et al., 2000; Randall, 1989; Galland et al., 1999. Supplementary Figures S1−S4 are assigned to the chain ends. xBy delineates the
branches, where x is the carbon, beginning with 1 at the methyl end and y is the branch length. brBy denotes the methine groups for branches with
different lengths.

TABLE 3 Co-oligomerization of methyl acrylate and ethylene with Pd(II) catalystsa.

Entry Precatalyst [MA] (mol L−1) Yield (g) Activity b X (mol%)c Mn (NMR)
d Be

1 Pd1 1 0.84 3.50 8.55 275 145

2 Pd1 2 0.21 0.88 23.67 342 159

3 Pd2 1 0.76 3.17 7.87 331 129

4 Pd2 2 0.27 1.13 16.61 363 137

5 Pd3 1 0.66 2.75 10.03 285 143

6 Pd3 2 0.23 0.96 22.55 315 157

aGeneral conditions: 20 μmol Pd catalyst, 2.0 equiv. NaBArF, 4 atm ethylene, 12 h polymerization time, 20 ml total volume of CH2Cl2 and MA, 30°C polymerization temperature.
bActivity expressed as 103 g mol−1 h−1.
cX = MA, incorporation.
dMn (g mol−1) estimated from 1H NMR, peak intensities.
eB is the number of branches per 1000 carbons. The branches ending with functional groups are included as the total branches.
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inhibiting effects of the COOMe groups. Upon doubling the

MA concentrations, the co-oligomerization activities reduced

significantly, whereas the incorporation ratios were markedly

increased. Compared to the benzocyclopentyl complex Pd1, the

benzocyclohexyl complex Pd2 generated higher molecular

weight ethylene-MA co-oligomers with lower branching

densities and lower incorporation ratios (Figures 6B,C).

Moreover, compared with the rigid planar naphthalene-

based complex Pd3, the flexible stereoscopic benzocyclohexyl

complex Pd2 yielded higher molecular weight ethylene-MA co-

oligomers with higher catalytic activities and lower

incorporation ratios (Figures 6A–C). This is most likely due

to the fact that the larger steric hindrance is not conducive to

the coordination insertion of polar monomers, which will result

in a higher catalytic activity and a higher molecular weight as

well as a lower insertion ratio. The ethylene/MA co-oligomers

produced with these Pd(II) catalysts from 2M MA solutions

contain >1 polar functionalized group in each chain. The

microstructure of a representative ethylene/MA co-oligomer

(entry 1, Table 3) was elucidated by 1H and 13C NMR analyses

(Figure 7). The assignments of the 1H NMR resonances of

ethylene/MA co-oligomer reveal a high amount of terminal

methyl groups, a C=C-CH2-group, a methoxyl group (OCH3), a

CH2CH2COOMe, a CH2COOMe and an internal double bond

(Figure 7A). Furthermore, the corresponding 13C NMR spectra

reveal the existence of different branches with different chain

lengths (ethyl, methyl, n-propyl, etc.), a branch-on-branch

structure, an ester carbonyl group, an OCH3 group and an

internal double bond (Figure 7B). The long-chain branches and

those carrying chain end ester groups accounted for the

majority of all chain branches and the hyperbranching was

also detected based on the presence of sec-butyl groups (Cotts

et al., 2000). The ester groups in the hyperbranched ethylene-

MA co-oligomers are predominately incorporated at the

FIGURE 6
Comparisons on yield (A), molecular weight (B) and incorporation ratio (C) of ethylene-MA co-oligomers generated with catalysts Pd1-Pd3 at
1 M (bule) and 2 M (red).

FIGURE 7
The 1H (A) and 13C (B) NMR spectral analyses of hyperbranched ethylene-MA co-oligomers obtained with Pd1 at 1 M MA. Assignments are
numbered based on ref. Cotts et al., 2000; Randall, 1989; Galland et al., 1999. Supplementary Figures S1−S4 are assigned to the chain ends. xBy
delineates the branches, where x is the carbon, beginning with 1 at the methyl end and y is the branch length. brBy denotes the methine groups for
branches with different lengths.
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branching end (Fan et al., 2022a; Fan et al., 2022b; Yan et al.,

2022a).

Conclusion

A series of dibenzhydryl iminopyridyl ligands with

benzocycloalkyl and naphthyl moieties and the corresponding

Ni(II) and Pd(II) complexes were synthesized in excellent yields

and characterized by NMR and mass spectrometries and

elemental analyses. All the Ni(II) and Pd(II) complexes were

employed as catalysts in ethylene oligomerization and ethylene/

MA-co-oligomerization. In the Ni(II)-catalyzed ethylene

oligomerizations, Ni1-Ni3 exhibited very high catalytic

activities (up to 13.86 × 106 g mol−1 h−1) and produced highly

branched (86-117/1000 C) ethylene oligomers with low

molecular weights (493–1802 g/mol). In the Pd(II)-catalyzed

ethylene oligomerizations, Pd1-Pd3 exhibited moderate

catalytic activities (1.87–13.87 × 104 g mol−1 h−1) and yielded

highly branched (102-149/1000 C) ethylene oligomers with

low molecular weights (250–1797 g/mol). For the ethylene-

MA co-oligomerizations, polar functionalized ethylene/MA

co-oligomers with low molecular weights and very high

incorporation ratios (up to 23.67 mol%) were produced using

complexes Pd1-Pd3. Moreover, the flexible stereoscopic

benzocyclohexyl complexes yielded the highest molecular

weight ethylene oligomers or E-MA co-oligomers among these

complexes. The reaction temperature, catalyst ligand structure

and metal type have all significant effects on the ethylene (co)

oligomerization with respect to catalytic activity, molecular

weight and oligomer topology. Notably, all the produced

ethylene oligomers and E-MA co-oligomers were

demonstrated to contain hyperbranched microstructures with

different topologies.
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