
Translational and Clinical Applications
of Dental Stem Cell-Derived
Exosomes
Zizhao Mai1†, Huan Chen1†, Yu Ye2,3, Ziyu Hu4, Wenjuan Sun5, Li Cui 1,6* and Xinyuan Zhao1*

1Stomatological Hospital, Southern Medical University, Guangzhou, China, 2Institute of Stomatology, Nanjing Medical University,
Nanjing, China, 3Key Laboratory of Oral Diseases of Jiangsu Province, Stomatological Institute, Nanjing Medical University,
Nanjing, China, 4Department of Pediatrics, Nanjing Jinling Stomatology Hospital, Nanjing, China, 5Department of Stomatology,
The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 6UCLA School of Dentistry, Los Angeles, CA,
United States

Mesenchymal stem cells (MSCs) are promising seed cells in tissue repair and regeneration
due to their featured properties of self-renewal and multipotency. However, a growing
body of evidence has demonstrated that MSCs exert biological functions mainly through
secreting exosomes. Exosomes, which contain RNA, proteins, lipids, and metabolites, are
new players in regulating many fundamental processes and play important roles in
regenerative medicine. Exosomes not only mimic the effects of their parent cells but
also possess many advantages such as high drug loading capacity, low immunogenicity,
excellent biocompatibility, and low side effects. Currently, a total of 6 different dental stem
cells (DSCs) including dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous
teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor cells
(DFPCs), stem cells from apical papilla (SCAPs) and gingival mesenchymal stem cells
(GMSCs) have been isolated and identified. DSC-derived exosomes (DSC-Exos) are
actively involved in intercellular communication, anti-inflammation, osteogenesis,
angiogenesis, immunomodulation, nurturing neurons, and promoting tumor cell
apoptosis. In this review, we will critically review the emerging role and clinical
application potential of DSC-Exos.
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INTRODUCTION

Mesenchymal stem cells (MSCs) are multipotent progenitor cells that can be isolated from different
tissues including but not limited to, bone marrow (Friedenstein et al., 1966), adipose tissue (Gruber
et al., 2010), placenta (In ’t Anker et al., 2004), umbilical cord (Secco et al., 2008), hair follicle (Bajpai,
Mistriotis, and Andreadis 2012), palatine tonsil (Ryu et al., 2012), amniotic fluid (In ’t Anker et al.,
2003), fetal blood and liver (Campagnoli et al., 2001). Accumulative evidence has demonstrated that
MSCs are capable of self-renewal, multipotent differentiation (Minguell et al., 2001; Munmun and
Witt-Enderby 2021), regulating immune and inflammatory responses (Uccelli et al., 2008), and
suppressing apoptosis and oxidative stress (Tsubokawa et al., 2010). More importantly, numerous
pre-clinical studies have shown that MSCs hold promise in treating a wide range of diseases,
including cancer, liver disease, cartilage repair, heart failure, stroke, neurological disorders, diabetes
mellitus, autoimmune diseases, Duchenne muscular dystrophy, ocular surface diseases (Lodi et al.,
2011; Lu et al., 2021). Over the past 10 years, more than 1000 MSC-based clinical trials have been
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conducted with recruitment of approximately 50,000 patients due
to the safety of autogenous stem cells (Pittenger et al., 2019).
Interestingly, accumulative evidence has suggested that the
therapeutic effects of transplanted MSCs largely depend on the
secretome of MSCs rather than the MSCs themselves (Phinney
and Pittenger 2017).

Distinct from other types of cell therapy, MSC-based therapy
achieves the therapeutic effects not only through direct cell-cell
contacts but also by releasing secretome-derived bioactive factors
(Levy et al., 2020). Recently, the MSC secreted extracellular
vesicles (MSC-EVs), which include exosomes, microvesicles,
and apoptotic bodies, have been suggested as a viable cell-free
therapeutic alternative for MSCs (Jarrige et al., 2021). Compared
to the cellular therapies, the MSC-EVs-based therapy offer many
advantages such as high drug loading capacity, high specificity,
low immunogenicity, excellent biocompatibility, high stability,
lack of cytotoxicity, competitive price, and efficient intercellular
communication. Therefore, MSC-EVs-based therapy, especially
using exosomes, has emerged as a promising therapeutic tool for
tissue repair and regeneration. In this review, we critically focus
on the potential value of exosomes derived from dental stem cells
(DSC-Exos) for treating oral and systemic diseases.

FEATURED PROPERTIES OF DENTAL
STEM CELLS AND EXOSOMES

Dental Stem Cells (DSCs)
Currently, a total of six different dental stem cells (DSCs)
including dental pulp stem cells (DPSCs), stem cells from
exfoliated deciduous teeth (SHEDs), periodontal ligament stem
cells (PDLSCs), dental follicle progenitor cells (DFPCs), stem cells
from apical papilla (SCAPs) and gingival mesenchymal stem cells

(GMSCs) have been isolated and identified (Zhang et al., 2009;
Sedgley and Botero 2012) (Figure 1A).

DPSCs, the first characterized DSCs, were isolated from the
human dental pulp in 2000 (Gronthos et al., 2000). The MSC-like
properties of DPSCs enable them to differentiate into multiple
cell lineages such as neural-like cells, osteoblasts, adipocytes, and
chondrocytes, and form mineralized tissue, blood vessels, and
nerve tissues in vivo (Gronthos et al., 2000; Gronthos et al., 2002;
Victor and Reiter 2017). Besides, DPSCs have also been
demonstrated to regenerate dentin and functional dental pulp
with vasculature and nerves (Iohara et al., 2014).

SHEDs, obtained from human exfoliated deciduous teeth by
Miura et al. (2003), is a population of highly proliferative cells
capable of differentiating into odontoblasts and endothelial cells
(Miura et al., 2003). After being injected into human root canals,
the transplanted SHEDs could differentiate into functional
odontoblasts and form dentin-like tissues (Rosa et al., 2013).
Interestingly, SHEDs remained viable following transplantation
into the mouse brain and expressed neural markers (Miura et al.,
2003).

Similarly, PDLSCs are named according to their tissue of
origin, and isolated from the periodontal ligament which is a
soft connective tissue between the teeth and alveolar bone.
PDLSCs are promising seed cells for the restoration of
periodontal tissues and are capable of differentiating into
adipocytes, chondrocytes, osteoblasts, cardiac myocytes and
neural cells (Gay et al., 2007; Tomokiyo et al., 2019). PDLSCs
interact tightly with the periodontitis niche in a positive feedback
loop. The injured PDLSCs may aggravate the disrupted
periodontal tissue homeostasis, while bacterial infections and
subsequent host immune responses affect the functional
properties of resident PDLSCs by shaping the periodontal
microenvironment (Zhang Y. et al., 2021).

FIGURE 1 | (A) Stem cell populations derived from different dental tissues. DPSCs, stem cells from dental pulp; SHEDs, stem cells from human exfoliated
deciduous teeth; PDLSCs, stem cells from PDL; DFSCs, stem cells from dental follicle; SCAPs, stem cells from the apical papilla; GMSCs, stem cells from gingival
tissues. (B) The potential clinical application of DSC-Exos. DSC-Exos hold great promise for dental tissue regeneration, neuroregeneration, angiogenesis, bone
regeneration, anti-inflammation and immunomodulation.
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DFPCs were first isolated from the dental follicle surrounding
the impacted third molar tooth germ and identified byMorsczeck
et al. (2005). DFPCs not only have better immunomodulatory
and anti-apoptotic effects on the immune system than DPSCs
and SHED, but also exhibit greater osteogenic properties than
SHED and DPSCs as the osteogenic-related markers such as
Runx2 and DSPP are highly expressed in DFPCs (Zhu et al.,
2018). In addition, DFPCs were able to differentiate into
cementoblasts in vivo (Handa et al., 2002). Therefore, DFSCs
are a promising alternative source for dental hard tissue
regeneration.

SCAPs are isolated from the apical papilla of immature
permanent teeth, and play a critical role in tooth root
development and dentin regeneration (Sonoyama et al., 2008).
The high telomerase activity of SCAPsmakes them a better choice
of dentin regeneration compared to DPSCs (Sonoyama et al.,
2006). In addition, SCAPs are able to form cementum/PDL-like
complex in vivo (Han et al., 2010). Moreover, SCAPs have been
shown to be low immunogenicity and possess
immunomodulatory functions, which make them an attractive
and promising therapeutic tool for tissue regeneration (Ding
et al., 2010).

GMSCs were first isolated from healthy gingival tissues and
characterized by Zhang et al., in 2009 (Zhang et al., 2009). GMSCs
can differentiate into adipocytes, chondrocytes, and endothelial
cells, and have shown great promise for nerve regeneration.
Besides, GMSCs exerted anti-proliferative and pro-apoptotic
effects on oral cancer cells both in vitro and in vivo (Ji et al., 2016).

To the best of our knowledge, it is still extremely difficult to
distinguish various sources of DSCs on a molecular level. All
different types of DSCs are derived from migrating neural crest
cells, which are originated from the embryonic ectoderm germ
layer (Pisciotta et al., 2020). The fibroblast-like DSCs share
similar surface marker expression profiles, and have high
clonogenic potential and multipotent differentiation capacity.
A recent study suggested that calreticulin might be a
promising biomarker for distinguishing DPSCs and GMSCs.
We have summarized the similarity, advantages, and
weaknesses of each type of DSCs in Table 1.

Exosomes
Exosomes, with a size range of 40–160 nm (average 100 nm), are
originated from the endosomal system by inward budding of the
endosomal membrane (Xu F. et al., 2020; Yoon et al., 2020).
Ultracentrifugation, size-based isolation techniques,
immunoaffinity capture-based techniques, exosome
precipitation, and microfluidic-based isolation techniques are
utilized to isolate exosomes (Doyle and Wang 2019). They are
found in abundance in body fluids including breast milk, saliva,
blood, and urine (Vlassov et al., 2012). This type of extracellular
vesicles was initially thought of as waste products (Wolf 1967).
However, accumulative evidence has demonstrated that
exosomes carry many bioactive molecules including nucleic
acids, proteins, lipids, metabolites (Zhang Y. et al., 2020;
Kalluri and LeBleu 2020). These encapsulated materials are
transported to neighboring or distant cells selectively, which
contribute to cell-cell communication, signal transduction,
immune response modulation, antigen presentation, and
epigenetic reprogramming of recipient cells (Janockova et al.,
2021). The biological functions of exosomes are heavily
dependent on physiological/pathological conditions of
originating tissues or cells at the time of exosome secretion,
and the surface receptors of the recipient cells (Alcayaga-
Miranda et al., 2016). As shown in Figure 1B, the DSC-
derived exosomes might represent an ideal therapeutic tool for
tissue repair and regeneration as well as treating other systemic
diseases.

TRANSLATIONAL AND CLINICAL
APPLICATIONS OF DENTAL STEM
CELL-DERIVED EXOSOMES
DPSC-Exos
The high osteo/odonto-induction capability and easy
availability of DPSCs-derived exosomes (DPSC-Exos) make
them highly attractive in regenerative medicine (Imanishi
et al., 2021). In addition, aged DPSCs still have active
cellular metabolism and secrete functional exosomes which

TABLE 1 | The common and different properties for each type of DSCs.

Cell
type

Advantage Weakness Similarity

DPSCs Formation of dentin–pulp-like complex,
Source for reparative dentin

Essential to be extracted from healthy adult teeth,
differential growth rates, cell morphologies, and sizes

Fibroblast-like morphology

SHEDs Formation of dentin-like tissue or pulp-like
tissue, The most proliferative DSCs

Unable to form dentin-pulp-like complex Common markers: CD13+, CD29+, CD73+, CD90+,
CD105+, CD106+, CD146+, Stro-1+, CD34−, CD45−,
CD11b-, CD14−, CD19−, CD79a-, and HLA-DR-High
clonogenic potential

PDLSCs Formation of PDL-cementum-like
construction

Lack odontogenic potential Multilineage differentiation capacity

DFPCs Formation of alveolar bone, Formation of
PDL-cementum-like construction

Lack odontogenic potential

SCAPs Maintenance of root maturation,
Formation of dentin-pulp-like complex

Not easily obtainable

GMSCs Easy to isolate, Long-term stability Lack odontogenic potential
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can penetrate the blood-brain barrier, indicating DPSC-Exos
might be an effective drug carrier for the treatment of various
diseases, especially for neurological disorders like Parkinson’s
disease (PD) (Haney et al., 2015; Iezzi et al., 2019). For
instance, DPSC-Exos were deemed as a suitable carrier to
deliver tumor suppressor miR-34a to inhibit the
proliferation of breast cancer cells (Vakhshiteh et al., 2021).
In terms of odontogenic differentiation, Huang et al. revealed
that DPSC-Exos attached to biomaterials by binding to matrix
proteins like fibronectin and type I collagen (Huang et al.,
2016). Besides, DPSC-Exos, especially those isolated from
DPSCs cultured under an odontogenic differentiation
environment, increased the expression of genes
indispensable for odontogenic differentiation of naïve
DPSCs in vitro and promoted the regeneration of dental
pulp-like tissues in vivo (Huang et al., 2016; Swanson et al.,
2020). Similarly, compared to exosomes isolated from DPSCs
cultured undergrowth state, DPSC-Exos obtained under
odontogenic conditions exhibited better performance for
trigging odontogenic differentiation of DPSCs by activating
the TGF-β1/smads signaling pathway (Huang et al., 2016; Hu
et al., 2019). Exosomes derived from both mineralizing DPSCs
and an immortalized murine odontoblast cell line (MDPC-23)
were superior to traditional glass-ionomer cement for forming
the reparative dentin bridge (Swanson et al., 2020). It seems
that lipopolysaccharide (LPS) treatment can significantly alter
the biological functions of DPSCs-Exos. Li et al. demonstrated
that LPS-preconditioned DPSC derived exosomes (LPS-
DPSC-Exos) promoted the proliferation, migration, and
odontogenic differentiation of Schwann cells (Li et al.,
2021). Similarly, LPS-DPSC-Exos were shown to promote
angiogenesis by facilitating the proliferation, migration, and
tube formation abilities of human umbilical vein endothelial
cells (HUVECs) in vitro through changing the microRNA
(miRNA) expression profile and increasing the levels of
kinase-insert domain-containing receptor and vascular
endothelial growth factor (Huang et al., 2021). DPSC-Exos
also exhibits strong anti-inflammatory and
immunomodulatory effects. For instance, DPSC-Exos
facilitated alveolar bone reconstruction and periodontal
epithelium healing in a mouse model of periodontitis via
delivering exosomal miR-1246 (Shen et al., 2020). DPSC-
Exos exerted immunomodulatory effects by suppressing the
differentiation of CD4+T cells into T helper 17 cells (Th17)
and facilitated the transformation of CD4+T cells into
regulatory T cells (Tregs), leading to the increased level of
anti-inflammatory cytokines (Ji et al., 2019). In addition to oral
diseases, DPSC-Exos based therapy is promising for treating
systemic diseases. For example, exosomes derived from DPSC
might be more suitable in the treatment of neurodegenerative
diseases than MSCs from mesodermal tissues such as bone
marrow or adipose tissues (Wang et al., 2019). Exosomes
secreted from miR-140-5p overexpressing DPSCs promoted
the expression of genes related to chondrogenic differentiation
and exerted anti-apoptotic effects both in vitro and in vivo,
which represented a potentially novel therapeutic strategy for
osteoarthritis (Lin et al., 2021).

SHED-Exos
The applications of SHED-derived exosomes (SHED-Exos) can
be classified into the following three categories: promotion of
osteogenesis, neurotrophic property and anti-inflammatory
function. In terms of osteogenesis, SHED-Exos promoted
osteogenic differentiation of PDLSCs by upregulating key
genes and signaling pathways related to osteogenesis (Wang A.
et al., 2020). Similarly, SHED-Exos was shown to have the
potency for mobilizing naïve BMMSCs, resulting in enhancing
bone regeneration (Luo et al., 2021). Wei et al. revealed that
SHED-Exo promoted osteogenesis and suppressed adipogenesis
of bone marrow mesenchymal stem cells (BMMSCs) by
decreasing lipid droplets and the expression of the adipogenic
marker PPARγ (Wei et al., 2020). SHED-Exos promoted
neovascularization of HUVECs and osteogenic differentiation
of BMMSCs, and this regulatory effect could be counteracted by
adding AMPK inhibitor, indicating that the AMPK signaling
pathway might involve in mediating the pro-angiogenic effects
and pro-bone regeneration activities of SHED-Exos (Wu et al.,
2019). Concerning neurotrophic property, exosomes isolated
from SHEDs grown on the laminin-coated three-dimensional
alginate micro-carriers protected dopaminergic neurons from 6-
hydroxy-dopamine induced apoptosis, whereas exosomes from
SHEDs grown under standard culture conditions had no such
effects (Jarmalaviciute et al., 2015). Li et al. injected SHED-Exos
into the traumatic brain injury (TBI) rat model and observed that
SHED-Exos contributed to rat motor functional restoration and
cortical lesion reduction by shifting microglia polarization (Li
et al., 2017). Narbute et al. showed that SHED-Exos significantly
improved the gait impairments and contralateral rotations in the
unilateral 6-hydroxydopamine (6-OHDA) rat model of PD
(Narbute et al., 2019). Collectively, SHED-Exos are promising
therapeutic tools for neurological disorders like PD. In terms of
anti-inflammatory effect, SHED-Exos significantly suppressed
the carrageenan-induced acute inflammation in vivo (Pivoraite
et al., 2015). Similarly, Luo et al. showed that SHED-Exos
markedly reduced the inflammation in chondrocytes derived
from the temporomandibular joint through delivering miR-
100-5p (Luo et al., 2019).

PDLSC-Exos
The major regulatory functions of PDLSCs-derived exosomes
(PDLSC-Exos) include angiogenesis, anti-inflammation, and
osteogenesis. Inflammation led to increasing exosome secretion
in PDLSCs, and exosomes derived from inflamed PDLSC
promoted angiogenesis of HUVECs by upregulating the
expression of vascular specific marker CD31 and VEGFA
(Zhang Z. et al., 2020). The exosomes isolated from PDLSCs
that were exposed to the LPS-induced periodontitis environment
demonstrated good anti-inflammatory ability by modulating the
balance of T helper cell 17 (Th17)/regulatory T cell (Treg)
through the miR-155-5p/SIRT1 pathway (Zheng et al., 2019).
In terms of osteogenesis, PDLSC-Exos possess the capacity for
inducing osteogenic differentiation of BMMSCs via regulating
AMPK signaling, MAPK signaling, and insulin signaling
pathways (Liu et al., 2020). P2X7R overexpressing PDLSCs-
derived conditional medium and exosomes markedly
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improved the osteogenic capacity of PDLSCs in the inflammatory
microenvironment by delivering miR-3679-5p, miR-6515-5p,
and miR-6747-5p (Xu X. Y. et al., 2020). Interestingly, the
circRNA and lncRNA expression profile was significantly
altered in PDLSCs-exos during the osteogenic differentiation
of PDLSCs, indicating that the exosomal non-coding RNAs
might play a critical role in regulating PDLSCs osteogenesis
(Xie et al., 2021). Collectively, PDLSC-Exos is beneficial to the
maintenance of periodontal homeostasis by promoting
proliferation, angiogenesis, and osteogenesis as well as
regulating the inflammatory responses.

SCAP-Exos
SCAP-derived exosomes (SCAP-Exos) also show great potential
for oral tissue regeneration. Zhuang et al. demonstrated that
SCAP-Exos promoted the dentinogenesis of BMMSCs both
in vitro and in vivo, indicating that SCAP-Exos might
represent a potential therapeutic tool for dentine-pulp complex
regeneration (Zhuang et al., 2020). Through injecting into the
palatal gingival complex critical-size defects (CSD) of mice,
SCAP-Exos significantly improved angiogenesis and soft tissue
regeneration (Liu et al., 2021). In terms of mechanism, SCAP-
Exos promoted filopodium formation, migration, and
cytoskeletal reorganization of endothelial cells via delivering

exosomal Cdc42. Wang et al. compared the piRNA expression
profiles between SCAP-Exos and BMMSC-Exos (Wang M. et al.,
2020). The differentially expressed piRNAs were found to be
closely associated with many important biological functions such
as catalytic activity, metabolic processes, cellular processes,
binding, and biological regulation, suggesting that piRNAs
might play a crucial role in regulating the molecular activities
of exosomes.

GMSC-Exos
Although currently few studies are available regarding the
potential therapeutic applications of GMSC-Exos, they hold a
great promise for tissue regeneration. The pre-osteoblasts
MC3T3-E1 treated with GMSC-Exos were found deep Alizarin
red staining, increased ALP activity, and upregulated expression
of osteogenic genes, suggesting that GMSC-Exos facilitated the
osteogenic differentiation of MC3T3-E1 (Jiang and Xu 2020). The
exosomes isolated from tumor necrosis factor-alpha (TNF-α)
preconditioned GMSC-Exos induced the polarization of anti-
inflammatory M2 macrophage by improving the secretion of
GMSC-Exos and increased the exosomal expression of CD73
(Nakao et al., 2021). In a high-lipid microenvironment, GMSC-
Exos suppressed lipid accumulation, transformed pro-
inflammatory macrophages into anti-inflammatory phenotype,

TABLE 2 | The potential clinical application of DSC-Exos.

Origin Administration Recipients Application Refs The potentially
most suitable
application of

specific DSC-Exos

DPSCs In vitro Breast cancer cells Cancer Vakhshiteh et al. (2021) Pulp and dentin regeneration
— In vitro CD4+ T cells Immunomodulation Ji et al. (2019)
— In vitro Schwann cells Pulp regeneration Li et al. (2021)
— In vitro HUVECs Angiogenesis Huang et al. (2021)
— In vivo Athymic nude mice Pulp regeneration Huang et al. (2016)
— In vivo Rat pulpotomy model Dentin regeneration Swanson et al. (2020)
— In vivo Periodontitis model Periodontitis Shen et al. (2020)
— In vivo Osteoarthritis model Osteoarthritis Lin et al. (2021)
SHEDs In vitro PDLSCs Osteogenic differentiation Wang et al. (2020b) Parkinson’s disease
— In vitro BMMSCs Migration promotion Luo et al. (2021) Neuroregeneration
— In vitro Neurons Parkinson’s disease Jarmalaviciute et al. (2015)
— In vitro Chondrocytes Osteoarthritis Luo et al. (2019)
— In vivo Periodontal defect Bone regeneration Wu et al. (2019)
— In vivo BMMSCS Bone regeneration Wei et al. (2020)
— In vivo Traumatic brain injury model Traumatic brain injury Li et al. (2017)
— In vivo Parkinson’s disease model Parkinson’s disease Narbute et al. (2019)
— In vivo Mouse paw edema Anti-inflammation Pivoraite et al. (2015)
PDLSCs In vitro CD4+ T cells Immunomodulation Zheng et al. (2019) Periodontitis induced bone loss
— In vitro BMMSCs Osteogenic differentiation Liu et al. (2020)
— In vitro PDLSCs Osteogenic differentiation Xu et al. (2020b)
— In vitro HUVECs Angiogenesis Zhang et al. (2020a)
SCAPs In vivo Immunodeficient mice Dentinogenesis Zhuang et al. (2020) Not enough evidences for evaluation
— In vivo Critical-size defects Soft tissue regeneration Liu et al. (2021)
GMSCs In vitro Pre-osteoblast Osteogenic differentiation Jiang and Xu (2020) Taste bud regeneration and would healing
— In vitro Macrophages Anti-inflammation Zhang et al. (2021b)
— In vivo Schwann and DRG cells Nerve repair Rao et al. (2019)
— In vivo Skin defect model Would healing Shi et al. (2017)
— In vivo Periodontitis model Bone regeneration Nakao et al. (2021)
— In vivo Tongue defect model Taste bud regeneration Zhang et al. (2019)
DFPCs NA NA Not evaluated yet NA NA
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and decrease the secretion and expression of inflammatory
factors including IL-6, IL-1β, TNF-α, and cluster of
differentiation 86 (Zhang Z. et al., 2021). Besides, GMSC-Exos
presented anti-osteoclastogenic activity and suppressed
inflammatory bone loss by delivering miR-1260b (Nakao et al.,
2021). Rao et al. combined GMSC-Exos with biodegradable chitin
conduits and injected the composite into the rat sciatic nerve
defect model. The results showed that GMSC-Exos enhanced the
proliferation of Schwann cells and the growth of the dorsal root
ganglion neuron axon as well as promoting the formation of
nerve fibers and myelin, which subsequently contributed to
restoring motor skills, nerve conduction function, and muscle
movement (Rao et al., 2019). GMSC-Exos also promoted healing
of diabetic skin defects by facilitating re-epithelialization, collagen
remodeling, angiogenesis, and nerve growth in a diabetic rat skin
defect model (Shi et al., 2017). Combining GMSC-Exos with
small intestinal submucosa-extracellular matrix promoted taste
bud regeneration and tongue lingual papillae recovery in a rat
tongue defect model (Zhang et al., 2019). We have summarized
the currently available evidence regarding the potential clinical
application of DSC-Exos (Table 2).

FUTURE PERSPECTIVES AND
CHALLENGES

DSC-Exos hold great promise in tissue repair and regeneration as
well as treating other diseases. However, to the best of our
knowledge, there is still not enough evidence for evaluating
and comparing the molecular differences, biological functions,
and therapeutic applications among different types of DSC-Exos
as well as between DSC-Exos and otherMSCs-Exos. Compared to
exosomes derived from other MSCs, DSC-Exos might possess
their own advantages. For instance, DPSC-Exos have stronger
immunomodulatory, anti-necrotic, and anti-apoptotic effects
than BMMSC-Exos (Venugopal et al., 2018; Ji et al., 2019).
The currently available evidence demonstrates that DSC-Exos
might share similar limitations and weaknesses. Compared to the
exosomes from BMMSCs and adipose tissue-derived MSCs, the
isolation of a sufficient amount of DSCs-Exos is still an obstacle
for hindering their therapeutic applications (Stanko et al., 2018).
More importantly, compared to autologous BMMSC from bone
marrow aspirate, DSCs are mainly collected from non-renewable
exfoliated deciduous teeth, third molars, and teeth extracted by
orthodontic treatment and irreversible periodontitis, or discarded

tissues after dental surgery. Therefore, it is challenging to obtain
DSC-Exos in time when they are needed. Only under the
condition that the unnecessary tissues like exfoliated deciduous
teeth and third molar were stored previously by a stable and long-
term approach, the applications of DSC-Exos might be
popularized on a large scale. In addition, there are a lack of
standardized and accepted approaches for storage, transport and
large-scale production of DSCs-Exos, which has significantly
affected their clinical applications. Mover, determining the
most appropriate dose of exosomes under different
pathological conditions, avoiding the off-target effects, and
ensuring sufficient biological safety of DSC-Exos need to be
urgently addressed in the coming pre-clinical studies and/or
clinical trials.

CONCLUSIONS

DSCs mainly exert their therapeutic effects by the secretion of
exosomes via a paracrine mechanism. Compared to DSCs, DSC-
Exos possess unique advantages such as high drug loading
capacity, high specificity, low immunogenicity, excellent
biocompatibility, easily obtainable, low side effects, and
nanoscale size. In addition, DSC-Exos have been shown to
regulate many important biological processes including
intercellular communication, anti-inflammation, osteogenesis,
angiogenesis, immunomodulation, nurturing neurons, and
promoting tumor cell apoptosis. Although there are still many
barriers to translation into clinical practice, DSC-Exos is
emerging as a promising and practical therapeutic approach
for tissue repair and regeneration.
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