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Abstract: Promoter identification is a fundamental step in understanding bacterial gene regulation
mechanisms. However, accurate and fast classification of bacterial promoters continues to be chal-
lenging. New methods based on deep convolutional networks have been applied to identify and
classify bacterial promoters recognized by sigma (σ) factors and RNA polymerase subunits which
increase affinity to specific DNA sequences to modulate transcription and respond to nutritional or
environmental changes. This work presents a new multiclass promoter prediction model by using
convolutional neural networks (CNNs), denoted as PromoterLCNN, which classifies Escherichia
coli promoters into subclasses σ70, σ24, σ32, σ38, σ28, and σ54. We present a light, fast, and simple
two-stage multiclass CNN architecture for promoter identification and classification. Training and
testing were performed on a benchmark dataset, part of RegulonDB. Comparative performance
of PromoterLCNN against other CNN-based classifiers using four parameters (Acc, Sn, Sp, MCC)
resulted in similar or better performance than those that commonly use cascade architecture, reducing
time by approximately 30–90% for training, prediction, and hyperparameter optimization without
compromising classification quality.

Keywords: bacterial promoters; convolutional neural networks; bioinformatics; deep learning;
PromoterLCNN

1. Introduction

Bacterial promoters are DNA sequences positioned upstream of the transcription start
site (TSS), crucial for recognition by the RNA polymerase (RNAP) [1]. Promoters initiate
transcription due to their affinity to the RNAP, and therefore are essential for maintaining
cellular homeostasis. Promoter affinity is highly determined by two conserved hexamers
in positions −10 and −35 upstream of the TSS [1,2]. The promoter efficiency is also
modulated by a spacer region around 17 ± 3 bp length between the hexamers and the
adjacent nucleotide sequences (UP element, extended −10 element; (Figure 1A) with lower
conservancy in comparison to the −10 and −35 promoter elements [3,4].

The bacterial RNAP consists of six subunits—the core RNAP composed of five subunits
(α2ββ′ω), and the sigma (σ) subunit or σ factor (Figure 1B). The σ factor reversibly binds to
the core RNAP modulating the DNA-binding characteristics of the enzyme, increasing the
affinity for promoters [1]. The most abundant sigma factor is σ70 (σA), encoded by rpoD
and responsible for almost all gene expression. Different σ factors have been identified,
each one competing for the core RNAP and initiating the transcription of different genes
associated to a specific nutritional status or environmental condition [1,5]. Alternative
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sigma factors targeting different promoters have been characterized in E. coli. These
include the σH (σ32) encoded by rpoH involved in heat shock stress response, the σS (σ38)
associated to stationary phase regulation, σE (σ24) related to extracytoplasmatic functions,
σN (σ54) relevant to nitrogen metabolism, and σF (σ28) associated to flagellar synthesis and
chemotaxis [5]. Each σ factor recognizes and facilitates the binding of RNAP to different
promoters with distinct consensus sequences, which hampers the in silico identification of
promoter sequences in bacterial genomes [6].
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Figure 1. Graphic. representation of the bacterial DNA promoter and the RNA polymerase (RNAP)
holoenzyme. (A) Key elements of the bacterial DNA promoter are crucial for RNAP affinity and
binding. The coloured rounded rectangles represent key elements of the bacterial promoter. These
include the UP element, the−35 and−10 hexamers, the extended−10 element, and the discriminator
sequence. The transcriptional start site (TSS) is represented at the +1 position. (B) The RNAP
holoenzyme components and subunits. The two components of the functional RNAP complex are
illustrated in the upper part: the core RNAP enzyme, composed of the α, β, and ω subunits; and
the sigma (σ) factor, which improves the RNAP–DNA affinity for transcription. At the bottom, the
binding of the σ factor to the core enzyme completes the RNAP holoenzyme (α2ββ′ωσ).

Accurate and fast prediction of promoter sites associated with a σ factor remains a trou-
blesome issue in genomics and molecular biology, despite being highly relevant for gene
expression patterns, genetic regulatory networks, and synthetic biology studies, wherein the
synthesis of new nucleotide sequences can incorporate undesired promoter sequences [6–8].
Traditional methods carried out by low-scale methods (e.g., DNA footprinting, primer
extension, electrophoretic mobility shift assay) are slow and time-consuming. Meanwhile,
even the use of high-throughput technologies (e.g., RNA-seq, systematic genomic evolution
of ligands by exponential enrichment) [9–11] still does not compare to the explosive amount
of genomic data generated during the last decade [12,13]. In silico prediction based on
bioinformatic tools has also been explored based on sequence information, first as position
weight-matrices [14–16], and later by using machine-learning (ML) techniques. The latter
stand out as they do not require manual assembly of the characteristics or patterns to be de-
tected, are free-alignment methods that do not require comparison with known sequences
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or databases, and work on raw information [6,7,17–22]. This feature is particularly relevant
because one of the biggest problems identifying promoters is precisely their high variability.
Then, depending on the overall context, a sequence may or may not be part of a promoter,
as the so-called Pribnow box conformed by TATAAT (the −10 promoter element) is typically
associated with promoters, but their sole identification does not define them.

To date, there are still few proposals based on neural networks for promoter sequence
classification capable of making predictions with specificity and sensitivity values more
significant than 80% and even 90%. These techniques generally use data from promoters
recognized by σ70 factor [7,20]. In bacteria, they have been tested on the model strains
(E. coli str. K-12 substr. MG1655 and Bacillus subtilis subsp. subtilis str. 168) by using
already characterized promoter sequences as positive samples and delivering random
sequences of coding sequences (CDS) as the negative sample. These methods generally
take the problem as a classification problem, classifying the sequence as either a promoter
σ70 or a non-promoter σ70 [6,7,20].

In recent years, various strategies have been explored to address the problem de-
scribed, emphasizing those based on machine-learning techniques. Notably, the following
references are based on convolutional neural networks (CNN). Reference [20] proposed
CNNProm, consisting of a CNN of a one-dimensional (1D) convolution layer followed
by a max-pooling and a fully connected ReLU, with sigmoid-triggered output. Its dataset
contains bacterial, human, mouse, and plant sequences, each of 81 nucleotides for bacteria
and 251 for the rest. These were coded according to one-hot encoding: A→ (1, 0, 0, 0, 0),
T → (0, 1, 0, 0, 0), G → (0, 0, 1, 0), C → (0, 0, 0, 1). For negative examples, random coding
sequences were selected. Qian et al., proposed improvements to CNNProm [19]. They
used support vector machines to highlight the importance of element sequences of eu-
karyotic promoters (9 elements included), compressing the non-element sequences of the
promoter. The promoter sequences also used one-hot encoding. Subsequently, [7]. pro-
posed DeePromoter, adding a long short-term memory (LSTM) to the architecture. They
also stop using coding sequences as negative examples, generating them from the positive
ones and replacing random parts, increasing the method robustness against false positives.
Another novelty is incorporating dropout layers to increase robustness and prevent overfit-
ting. pcPromoter-CNN [22] presents a convolutional neural network model for promoter
prediction and classification of sigma sub-classes following a cascading architecture, per-
forming a binary classification. First, classifying promoters and non-promoters, then for
the promoters, it checks if it belongs to σ70; if not, it continues with σ24 and so on. Finally,
Ref. [18] developed IPromoter-BnCNN, capable of classifying promoters into five sigma
categories by using a series of cascading binary classifiers as well as pcPromoters-CNN. In
IPromoter-BnCNN, each binary classifier is a CNN of 4 parallel branches.

This study proposes a light two-stage promoter prediction and classification model
by using multiclass CNN. We denote this model as PromoterLCNN. The first stage was
designed to distinguish between promoters and non-promoters, and the second stage
performs the sigma classification by using a multiclass classification model. As stated by
previous works in the literature such as [22–24], we use Chou et al.’s 2011 [25] five-step
rules for a clear presentation and validation of the model. We applied the model to E. coli by
using RegulonDB v9.3 and 10.7 benchmark databases [26,27], for training and independent
testing, respectively. We validate the results by using the K-fold cross-validation technique,
examining four performance evaluation metrics to compare them with the best-performing
methods found in the literature.

This paper is structured as follows. Section 2 presents our prediction and classification
model. Section 3 presents the numerical results and a further discussion. Lastly, Section 4
states several conclusions and final remarks.
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2. Inputs and Methods

In this section, we present the PromoterLCNN model, following the five-steps rule
suggested by [25]. Figure 2 presents an overview of our PromoterLCNN model, and each
of the five steps is described in detail as follows.
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of DNA sequence
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Figure 2. Overview of the PromoterLCNN model.

2.1. Benchmark and Test Datasets

Following the path set by previous works [7,18,22], the first essential action for gen-
erating a valid statistical promoter predictor is selecting a suitable benchmark dataset for
training the model and an independent dataset for testing. We use the same disjointed
datasets as in the literature [22–24], the benchmark based on experimentally verified pro-
moter sequences and non-promoter ones extracted from coding zones. They are part of
RegulonDB version 9.3, in which each entry has 81 bp [26].

The independent test dataset comprises promoter samples only, extracted from Regu-
lonDB version 10.7, which are also experimentally verified [27].

The Training and Test Dataset sample size can be found in Table 1. The entire dataset
D is composed of two subsets—the P promoters and the P Non-promoter—as stated in
Equation (1):

D = P ∪ P. (1)

Similarly, the P promoter subset contains all sigma sub-classes. Promoter sequences
classified as σ24, σ28, σ32, σ38, σ54, and σ70 according to the affinity to each σ factor is.

Accordingly, the P promoter subset can be defined as follow in Equation (2):

P = σ24 ∪ σ28 ∪ σ32 ∪ σ38 ∪ σ54 ∪ σ70. (2)

Table 1. Training and test dataset sample sizes.

Classes Training Dataset Test Dataset

Promoter (P) 2860 256
Non-Promoter (P) 2860 0

σ70-Promoter 1694 199
σ24-Promoter 484 30
σ32-Promoter 291 13
σ38-Promoter 163 10
σ28-Promoter 134 4
σ54-Promoter 94 0

2.2. Mathematical Formulation of DNA Sequence

The DNA sequence comprises a large string mixing four nucleotides denoted as A,
C, G, and T. Similar to previous works, we use one-hot encoding to transform the DNA
sequences to a binary form [20,22]. Each nucleotide is converted to a four-element vector
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with a single element value equal to one, and all other element values are 0. All numerical
representation of nucleotides are as follows:

A→ (1, 0, 0, 0)

C → (0, 1, 0, 0)

G → (0, 0, 1, 0)

T → (0, 0, 0, 1)

2.3. Model Architecture

The prediction and classification model denoted as PromoterLCNN is composed of
two stages. The first stage recognises the DNA sequence as a promoter or not a promoter.
Next, the second stage serves as a multiclass classification layer for the acknowledged
promoters of the previous stage, identifying the sigma subclass associated with the DNA
sequence. Both stages are CNN architectures. We trained the first stage of the model by
using the promoter and non-promoter benchmark database (D), and for the second stage,
we trained the multiclass model by using all sigma promoters benchmark database (P)
displayed in Table 1.

Next, further details of each stage are explained.

2.3.1. First Stage

As previously mentioned, the first stage focuses on the binary recognition of pro-
moters and non-promoters. To face this endeavour, we design an architecture based on
convolutional neural networks, illustrated in Figure 3.

32414181

Conv1D Conv1D Batch
Normalization MaxPooling1D Dropout Flatten

Mono-mer

Dense

Dense

Promoter

Non-
Promoter

81 81 81 5248

Figure 3. First-stage multiclass CNN architecture for promoters recognition in PromoterLCNN.

This stage of the architecture consists of 2 single-dimensional convolution layers in
tandem, followed by batch normalisation, max-pooling, and dropout, preventing over-
fitting. Later, the features obtained by the model are flattened on a flatten layer. Finally, the
set passes through two fully connected dense layers for the binary classification.

2.3.2. Second Stage

Thereupon, the second stage performs a multiclass classification of promoter sub-
classes. This stage of the architecture uses the same first-stage convolutional neural network
architecture with the sole difference that the possible classification exits are six instead of
two. This stage of the architecture is displayed in Figure 4.
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5248

Dense

32414181
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Figure 4. Second-stage multiclass CNN architecture for sigma classification in PromoterLCNN.

Therefore, this stage consists of two single-dimensional convolution layers. Next,
batch normalisation, max-pooling, dropout, flatten, and finally, two fully connected dense
layers are used for the multiclass classification of sigma sub-classes.

A hyperparameter tuning is performed to select the most acceptable parameters on all
the layers in both stages’ architectures. Next, we explain this tuning process.

2.3.3. Hyperparameter Tuning

For choosing the finest parameters for the two convolutions, pooling, dropout, and the
last two dense layers, hyperparameter tuning is performed. Table 2 presents the candidate
values of hyperparameters used for the hyperparameter optimization process.

Table 2. Hyperparameter tuning parameters and their candidate values.

Hyper Parameter Candidate Values

Number of Convolution Filters 16, 32, 64, 128
Convolution Kernel Size 3, 5, 7, 9
Kernel Regularizers (L2) 1× 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2

Dropout Rate 0.15, 0.20, . . . , 0.50
Dense Layer Neurons 8, 16, . . . , 64

The hyperparameter tuning process was performed by Keras Tuner by using the
Hyperband method. This process is time-consuming; thus, some selected hyperparameters
were considered, as shown in Table 2.

In both stages, the first convolution layer uses 128 filters of kernel size 5 with 10−3 L2
kernel regularizer and 10−2 bias regularizer. The second convolutional layer uses 128 filters
of kernel size 9, with 10−3 and 10−5 for the L2 kernel regularizer and bias regularizer,
respectively. Both convolution layers use a ReLU activation function. The max-pooling
layer uses a pool size of 2 and 2 strides. Then the dropout layer drops 45% of the features
previously obtained. Finally, the two fully connected dense layers have 32 neurons using a
ReLU activation function, with L2 kernel regularizer and bias regularizer values of 10−3.

2.4. Performance Metrics

We use a straightforward strategy for measuring our model performance. We use the
same strategy used by several works in the literature [18,22]. The quality of our prediction
and classification model is defined by four metrics, Acc, Sn, Sp, and MCC, corresponding
to the accuracy, sensitivity, specificity, and Matthews correlation coefficient, respectively.
Their definitions are as follows:

Acc =
TP + TN

TP + TN + FP + FN
, (3)
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Sn =
TP

TP + FN
, (4)

Sp =
TN

TN + FP
, (5)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

in which TP, TN, FP, and FN stand for the true positives, true negatives, false positives,
and false negatives, respectively.

3. Results and Discussion

We train our model by using k-fold validation with a k value equal to 5. The perfor-
mance results are summarized in Figures 5 and 6, illustrating the results for our PromoterL-
CNN (Lc), and obtaining performances better than or similar to pcPromoter-CNN (Pc) and
iPromoter-BcNN (Bc) methods, measuring their accuracy (Acc), sensitivity (Sn), specificity
(Sp) and Matthews correlation coefficient (MCC), for the training dataset (Figure 5) and the
independent test dataset (Figure 6) mentioned in Section 2.1. We remark that these figures
are also presented as a heatmap, in which the colour intensity indicates the quality of each
value displayed here.
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Figure 6. Performance on the test dataset for PromoterLCNN (Lc), pcPromoter-CNN (Pc) and
iPromoter-BcNN (Bc), measuring accuracy (Acc), sensitivity (Sn), specificity (Sp) and Matthews
correlation coefficient (MCC).

As displayed in Figure 5, the results using the training database show that our ap-
proach (Lc) performs better than the pcPromoter-CNN (Pc) method for every metric and
every promoter. In fact, a weighted average of accuracy with respect to the number of
elements in each class gives 96.7% for Lc and 91.2% for Pc. From the sensitivity results,
our method tends to produce a few more misclassifications than iPromoter-BcNN for
this dataset, and the specificity row suggests that these corresponded to false-negative
non-promoters as the dataset is balanced. In other words, the approach is very efficient
detecting and classifying promoters, with minor contamination of non-promoters. In any
case, the sensitivity values of the PromoterLCNN drop or improve a few points concerning
iPromoter-BcNN, but it does not significantly fail like the pcPromoter-CNN does for σ38

and σ32. The MCC shows that the confusion matrix quality for most classes is very similar
for the two leading methods. A few misclassifications on the training data might indicate
that the network is generalizing correctly, as opposed to overfitting problems found in
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shallow or classical learning methods. To verify this, we must achieve similar performance
in the testing dataset.

Regarding the results over the test dataset presented in Figure 6, our approach outper-
forms the pcPromoter-CNN, as the weighted averages are 89.6% for Lc and 83.0% for Pc,
and achieves comparable (and even slightly better) results than iPromoter-BcNN in terms
of accuracy. PromoterLCNN produces similar or even fewer false negatives, as illustrated
by the specificity values of promoters (Sp). However, it is important to recall Table 1
for a tempered analysis: each promoter class has only a few examples, and there are no
non-promoters. Therefore, the most relevant statistics here are those obtained for σ70 and
σ24 (i.e., n ≥ 30). These statistics show that our approach is better at classifying promoters,
at the cost of non-detecting a few of them (false negatives) compared to iPromoter-BcNN.

Establishing the competitive performance of our approach is vital to notice the par-
simony in our proposal. We present an architecture appreciably lighter than pcPromoter-
CNN and iPromoter-BcNN. The first one uses a cascading architecture for classifying first
promoters and non-promoters, and later sigma sub-classes sequentially, with nine different
layers each [22]. The second one uses the same cascading architecture, with four parallel
layers (4 layers each branch), converging into 4 layers at the end [18]. On the contrary,
our method has only two stages with eight different layers each. This feature significantly
diminishes the computing time for training, prediction, and hyperparameter optimization
processes, taking a tenth of the time compared to iPromoter-BcNN, and 30% less than
pcPromoter-CNN.

4. Conclusions

This work presents a two-stage promoter prediction and classification model by using
a multiclass convolution neural network called PromoterLCNN. The first stage of the
architecture attempts to recognize between promoters and non-promoters, and the second
stage engages the sigma classification by using a straightforward multiclass classification
model, in contrast to standard approaches found in the literature. We use Chou et al.’s
five-step rules for our model presentation and validation process by using E. coli databases
found in RegulonDB v9.3 and v10.7 benchmark databases for training and independent
testing, respectively.

We used a K-fold cross-validation training and assessed the results with an indepen-
dent test dataset. We found out that our method outperforms one of the most competitive
methods in the literature. For the more recent state-of-the-art approaches, our proposal
has competitive results in accuracy, with better promoter-type classification. Remarkably,
PromoterLCNN has a lighter architecture than other models, leading to a shorter time
for the hyperparameter tuning, training, and prediction processes without compromising
classification quality, an attractive quality for molecular or synthetic biologists working
with nucleotide sequences on a daily basis. By using part of a genome or a newly syn-
thetized sequence as input data, PromoterLCNN might help researchers and users working
in the field of bacterial genomics, molecular biology, and bioinformatics to identify bacterial
promoters and classify them into each of the σ subclasses validated in this study.
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