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Abstract. Cervical cancer is the fourth most prevalent malig-
nancy in females worldwide. Early diagnosis is key to improving 
survival rates. Molecular biomarkers are an important method 
for diagnosing a number of types of cancer, including cervical 
cancer. The present study utilized public data from three mRNA 
microarray datasets and one microRNA dataset to analyze 
the key genes involved in cervical cancer. The mRNA and 
microRNA expression profile datasets (GSE9750, GSE46857, 
GSE67522 and GSE30656) were downloaded from the Gene 
Expression Omnibus database (GEO). Differentially expressed 
genes (DEGs) and microRNAs (DEMs) were screened 
using the online tool GEO2R. By using the DEGs consistent 
across the three mRNA datasets, a functional and pathway 
enrichment analysis was performed using the Database 
for Annotation, Visualization and Integrated Discovery. A 
protein‑protein interaction (PPI) network was constructed 
and module analysis performed using the Search Tool for 
the Retrieval of Interacting Genes. Validated target genes of 
the DEMs were identified using the miRecords website. Using 
the identified target genes of the DEMs, a survival analysis 
was performed using the OncoLnc online tool. A total of 
73 DEGs and 19 DEMs were screened from the microarray 
expression profile datasets. ‘Integrin‑mediated’, ‘proteolysis’ 
and ‘phosphoinositide 3 kinase‑protein kinase 3’ signaling 
pathways were the most enriched in the DEGs. Three of the 
DEGs, including Ras homolog family member B (RhoB), 
stathmin 1 (STMN1) and cyclin D1 (CCNB1) were validated 
DEM target genes. The OncoLnc survival analysis identified 
that RhoB was associated with a significantly longer overall 
survival, whereas STMN1 was associated with a significantly 

reduced overall survival time in patients with cervical cancer. 
Finally, data from The Cancer Genome Atlas revealed an 
association between the mRNA expression levels of RhoB 
and STMN1, and the overall survival time for patients with 
cervical cancer. In conclusion, RhoB and STMN1 were identi-
fied as key genes that may provide potential targets for cervical 
cancer diagnosis and treatment.

Introduction

Cervical cancer is the fourth most prevalent type of malignancy 
in females worldwide (1). It is responsible for an estimated 
520,000 new diagnoses and 270,000 mortalities annually (2). 
In China, it ranks as the eighth most frequent type of cancer in 
females, and the second most frequent cancer in females aged 
between 15 and 44. A previous study reported that 43% of 
diagnosed patients are <45, and 20‑28% are <40 years old (3). 
In recent years, there has been a decrease in the incidence and 
mortality rates for cervical cancer in developed countries, 
which has been attributed to the effectiveness of screening 
tests. However, the incidence rate remains high in developing 
countries, accounting for 85% of all cases (4). Surgery is the 
curative treatment for cervical cancer. The earlier in disease 
progression a diagnosis is achieved, the better the prognosis 
and overall patient survival time are likely to be.

Sophisticated online tools combined with high-throughput 
analysis and general data availability enable the scientific 
community to uncover novel information regarding genes 
associated with cancer development at an unprecedented 
rate (5). Molecular biomarkers are associated with the 
detection/diagnosis of the disease, whereas prognostic 
biomarkers offer information about its course and the likeli-
hood of recurrence (6). Predictive biomarkers estimate the 
response to treatment. The presence, absence or change in 
specific cell biomarkers may indicate the development of 
cancer. Ultimately, the identification and detection of these 
cancer‑specific biomarkers may be of use in the early diagnosis 
and monitoring of the disease (7‑9).

Microarrays, including DNA, microRNA, protein and 
antibody microarrays, are multiplex labs-on-a-chip. They 
can be used to assay significant amounts of biological mate-
rial using high-throughput screening. This screening uses 

Identification of potential biomarkers in cervical 
cancer with combined public mRNA and miRNA 

expression microarray data analysis
SIZHE WANG  and  XIAOJIN CHEN

Department of Women Health Care, Beijing Chaoyang District Maternal and Child Health Care Hospital, 
Beijing 100000, P.R. China

Received September 25, 2017;  Accepted July 23, 2018

DOI:  10.3892/ol.2018.9323

Correspondence to: Dr Xiaojin Chen, Department of Women 
Health Care, Beijing Chaoyang District Maternal and Child Health 
Care Hospital, 25 East Third Ring Road of Beijing, Beijing 100000, 
P.R. China
E-mail: cyxxk2012@126.com

Key words: cervical cancer, biomarker, microarray, survival 
analysis



WANG  and  CHEN:  IDENTIFICATION OF CERVICAL CANCER BIOMARKERS BY DATA MINING ANALYSIS 5201

miniaturized and multiplexed parallel processing and detec-
tion methods. It is popular technology in recent years (10,11) 
and is commonly used to obtain data regarding genetic 
alterations during tumorigenesis (12,13). This data may be 
critical in the identification of biomarkers. In the present 
study, data from three mRNA microarray datasets and a 
microRNA dataset were used to analyze the differentially 
expressed genes (DEGs) and microRNAs (DEMs) in cervical 
cancer compared with normal cervical tissue. Bioinformatics 
methods, including function and pathway enrichment 
analysis using Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO), and survival analysis 
using the OncoLnc tool, were used to identify the key genes 
in cervical cancer.

Materials and methods

Microarray datasets and data processing. A total of 3 human 
cervical cancer mRNA expression datasets [GSE9750 (14), 
GSE46857 (15) and GSE67522 (16)] and 1 human cervical 
cancer miRNA expression dataset [GSE30656 (17)] were 
selected randomly and downloaded from the Gene Expression 
Omnibus database (GEO). All the datasets contained a 
comparison between cervical cancer and normal cervix 
tissue samples. The three gene expression datasets included 
54 cervical cancer tissue samples, and 38 normal cervix tissue 
samples from women without cervical cancer. The miRNA 
dataset comprised of 10 normal cervix tissue samples, and 
19 squamous cell carcinoma or adenocarcinoma tissue 
samples. All four datasets were produced and uploaded 
to GEO by independent research groups. These datasets 
were based on 4 different Affymetrix platforms, including 
GPL96, GPL16690, GPL10558 and GPL6955 (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA); these are all preferred 
platforms for biomarker cancer research.

GEO2R, an online tool comparing groups in GEO data-
sets, was used to identify DEGs and DEMs between cervical 
cancer and normal tissue samples. Genes were selected with 
the criteria of Benjamini and Hochberg adjusted P<0.01, and 
log fold‑change >1 or <‑1. Finally, the ‘Calculate and draw 
custom Venn diagrams’ online tool (http://bioinformatics.
psb.ugent.be/webtools/Venn/) was used to identify the signifi-
cantly upregulated or downregulated genes across all three 
GEO mRNA datasets.

Protein‑protein interaction (PPI) network construction and 
functional pathway enrichment analysis. The Search Tool for 
the Retrieval of Interacting Genes (STRING) database was used 
to identify and visualize the functional interactions between 
proteins (18). The Database for Annotation, Visualization and 
Integrated Discovery (DAVID), an online program that aids 
in the understanding of the biological function of genes, was 
used to perform a functional enrichment analysis of the DEGs, 
including Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analyses (19). 
A false discovery rate threshold was set at P<0.05.

Validation of miRNA targets. The miRecords tool was used 
to identify the validated target genes of the DEMs. The 
miRecords tool provides a comprehensive search for scientific 

papers regarding miRNAs and their target genes from the 
National Centre for Biotechnology Information (20). The 
‘Calculate and draw custom Venn diagrams’ tool was used to 
identify the target genes of the identified DEMs within the list 
of identified DEGs.

Survival analysis. The OncoLnc tool (www.oncolnc.org) was 
used to conduct an overall survival analysis for patients with 
cervical cancer. OncoLnc is an online tool for interactively 
exploring the survival data of 8,647 patients from 21 cancer 
studies in The Cancer Genome Atlas (TCGA), along with mRNA 
and miRNA RNA-Seq expression data from TCGA. The tool 
allows the production of Kaplan‑Meier plots stratified by gene 
expression levels. Log‑rank P‑values in survival analysis were 
recorded. 80th (upper) percentiles and 20th (lower) percentiles 
were considered as high and low groups. The OncoLnc tool was 
also used to conduct an overall survival analysis for other types 
of cancer, including breast, lung, colorectal and prostate cancer. 
To research further into the association of cervical cancer with 
the DEGs regulated by DEMs, including Ras homolog family 
member B (RhoB) and Stathmin 1 (STMN1), all cervical cancer 
data were downloaded from TCGA. Using this data, the asso-
ciation between RhoB/STMN1 expression and survival time for 
patients with cervical cancer was analyzed.

DEGs basic expression state in different organs. The Human 
Protein Atlas (HPA; www.proteinatlas.org), an open‑access 
database of the genome-wide expression of genes in various 
organ types (21), was used to identify the basic expression 
level of DEGs in different human organs. In the present study, 
three datasets were used; the HPA dataset (RNA‑seq data 
mean values for different individual samples from each tissue 
reported as mean transcripts per million), the Genotype‑Tissue 
Expression (GTEx) project dataset (RNA‑seq data reported 
as median reads per kilobase per million mapped reads) 
and the Functional Annotation of the Mammalian Genome 
(FANTOM5) dataset (obtained through cap analysis of gene 
expression, reported as tags per million).

Statistical analysis. Statistical analysis was performed with 
GraphPad Prism 7 (GraphPad Software, Inc., La Jolla, CA, 
USA) and Microsoft Excel 2017 (Microsoft Corporation, 
Redmond, WA, USA). Kaplan‑Meier analysis and log‑rank 
test were used in overall survival analysis (by OncoLnc) and 
pathway enrichment analysis (by DAVID). ANOVA and a 
Student‑Newman‑Keuls‑q post hoc test were used for multiple 
group comparisons. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Identification of DEGs in microarray datasets and PPI 
network construction. A total of 2,496, 1,425 and 1,184 
DEGs were identified in cervical cancer tissue compared 
with normal tissue samples in the GSE9750, GSE46857 
and GSE67522 datasets, respectively. The 73 genes with a 
consistent trend in three microarrays towards being either 
upregulated or downregulated were considered DEGs in all 
three datasets (Fig. 1; Table I). Specifically, 45 genes were 
consistently upregulated and 28 genes were consistently 
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downregulated. A PPI network was constructed of the 
DEGs (Fig. 2).

Functional pathway enrichment analysis. DAVID was used 
to analyze the potential biological functions and pathways 
of the identified DEGs. Biological processes including ‘inte-
grin‑mediated signaling pathway’, ‘proteolysis’ and ‘collagen 
catabolic processes’ were enriched in the DEGs. Furthermore, 
7 KEGG pathways were enriched in the upregulated genes, 
including ‘ECM‑receptor interaction’, ‘focal adhesion’ and 
‘PI3K‑Akt signaling’ pathways (Table II).

miRNA‑DEG pairs. A total of 21 DEMs were identified in 
cervical cancer tissue compared with normal tissue in the 
GSE30656 dataset. Specifically, 19 miRNAs were upregu-
lated and 2 were downregulated (Table III). By reference to 
miRecords, 246 validated gene targets for these miRNAs 
were identified. A PPI network was constructed for the targets 
(Fig. 3). It was identified that three of the validated DEM 

targets were DEGs (Fig. 4); cyclin D1 (CCND1) was among 
the validated gene targets of miR-1, while RhoB and STMN1 
were among the predicted gene targets of miR‑223.

Overall survival analysis. OncoLnc was used to analyze 
of the effect of CCND1, RhoB and STMN1 on the survival 
of patients with cervical cancer. It was identified that the 
high mRNA expression of RhoB was associated with a poor 
survival rate (log‑rank P=0.0322; Fig. 5A) whereas the low 
mRNA expression of STMN1 was associated with a poor 
survival rate (log‑rank P=0.0046; Fig. 5B). However, there 
was no significant association between CCND1 and overall 
survival time (Fig. 5C). An overall survival analysis was 
also conducted for the expression of these genes in other 
types of cancer, including breast, lung, colorectal and pros-
tate cancer (Table IV). TCGA data from 263 patients with 
cervical cancer was divided into high (>50% expression 
level) and low (<50% expression level) groups based on the 
expression of RhoB and STMN1. There were 64 patients in 
the RhoB high and STMN1 low group, which was referred 
to as group B. There were also 64 patients in the RhoB low 
and STMN1 high group, which was referred to as group D. 
The remaining patients were placed into either group A 
(RhoB high and STMN1 high) or group C (RhoB low and 
STMN1 low) (Fig. 6A and B). The patient survival time for 
group B was significantly decreased compared with group 
D (P<0.05; Fig. 6C). Additionally, the patient survival time 
for group B was the least out of the four groups, and it was 
significantly decreased compared with groups A, C and D 
(P<0.05; Fig. 6C). Furthermore, the patient survival time 
for group C was the greatest out of the four groups, and it 
was significantly increased compared with groups A and B 
(P<0.05; Fig. 6C). There was no significant difference 
between groups C and D.

Basic expression state of DEGs in dif ferent organs. 
The Human Protein Atlas was used to assess the basic 

Table I. List of 84 genes, 11 of which exhibited an inconsistent trend, that were identified as upregulated or downregulated using 
the GSE9750, GSE46857 and GSE67522 microarray datasets.

A, Upregulated DEGs

IGF1, KRT1, AHNAK, FHL1, PRRX1, CYP3A5, ZFP36, CCND1, IGFBP5, PALMD, APOD, PIK3R1, PGM5, FOSB, GSTM5, 
DCN, BAIAP2, SYNGR1, HOPX, CXCL14, MPZL2, LAMA2, CDH13, CRYAB, MAL, EGR1, ARG1, DUSP1, TGM3, DPT, 
RGS5, SDPR, SORBS1, FOS, RHOB, CXCL12, JAM2, SPARCL1, AQP1, COL17A1, CAB39L, SLC5A1, GPX3, PTGS1, 
PTGIS

B, Downregulated DEGs

BRCA1, LAMP3, ASF1B, RYR1, SMC4, AURKA, CKS1B, PCNA, SPP1, TYMS, APOL1, PLOD2, STMN1, CKS2, LYN, 
AGRN, CCNB2, PRC1, TOP2A, CXCL9, WDHD1, RSAD2, HMMR, MCM6, IFNAR2, PLAUR, CENPF, BIRC3

C, Genes with an inconsistent trend

PEG3, NTRK2, BNIP3, MYH11, SVEP1, TRIM13, UNC93A, ARMCX1, IL17RC, KRT7, SLC6A8

DEG, differentially expressed genes.

Figure 1. Identification of the differentially expressed genes in the GSE15471, 
GSE16515 and GSE28735 mRNA expression profile datasets.
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expression level of RhoB and STMN1 in different organs. 
The results revealed that the expression level of RhoB in 
the cervix was relatively high compared with >30 human 
organ sample types. The expression of STMN1 in the 

cervix was low relative to the other sample types. However, 
the expression of RhoB and STMN1 in the cervix was not 
particularly high or low in comparison with normal organ 
samples (Fig. 7).

Table III. Differentially expressed miRNAs in cervical cancer screened out from miRNA expression microarray GSE30656 and 
their target genes which have been reported and validated using miRecords.

 Adjusted Log
miRNA P‑value fold change Validated target genes

miR-106b 2.05x10‑7 1.02 E2F1, CDKN1A, VEGFA, E2F1, CDKN1A, ITCH
miR‑125b 4.82x10‑4 ‑1.44 ERBB2, ERBB3, LIN28, BAK1, NTRK3, C10orf104, H3F3B, ADAMTS1, PERP
miR‑149 1.04x10‑4 ‑1.14 N/A
miR‑15b 1.42x10‑3 1.01 BCL2, CCNE1, RECK, MKK4, RECK, BMI1
miR‑16 5.47x10‑4 1.06 TPPP3, BCL2, VEGFA, CCND1, PDCD4, RAB21, CADM1, SKAP2, WT1, BCL2
miR‑192 3.98x10-2 1.18 DHFR, WNK1, RB1
miR‑193b 2.69x10‑4 ‑1.29 PLAU, ESR1
miR‑194 2.24x10-2 1.07 N/A
miR‑200a 9.84x10‑3 1.07 ZEB2, ZEB1 FOG2, ERBB2IP, BAP1, KLHL20
miR‑203 1.57x10-5 ‑3.00 N/A
miR-205 2.16x10-2 ‑2.26 ZEB2, ZEB1, VEGFA, INPPL1, ERBB3, PRKCE, MED1
miR‑21 1.69x10-5 2.10 TPM1, NFIB, PDCD4, SERPINB5, CDKN1A, FAS, FAM3C, HIPK3, PRRG4, ACTA2
miR‑223 1.38x10-2 1.04 NFIA, LMO2, LMO2, STMN1, RHOB, IRS1, FBXW7, EPB41L3
miR‑370 1.04x10‑3 ‑2.37 MAP3K8
miR‑494 2.18x10-2 ‑1.22 PTEN
miR-565 1.61x10-2 ‑1.04 N/A
miR‑572 1.23x10-2 ‑1.04 N/A
miR‑575 1.02x10‑3 ‑1.46 N/A
miR‑630 1.34x10-2 -1.20 N/A
miR‑638 1.21x10-2 ‑1.37 N/A
miR‑99a 6.46x10‑4 ‑1.25 RAVER2, mTOR, IGF‑IR, RPTOR, FGFR3

N/A, not applicable.

Table II. Functional/pathway enrichment analysis of the differentially expressed genes from 3 cervical cancer mRNA expression 
profiles.

Term Description Count P‑value

hsa05222 Small cell lung cancer 5 3.34x10‑3

hsa04620 Toll‑like receptor signaling pathway 5 6.45x10‑3

hsa04510 Focal adhesion 6 1.59x10-2

hsa04512 ECM‑receptor interaction 4 2.42x10-2

hsa05200 Pathways in cancer 7 3.29x10-2

hsa04062 Chemokine signaling pathway 5 4.94x10-2

hsa04150 mTOR signaling pathway 3 5.71x10-2

hsa00590 Arachidonic acid metabolism 3 6.51x10-2

hsa04110 Cell cycle 4 6.56x10-2

hsa05214 Glioma 3 7.99x10-2

hsa04115 p53 signaling pathway 3 9.11x10-2

hsa04730 Long‑term depression 3 9.34x10-2

hsa05218 Melanoma 3 9.80x10-2
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Figure 2. Protein‑protein interaction network of all differentially expressed genes from the three mRNA expression profile datasets. The red boxes indicate 
potentially positive differentially expressed genes. CCND1, cyclin D1; STMN1, stathmin 1; RhoB, Ras homolog family member B.

Figure 3. Protein‑protein interaction network of differentially expressed genes based on one miRNA expression profiling dataset validated target genes. The 
red boxes indicate potentially positive differentially expressed genes. CCND1, cyclin D1; STMN1, stathmin 1; RhoB, Ras homolog family member B.
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Discussion

The majority of cervical cancer patients live in economically 
underdeveloped areas, where the mortality rate is higher (22). 
Although cervical screening programs based on cervical 
cytology and human papilloma virus testing effectively reduce 
the incidence of cervical cancer, it is common for women 
in these areas not to accept standardized screening. This is 
largely due to social, religious and psychological factors (23). 
Therefore, novel circulating biomarkers to monitor critical 
molecular events common in cervical cancer may improve the 
detection of malignant lesions in primary screening and triage 
settings.

In the present study, three mRNA and one miRNA expres-
sion profile datasets were used to identify potential biomarkers 
in cervical cancer. These four datasets were based on micro-
arrays produced by the same company, with four different 
platforms. Firstly, a comprehensive analysis of the DEGs and 
DEMs was performed, including GO and KEGG pathway 
enrichment analysis and PPI network analysis. Secondly, 
the DEGs were screened from the previously validated 
targets of the DEMs. A total of 73 DEGs were common to 
all three mRNA datasets, and 18 DEMs were identified from 
the microRNA dataset. Compared with existing studies, this 
screening was larger, and more comprehensive and random, 
due to it be conducted with a greater number of samples from 
different areas and a greater number of expression profiles.

The verified target genes of the DEMs were then obtained 
by reference to existing studies using miRecords. By comparing 
the verified target genes of the DEMs and the DEGs identified 
from the mRNA microarray, three potential genes were identi-
fied that may serve a key function in cervical cancer. Finally, it 
was identified through survival analysis that the high mRNA 
expression of RhoB was associated with poor overall survival 
(log‑rank P=0.0322; Fig. 5A), while the low mRNA expression 
of STMN1 was associated with poor overall survival (log‑rank 
P=0.0046; Fig. 5B). CCND1 expression was not significantly 
associated with overall survival (Fig. 5C).

Further analysis was performed using the survival data 
from TCGA. Data from 263 patients was divided into high 
or low groups based on the expression of RhoB and STMN1. 
It was identified that patients with higher RhoB and lower 
STMN1 expression experienced a significantly shorter overall 
survival time than patients with lower RhoB and higher 
STMN1 expression (P<0.05; Fig. 6C).

RhoB is a member of the Rho GTP‑binding protein family 
located at 2p24.1 (24). RhoB may be a tumor suppressor 
as its expression level is decreased in a number of tumor 
cell types (25). Its expression is more downregulated in 
increasingly aggressive tumors, and the loss of RhoB is 
associated with a decreased overall survival time in certain 
types of cancer (26‑28). RhoB is not mutated in all types of 
cancer; however, its altered expression and activity may be 
critical in cancer progression and the response to therapy. 
For example, RhoB expression is predictive of an epidermal 
growth factor receptor‑tyrosine kinase inhibitor (EGFR‑TKI) 
response; a EGFR‑TKI/Akt inhibitor combination provides a 
clinical advantage in preventing resistance to EGFR‑TKI for 
RhoB‑positive tumor patients (26). A number of studies have 
identified a loss of RhoB expression in head, neck, gastric, 
renal and lung cancer (29‑31). Studies of RhoB gene knockout 
in mice demonstrated that the frequency of chemically induced 
neoplastic transformation increased, and that the overexpres-
sion of RhoB in human cell lines results in the inhibition of 
signal transduction pathways associated with oncogenesis and 
tumor survival. The function of RhoB in cervical cancer has 
yet to be reported.

STMN1 is located at 1p36.11 and is also known as onco-
protein 18. It is a 19‑kDa cytosolic protein that destabilizes 
microtubules in a phosphorylation-dependent manner and has 
been reported to be abundantly expressed in various types 
of cancer cell (32‑34). STMN1 is also a biomarker in certain 
types of neoplasm. It serves important functions in cell cycle 
progression, mitosis, signal transduction and cell migra-
tion (35‑37). There is no study reporting directly on the effect 
of STMN1 in cervical cancer.

In the present study, it was identified that upregulated RhoB 
was significantly associated with poor overall survival time in 
patients with cervical cancer, and that downregulated STMN1 
was also significantly associated with poor overall survival. By 
comparing survival time with TCGA data, it was revealed that 
patients with higher levels of RhoB and lower levels of STMN1 
have significantly shorter survival times. This supports that high 
RhoB and low STMN1 are associated with a worse prognosis, 
and that RhoB and STMN1 may be suitable for use in diagnosis 
and prognosis as biomarkers of cervical cancer. Furthermore, 
the basic expression levels of RhoB and STMN1 were assessed 

Table IV. The prognostic value of two differentially expressed 
genes identified in patients with other types of cancer.

Cancer type Ras homolog family member B Stathmin 1

Breast 0.158 0.569
Gastric 0.046 0.431
Lung 0.339 0.127
Ovarian 0.062 0.293

Figure 4. The comparison between differentially expressed genes based 
on three mRNA expression profiling datasets and the validated targets of 
differentially expressed miRNAs based on one miRNA expression profiling 
dataset. CCND1, cyclin D1; STMN1, stathmin 1; RhoB, Ras homolog family 
member B.
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Figure 7. Basic expression state of differentially expressed genes in the cervix and other organs. STMN1, stathmin 1; RhoB, Ras homolog family member B; 
TPM, tags per million; RPKM, reads per kilobase of transcript per million mapped reads.

Figure 6. Comparison of survival times between the different expression level of differentially expressed genes. The grouping of cervical cancer patients with 
(A) high RhoB and low STMN1 and (B) low RhoB and high STMN1 using The Cancer Genome Atlas dataset. (C) Comparison between these groups with 
regard to survival time. STMN1, stathmin 1; RhoB, Ras homolog family member B.

Figure 5. Analysis of the prognostic value of three differentially expressed genes in cervical cancer patients using The Cancer Genome Atlas data. (A) Prognostic 
value of RhoB, (B) STMN1, (C) CCND1. CCND1, cyclin D1; STMN1, stathmin 1; RhoB, Ras homolog family member B.



WANG  and  CHEN:  IDENTIFICATION OF CERVICAL CANCER BIOMARKERS BY DATA MINING ANALYSIS 5207

in different tissue types using data mining methods. The results 
revealed that in normal cervical tissue samples, RhoB and 
STMN1 were not overexpressed or underexpressed in compar-
ison with other sample types (Fig. 7). This indicates that it may 
be possible to perform a gain/loss of function analysis with 
normal cervix and cervical cancer cell lines in future studies. 
This would provide a more in-depth understanding of RhoB and 
STMN1 gene functions in cervical cancer.

In summary, mRNA and miRNA microarray expression 
datasets were screened for the identification of biomarkers 
in cervical cancer. In the present study, RhoB, STMN1 and 
the associated miR‑223 may be critical in cervical cancer. We 
hypothesize that these genes and miRNA may serve as a key 
biomarker for predicting cervical cancer progression, and that 
the described method is used in clinical practice to improve 
the chance for an early diagnosis. For increased reliability 
and reproducibility, the method outlined in the present study 
will be repeated and further improved. Furthermore, we will 
study the functions and mechanism of the DEGs and DEMs 
identified in the present study. This will allow the greater 
understanding of broader clinical application prospects.
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