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Abstract: Current bias compensation methods for distributed localization consider the time difference
of arrival (TDOA) and frequency difference of arrival (FDOA) measurements noise, but ignore the
negative influence by the sensor location uncertainties on source localization accuracy. Therefore,
a new bias compensation method for distributed localization is proposed to improve the localization
accuracy in this paper. This paper derives the theoretical bias of maximum likelihood estimation
when the sensor location errors and positioning measurements noise both exist. Using the rough
estimate result by MLE to subtract the theoretical bias can obtain a more accurate source location
estimation. Theoretical analysis and simulation results indicate that the theoretical bias derived in this
paper matches well with the actual bias in moderate noise level so that it can prove the correctness
of the theoretical derivation. Furthermore, after bias compensation, the estimate accuracy of the
proposed method achieves a certain improvement compared with existing methods.

Keywords: distributed localization; bias compensation; sensor location errors; time difference of
arrival; frequency difference of arrival

1. Introduction

Estimation of the source location has been a subject of research for decades and continues to receive
much interest in the signal processing research community [1–3], including radar [4], sonar [5], sensor
network [6], wireless communication [2], etc. There are various common measurements employed to
determine the source location, such as the time difference of arrival (TDOA), the frequency difference
of arrival (FDOA), and numerous joint algorithms of multiple measurements. For simplicity, the TDOA
has been extensively studied to improve estimation accuracy with a low computational complexity
for solving source location which must lie in the intersection of the TDOA hyperbolic curves [7]. If
there is relative motion between the source and sensors, the FDOA can be incorporated with the
TDOA [8], which can significantly improve the source location accuracy and estimate the position and
velocity of the source simultaneously [9]. Thus, we locate the moving source using TDOA and FDOA
measurements in this paper.

Based on the source localization using TDOA and FDOA measurements, the two types of sensor
pairing structure are presented [10–13], which are shown in Figure 1. Most of source localization
method adopt the centralized localization structure (Figure 1a), such as iteration-based method [14–16],
two-step weighted least squares (TS-WLS) [9,10], total least-squares (TLS) technique [17], the
semi-definite relaxation localization method [18], the multidimensional scaling (MDS) method [19]
and so on. However, for joint TDOA- and FDOA-based methods, time-synchronization and
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frequency-locking are typically required [20], which might be difficult to achieve and increase the
system complexity [21]. If this system fails to achieve precise synchronization between all the sensors,
it may not obtain correct measurements from received signals so that the estimated accuracy cannot
be ensured [22]. In addition, according to refs. [23–25], some centralized sensors may not transmit
the data to their single reference sensor due to their limited communication range and system power.
Moreover, the single reference sensor needs to save and use to estimates parameters from all the data,
which will produce high computational costs and may also cause a large processing delay [25]. These
requirements would have significant influence on the size, weight, and power of that sensor [26].
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Figure 1. Sensor pairing. (a) Centralized Localization; (b) Distributed localization. 

To circumvent the drawbacks of centralized localization system, the distributed localization is 
highly desirable [11–13,27]. As seen in the Figure 1b, sensor pairs is combined in a decentralized way 
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sensors, which is easy to realize in practice. Overall, this structure could improve robustness, and 
save bandwidth of the communication network, which can reduce the difficulty of success in 
engineering [25,27]. Therefore, we aim at distributed structure localization algorithm based on TDOA 
and FDOA in this paper. 

The estimated accuracy is usually not guaranteed by using classical maximum likelihood 
estimation (MLE) methods because of the nonlinearity in TDOA and FDOA localization problem. 
Thus, the MSE consists of the variance and the bias square [28]. Increasing the observation period can 
only decrease the location variance but the bias cannot be ignored. For example, the ultra-wideband 
(UWB) localization technology [29] use the averaging to reduce estimated variance but is useless to 
decrease the estimated bias, which cause negative influence on location accuracy [28,30]. 

Therefore, the question of how to remove the bias from the estimation of source position and 
velocity is a focus of the research. In the last decade, many bias compensation algorithms were 
proposed [11,28–32]. As for stationary emitters, Rui L verified that the location bias has great 
influence on location accuracy [28,30]. In order to avoid it, Hao put forward a bias reduction method 
for passive source localization using TDOA and gain ratios of arrival (GROA) [32]. As for moving 
sources, Chan proposed a new bias reduction algorithm using new constraints based on TDOA and 
FDOA [31]. However, these algorithms can only reduce the bias to the same degree of MLE, which is 
still high for an estimation result, and do not consider the sensor location uncertainties which are 
very sensitive to the source location accuracy [10]. As is well known, the position and velocity of 
sensors may not be obtained accurately in practice when using moving sensors [10]. Therefore, the 
sensor location uncertainties need to be taken into consideration in practical environment. Therefore, 
a new bias compensation method based on MLE for distributed source localization using TDOA and 
FDOA with sensor location errors is presented in this paper. 

We study the bias of the MLE for source location, because the MLE is asymptotically efficient 
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To circumvent the drawbacks of centralized localization system, the distributed localization is
highly desirable [11–13,27]. As seen in the Figure 1b, sensor pairs is combined in a decentralized way
to estimate the corresponding TDOAs and FDOAs. There are several advantages using this localization
structure. Firstly, because of no common reference sensor, the sensors of distributed structure only need
to transmit their original data to another sensor of each group. Secondly, due to the pairing structure
of distributed localization, it lies in the lower requirement for synchronization [11]. We only need to
achieve precise synchronization between two sensors in a group rather than all sensors, which is easy
to realize in practice. Overall, this structure could improve robustness, and save bandwidth of the
communication network, which can reduce the difficulty of success in engineering [25,27]. Therefore,
we aim at distributed structure localization algorithm based on TDOA and FDOA in this paper.

The estimated accuracy is usually not guaranteed by using classical maximum likelihood
estimation (MLE) methods because of the nonlinearity in TDOA and FDOA localization problem.
Thus, the MSE consists of the variance and the bias square [28]. Increasing the observation period can
only decrease the location variance but the bias cannot be ignored. For example, the ultra-wideband
(UWB) localization technology [29] use the averaging to reduce estimated variance but is useless to
decrease the estimated bias, which cause negative influence on location accuracy [28,30].

Therefore, the question of how to remove the bias from the estimation of source position and
velocity is a focus of the research. In the last decade, many bias compensation algorithms were
proposed [11,28–32]. As for stationary emitters, Rui L verified that the location bias has great influence
on location accuracy [28,30]. In order to avoid it, Hao put forward a bias reduction method for passive
source localization using TDOA and gain ratios of arrival (GROA) [32]. As for moving sources, Chan
proposed a new bias reduction algorithm using new constraints based on TDOA and FDOA [31].
However, these algorithms can only reduce the bias to the same degree of MLE, which is still high for
an estimation result, and do not consider the sensor location uncertainties which are very sensitive
to the source location accuracy [10]. As is well known, the position and velocity of sensors may not
be obtained accurately in practice when using moving sensors [10]. Therefore, the sensor location
uncertainties need to be taken into consideration in practical environment. Therefore, a new bias
compensation method based on MLE for distributed source localization using TDOA and FDOA with
sensor location errors is presented in this paper.
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We study the bias of the MLE for source location, because the MLE is asymptotically efficient and
regarded as a benchmark for performance evaluation [33]. The bias of the MLE of a general estimation
problem has been investigated in the mathematical and statistical literature [33]. The proposed method
extends the method in References [1,11], and derives the theoretical bias of MLE when the localization
model has sensor location errors. The bias expression is closed-form with low computationally cost
and the source location accuracy has a certain increase after bias compensation.

The paper is organized as follows. Section 2 formulates the problem of distributed source
localization using TDOA and FDOA measurements with receiver location errors. Section 3 gives a
detailed derivation of the proposed method. Section 4 derives the Cramér-Rao lower bound (CRLB)
for distributed localization. Section 5 presents simulation to support the theoretical development of
the proposed method. Finally, a brief conclusion is given in Section 6.

2. Measurement Model

Due to the no common reference sensor of the distributed localization, the model of distributed
localization is different from centralized model. In this paper, we consider the three-dimensional
(3-D) scenario, thus the distributed structure requires at least three pairs of sensors (i.e. M = 6) to
produce the several groups of TDOA and FDOA measurements and M must be an even number. Each
sensor position and velocity can be defined as si = [xi, yi, zi]

T and si = [xi, yi, zi]
T (i = 1, 2, . . . , M)

respectively, which is applied to determine the source position u = [x, y, z]T and velocity u = [x, y, z]T .
We will use the notation (∗)o and (∗) to distinguish between the true value and noisy value. In practice,
the true value of the sensor position so

i = [xo
i , yo

i , zo
i ]

T and velocity so
i = [xo

i , yo
i , zo

i ]
T are unknown to an

estimator, thus we only use the noisy value si and si to derive the localization method [10].

∆β = nβ = β− βo =
[
∆sT , ∆sT

]T
(1)

where β =
[
sT , sT

]T
, ∆si = si − so

i , ∆si = si − so
i , ∆s =

[
∆sT

1 , ∆sT
2 , . . . , ∆sT

M
]T , and ∆s =[

∆sT
1 , ∆sT

2 , . . . , ∆sT
M

]T
. In this paper, ∆β is assumed to follows zero-mean Gaussian distribution

with covariance matrix
E
[
∆β∆βT

]
= Qβ (2)

The distance between the source and sensor ith is

ro
i = ‖uo − so

i ‖ =
√(

uo − so
i
)T(uo − so

i
)

(3)

where ‖ · ‖ denotes the Euclidean norm. For M sensors, there are a total number of M/2 sensor pairs
and TDOA/FDOA measurements. Let

Σ = {{2i, 2i− 1}|1 ≤ i ≤ M/2} (4)

which denotes the set of all sensor pairs. Without loss of generality, the sensor s2i−1 be the reference
sensor, which is the first sensor of each group. In the system, the TDOAs can be defined as range
difference, and the range difference between the 2ith sensor and the sensor (2i−1)th is

ro
2i,2i−1 = cτo

2i,2i−1 = ro
2i − ro

2i−1 (5)

where c is the propagation speed, τo
2i,2i−1 is the true TDOA value between pair 2ith and (2i−1)th sensor,

ro
2i,2i−1 is the true range difference, and i = 1, 2, . . . , M/2. Note that (5) is nonlinear with respect to u,

the M/2 curves in (5) give the source location estimate.
Due to the moving source, the FDOA measurements can be used to improve the accuracy of

source location estimate and obtain the source position and velocity simultaneously. Similarly, the
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FDOAs can be converted to the range difference rate. By taking the time derivative of (5), the true
range rate ro

i of the ith sensor is defined as

ro
i =

(
uo − so

i
)T(uo − so

i
)

ro
i

(6)

Similarly, the range difference rate between the 2ith sensor and the sensor (2i−1)th is

ro
2i,2i−1 = ro

2i − ro
2i−1 (7)

for i = 1, 2, . . . , M/2. (5) and (7) are a set of TDOA and FDOA nonlinear equation, and it is not easy
to obtain the source location u and u by solving them. Moreover, we cannot obtain the true values

of TDOA and FDOA in practice. So, we let α =
[
rT , rT

]T
, where r = [r2,1, r4,3, . . . , rM,M−1]

T and

r = [r2,1, r4,3, . . . , rM,M−1]
T represent the TDOA and FDOA measurements vector, then the vector of

the measurements error is
∆α = nα =

[
∆rT , ∆rT

]T
(8)

where ∆r = r − ro, ∆r = [∆r2,1, ∆r4,3, . . . , ∆rM,M−1]
T , ∆r = r − ro, and ∆r =

[∆r2,1, ∆r4,3, . . . , ∆rM,M−1]
T . Similarly, we assume that ∆α obeys zero-mean Gaussian distribution

with covariance matrix
E
[
∆α∆αT

]
= Qα (9)

The two types of noises, which are ∆α and ∆β, are independent of each other and we assume
that they are uncorrelated at different time instants. In next section, we analyze the theoretical bias of
the MLE and derive its expression using the two types of positioning measurements with the sensor
location errors, which can efficiently reduce the bias of estimated result and obtain more accurate
source position u and velocity u. In this paper, we use the 0, O, and I to denote the zero vector,
zero matrix, and unit matrix, respectively. Their dimensions are marked in the lower right corner
of themselves.

3. The Proposed Method

Although it is well known that the variance of the MLE can achieve the CRLB, the bias of the
MLE still exists and has a negative influence on estimation accuracy. Therefore, in order to remove
the bias of estimate result and improve the precision of the source location, in this section, we derive
the theoretical bias of the MLE based on TDOA and FDOA measurements with sensor location errors.
According to Section 2, the two types of positioning measurements noise ∆α and sensor location
errors noise ∆β both obey the Gaussian distribution with zero means which are independent of each
other [7,9,10,18]. It should be explained that these types of noises in practical localization environments
may not follow these assumptions in practical localization environments. We will do some effort in
other noise environment in our further study, but these types of noises are only used to as an example
to derive the proposed method in this paper. Thus, according to the assumption mentioned above,
the log of the joint probability density function of α and β parameterized on ϕ is [10]

ln f (α, β,ϕ) = ln f (α,ϕ) + ln f (β,ϕ)
= K1 − 1

2 [α− αo]TQα
−1[α− αo]− 1

2 [β− βo]TQβ
−1[β− βo]

(10)

where K1 = −1/2 ln
(
(2π)M|Qα|

)
− 1/2 ln

(
(2π)6M

∣∣∣Qβ

∣∣∣), ϕ =
[
θT , βT]T , θ =

[
uT , uT

]T
. Since the

noise follows zero mean Gaussian distribution and only the θ is of interest to us, so the MLE solution
θ̂ is

θ̂ = arg max(I) (11)
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where the cost function I of ML estimation can be formulated by

I , −1
2
[α− αo]TQα

−1[α− αo]− 1
2
[β− βo]TQβ

−1[β− βo] (12)

We use P(ϕ̂) to stand for the gradient of the cost function I with respect to ϕ, ϕ̂ satisfies
the equation

P(ϕ̂) =
∂I
∂ϕ

∣∣∣∣
ϕ̂

= 0(6M+6)×1 (13)

Then, we apply the second-order Taylor-series approximation to P(ϕ̂) around ϕo, which can be
represented as

P(ϕ̂) =
∂I
∂ϕ

∣∣∣∣
ϕ̂

≈ H′ + H′′ (ϕ̂−ϕo) + g(ϕo) = 0(6M+6)×1 (14)

where
H′ = ∂I

∂ϕ

∣∣∣
ϕ=ϕo

, H′′ = ∂2 I
∂ϕ∂ϕT

∣∣∣
ϕ=ϕo

H′′′ l = ∂
∂ϕl

(
∂2 I

∂ϕ∂ϕT

)∣∣∣
ϕ=ϕo

l = 1, 2, . . . , 6M + 6

g(ϕo) = 1
2


tr
(

H′′′ 1 × [ϕ̂−ϕo][ϕ̂−ϕo]T
)

tr
(

H′′′ 2 × [ϕ̂−ϕo][ϕ̂−ϕo]T
)

...

tr
(

H′′′ 6M+6 × [ϕ̂−ϕo][ϕ̂−ϕo]T
)


(15)

and tr(∗) represents the trace operation.
Based on (14), we notice that there is no need to solve ϕ̂ and the bias is directly given as the

expectation of ϕ̂−ϕo. Thus, we rearrange (14) and obtain the theoretical bias

b = E[ϕ̂−ϕo] = E
[
−(H′′ )−1H′

]
+ E

[
−(H′′ )−1g(ϕo)

]
(16)

The details of (14) is specifically shown as

H′ = ∂I
∂ϕ

∣∣∣
ϕ=ϕo

= C1 + C2

H′′ = ∂2 I
∂ϕ∂ϕT

∣∣∣
ϕ=ϕo

= (B1 −A1) + (B2 −A2)
(17)

where
A1 = ∂Tα

∂ϕ Q−1
α

∂α
∂ϕT

∣∣∣
ϕ=ϕo

A2 = ∂T β
∂ϕ Q−1

β
∂β

∂ϕT

∣∣∣
ϕ=ϕo

B1 =
M
∑

j=1

M
∑

i=1
qα ijnα i

∂2αj
∂ϕ∂ϕT

∣∣∣∣∣
ϕ=ϕo

B2 =
2M
∑

j=1

2M
∑

i=1
qβ ijnβ i

∂2β j
∂ϕ∂ϕT

∣∣∣∣∣
ϕ=ϕo

C1 = ∂Tα
∂ϕ Q−1

α nα

∣∣∣
ϕ=ϕo

C2 = ∂T β
∂ϕ Q−1

β nβ

∣∣∣
ϕ=ϕo

(18)

and qα ij and qβ ij are the element of Q−1
α and Q−1

β . For specifically, we let A = A1 + A2 in the following.
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3.1. The Derivation of The First Term of (16)

This section gives a detailed derivation of the first term of (16) E[−(H′′ )−1H′
]
. According to the

(17) and (18), the first term of (16) can be approximated as

E
[
−(H′′ )−1H′

]
= E

[
(A− (B1 + B2))

−1(C1 + C2)
]

≈ E
[
A−1(C1 + C2)

]
+ E

[
A−1(B1 + B2)A−1(C1 + C2)

]
= E

[
A−1(C1 + C2)

]
+ E

[
A−1B1A−1C2

]
+E
[
A−1B2A−1C1

]
+ E

[
A−1(B1A−1C1 + B2A−1C2

)] (19)

Note that the A−1 does not contain noise and it is independent of the measurement noise and the
sensor location noise, then we have

E
[
A−1(C1 + C2)

]
= E

[
A−1C1

]
+ E

[
A−1C2

]
= 0(6M+6)×1

E
[
A−1B1A−1C2

]
= 0(6M+6)×1

E
[
A−1B2A−1C1

]
= 0(6M+6)×1

(20)

So, the (19) can be simplified as

E
[
−(H′′ )−1H′

]
≈ E

[
A−1(B1 + B2)A−1(C1 + C2)

]
= E

[
A−1(B1A−1C1 + B2A−1C2

)] (21)

Substituted the definition of B1, B2, C1, C2 from (18) and E[nα inα] = Qαeα i,E
[
nβ inβ

]
= Qβeβ i, the

first term of (16) is

E
[
−(H′′ )−1H′

]
≈ A−1

M
∑

i=1
Pα iA−1

(
∂Tα
∂ϕ

)
Q−1

α · E[nα inα] + A−1
2M
∑

i=1
Pβ iA−1

(
∂T β
∂ϕ

)
Q−1

β · E
[
nβ inβ

]
= A−1

M
∑

i=1
Pα iA−1

(
∂Tα
∂ϕ

)
eα i + A−1

2M
∑

i=1
Pβ iA−1

(
∂T β
∂ϕ

)
eβ i

∣∣∣∣
ϕ=ϕo

(22)

where eα i and eβ i are M× 1 and 6M× 1 vector respectively which are defined as

eα i =


M︷ ︸︸ ︷

0 · · · 0︸ ︷︷ ︸
i−1

1
i

0 · · · 0


T

eβ i =


6M︷ ︸︸ ︷

0 · · · 0︸ ︷︷ ︸
i−1

1
i

0 · · · 0


T (23)

and the Pα i and Pβ i are expressed as

Pα i =
M
∑

j=1
qα ij

∂2αj
∂ϕ∂ϕT

∣∣∣∣
ϕ=ϕo

Pβ i =
2M
∑

j=1
qβ ij

∂2β j
∂ϕ∂ϕT

∣∣∣∣
ϕ=ϕo

(24)

3.2. The Derivation of The Second Term of (16)

The second term of (16) E
[
−(H′′ )−1g(ϕo)

]
is quite complex to derive and we will do some

approximation processing [1]. According to refs. [1,28,30,31], because the B1 and B2 contain the
first-order noise term and g(ϕo) includes the second-order noise term, multiplying them together
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can produce the high-order (third-order) noise terms which are lower enough to ignore when the
method estimates at low noise level. And high-order noise terms are significantly small than the
low-order term, which is reasonable to ignore. Thus, from (17), we have H′′ ≈ −A and the second bias
component is approximately expressed as

E
[
−(H′′ )−1g(ϕo)

]
≈ A−1z (25)

where

z , E[g(ϕo)] ≈ 1
2


tr(E[H′′′ 1]× CRLB(ϕo))

tr(E[H′′′ 2]× CRLB(ϕo))
...
tr(E[H′′′ 6M+6]× CRLB(ϕo))


(6M+6)×1

(26)

The CRLB(ϕo) is the CRLB of the true value ϕo whose bias is neglected. In fact, the MLE is also
efficient after valid approximation. In addition, according to the Appendix D, the ∂2β j/∂ϕ∂ϕT is a
6M + 6 zero square matrix, so the E[H′′′ l ] can be approximated by

E[H′′′ l ] =
M

∑
i=1

[
hT

αielPαi + Pαielh
T
αi + hαieT

l PT
αi

]
, (l = 1, 2, . . . , 6M + 6) (27)

where

hαi =
M

∑
j=1

qαij
∂Tαj

∂ϕ

∣∣∣∣∣
ϕ=ϕo

(28)

and el is (6M + 6)× 1 vector which is defined as

el =


6M+6︷ ︸︸ ︷

0 · · · 0︸ ︷︷ ︸
l−1

1
l

0 · · · 0


T

(29)

3.3. The Algebraic Expression of Bias

Based on Sections 3.1 and 3.2, the bias is equal to

b = E[ϕ̂−ϕo] = A−1

(
M

∑
i=1

PαiA−1
(

∂Tα

∂ϕ

)
eαi + z

)
+ A−1

2M

∑
i=1

PβiA
−1
(

∂T β

∂ϕ

)
eβi

∣∣∣∣∣
ϕ=ϕo

(30)

According to the Appendix D, the Pβi is a 6M + 6 zero square matrix. Thus the final component
of the bias can be obtained

b = E[ϕ̂−ϕo] = A−1

(
M

∑
i=1

PαiA−1
(

∂Tα

∂ϕ

)
eαi + z

)∣∣∣∣∣
ϕ=ϕo

(31)

Equation (31) is the theoretical bias of the MLE which is the closed-form with reasonable
computational complexity O(M2) in processing. The details on the evaluation of the derivatives
for α and β is given in Appendices A–D. The bias of the MLE is accurately predicted by using (31),
hence the current source position and velocity after bias compensation is given by

ϕ̃ = ϕ̂− b (32)

ϕ̃ can approximately be regarded as an unbiased estimator of ϕo with covariance matrix CRLB(ϕo)

and only the θ̃ of ϕ̃ is of interest for us. In practice, due to the unknown source location, we use MLE
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estimated results instead of the true value in the bias expression (31). We will present the computer
simulations to corroborate our theoretical development and to compare the relative location accuracy
for different methods in Section 5.

4. CRLB for Distributed Localization with Receiver Location Errors

The CRLB is the lowest possible variance that an unbiased estimator can achieve which is often
regarded as the benchmark of estimation performance [9]. This section derives the CRLB of ϕo in
distributed passive sensor localization system in the presence of sensor location errors under the
Gaussian noise model for the first time.

According to (10), assuming J is the (6M + 6)× (6M + 6) Fisher Information Matrix (FIM) [34],
which is defined as

J = E
[
−
(

∂2 ln f (α, β,ϕ)
∂ϕ∂ϕT

)]∣∣∣∣
ϕ=ϕo

(33)

The CRLB of ϕo is equal to the inverse of the Fisher matrix [9,10] defined as

CRLB(ϕo) = J−1 = −E

[(
∂2 ln f (α, β,ϕ)

∂ϕ∂ϕT

)∣∣∣∣
ϕ=ϕo

]−1

(6M+6)×(6M+6)

(34)

Note (34) that we only focus on the upper left 6× 6 submatrix of (34), which is the CRLB [10] of
θo =

[
uoT , uoT]T . In order to express simplicity, we convert (34) into submatrix form shown as

CRLB(ϕo) =

[
R1 R2

RT
2 R3

]−1

(35)

where
R1 = E

[(
∂2 ln f (α,β,ϕ)

∂θ∂θT

)]∣∣∣
ϕ=ϕo

= ∂Tα
∂θ Q−1

α
∂α

∂θT

∣∣∣
ϕ=ϕo

R2 = E
[(

∂2 ln f (α,β,ϕ)
∂θ∂βT

)]∣∣∣
ϕ=ϕo

= ∂Tα
∂θ Q−1

α
∂α
βT

∣∣∣
ϕ=ϕo

R3 = E
[(

∂2 ln f (α,β,ϕ)
∂β∂βT

)]∣∣∣
ϕ=ϕo

= ∂Tα
∂β Q−1

α
∂α

∂βT + Q−1
β

∣∣∣
ϕ=ϕo

(36)

The partial derivatives ∂α/∂ϕT and ∂β/∂ϕT are given in Appendices A and B. According to the
partitioned matrix inversion formula in [34], the (35) can be rewritten as

CRLB(ϕo) = R−1
1 + R−1

1 R2

(
R3 −RT

2 R−1
1 R2

)−1
RT

2 R−1
1 (37)

Note that R−1
1 is the CRLB in ref. [11] with no sensor location errors. Since the

(
R3 −RT

2 R−1
1 R2

)
is the positive definite matrix, the second term in (37) stands for the increase in CRLB after adding
the sensor location errors [10]. So, the source localization algorithm is necessary to consider the
sensor location errors, otherwise it could cause a serious impact on the estimation precision. In the
next section, we compare the CRLB derived in this section with the CRLB without sensor location
error in [11], which can indicate the relationship between the estimation performance and sensor
location errors.

5. Numerical Simulations

This section presents four sets of Monte Carlo simulations to verify the estimation performance
of the proposed method. Using the same the geometry of distributed passive sensors in [11], the
configuration is given in Table 1, shown in Figure 2, which contains M = 8 sensors (4 groups).
The unit of the positions and velocities of sensors are meter (m) and meters per second (m/s),
respectively. Firstly, Sections 5.1 and 5.2 present the comparison of the CRLB with sensor location
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noise power and two types of positioning measurements noise power respectively. Secondly,
Sections 5.3 and 5.4 evaluate the performance of the proposed method by comparing with other
localization estimators. In addition, as for moving or stationary source, the TDOAs and FDOAs are
also given in the simulation both in near-field and far-field scenarios. The near-field and far-field
moving source are located at [500,−500, 600]T and [2000,−2500, 3000]T with the same moving velocity
[−30,−15, 20]T . The stationary near-field and far-field source position are [500,−500, 600]T and
[2000,−2500, 3000]T respectively.

Table 1. Distributed Passive Sensors Configuration.

Groups Sensor No.i xi(m) yi(m) zi(m) xi(m/s) yi(m/s) zi(m/s)

Group 1 1 −150 −600 200 10 20 −30
2 50 −750 200 20 30 0

Group 2 3 500 −200 500 −10 0 10
4 600 100 600 10 20 15

Group 3 5 100 600 800 −10 20 20
6 −100 400 700 30 0 20

Group 4 7 −600 50 400 15 10 −15
8 −750 −100 500 −20 −15 10Sensors 2018, 18, x FOR PEER REVIEW 10 of 20 
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Figure 2. Localization geometry for simulation.

5.1. CRLB Comparison Versus Sensor Location Error

In this section, we compared the CRLB which has been derived in Section 4 with the CRLB in [11]
illustrating the sensitivity to the sensor location errors of the CRLB. The TDOA and FDOA noise power
are σ2

t = 10−4/c2 and σ2
f = 10−5/c2 respectively. Qα is

Qα =

[
Qt O
O Q f

]
M×M

(38)

where Qt is a (M/2)× (M/2) matrix with c2σ2
t in the diagonal and 0.5c2σ2

t in all other elements [34]
and Q f = Qtσ

2
f /σ2

t . In addition, Qβ is

Qβ =

[
Qs O
O Qs

]
6M×6M

(39)

where Qs = σ2
s I3M×3M, Qs = σ2

s I3M×3M, and σ2
s = 0.5σ2

s .
Figure 3 shows the trace of CRLB(u) and CRLB(u) versus sensor location error. With σ2

s increases,
the gap between the two types of CRLB becomes more and more obvious and the larger the σ2

s
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is, the worse the estimation accuracy with sensor location uncertainties is. In Figure 3a, When the
sensor location error power is σ2

s = 10−3(10 log
(
σ2

s
)
= −30dB

)
, there are relative increases in CRLB

for position u and velocity u. Figure 3b exhibits the results for a far-field moving source and the
observation is similar to Figure 3a. However, compared with a near-field source, the estimation error
of far-field moving source clearly increases.
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Figure 3. CRLB comparison versus sensor location error. (a) The near-field moving source; (b) The
far-field moving source.

Figure 4 gives the results for two types of stationary sources. In this scenario, θ = u, α = r, β = s,
Qα = Qt, Qβ = Qs and the partial derivatives can be found in Appendices A and B. The results of
two types of sources correspond with the moving source scenario and the CRLB of far-field stationary
source changed more obvious than that of the near-field stationary source as the sensor location
error increase. Based on the simulation results analyzed above, the sensor location geometry plays a
significant role in the CRLB. If the accuracy of the sensor location coordinates cannot be guaranteed,
it will have negative influence on estimated accuracy of source location, especially for far-field source
scenarios. Thus, we should ensure the accuracy of the sensor location coordinates before we estimate
the source location.
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Figure 4. CRLB comparison versus sensor location error. (a) The near-field stationary source; (b) The
far-field stationary source.

5.2. CRLB Comparison Versus Measurements Noise

In this section, we fix the sensor location error at σ2
s = 100, σ2

s = 0.5 × 100 and present the
comparisons of the two types of CRLBs which change with TDOA and FDOA noise power. This
comparison will investigate the sensitivity to the TDOA and FDOA measurements noise of the CRLB.
The true TDOA and FDOA values are added uncorrelated Gaussian noise with zero means.

Figure 5 is the comparisons of the two types of CRLBs change with two types of positioning
measurements noise power. As we can see, there is no remarkable change in the CRLB with sensor
location error and the CRLB in [11] changed more dramatic than the CRLB with sensor location error
when positioning measurements noise level is low. However, in Figure 5a, as the σ2

r increase (from
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100.5 to 103), the two types of CRLBs exhibit the similar tendency and the CRLB with sensor location
error presents a dramatic change. Figure 5b is the result for a far-field moving source. The observation
is similar, and the two types of CRLBs for the far-field moving source are also higher than that for the
far-field source.
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Figure 5. CRLB comparison versus measurements noise σr. (a) The near-field moving source; (b) The
far-field moving source.

Figure 6 respectively gives the results for a near-field stationary source and a far-field stationary
source, which has a similar tendency to moving source. In a word, according to Sections 5.1 and 5.2,
the accuracy of sensor location has a major impact on CRLB considering sensor location error far
beyond positioning measurements noise.Sensors 2018, 18, x FOR PEER REVIEW  12 of 20 
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Figure 6. CRLB comparison versus measurements noise σr. (a) The near-field stationary source; (b)
The far-field stationary source.

Overall, the CRLB with sensor location uncertainties is not sensitive to the positioning
measurements noise power at low level. With this noise power increasing, the CRLB with sensor
location uncertainties just increases slightly. Thus, the sensor location errors play a significant role in
the source localization estimate and we should avoid these errors, which have a negative influence on
estimated accuracy.

5.3. RMSE Comparison for A Near-Field Source

Section 5.3 uses numerical simulations to demonstrate the proposed method and to compare its
performance with other localization estimators for a near-field source. Other simulation conditions
are similar to Section 5.1. The estimation bias and accuracy are investigated for source as sensor
location errors increase. The estimation accuracy is evaluated in terms of the RMSE, which is defined

as RMSE(u) =
√
(1/K)∑K

k=1‖uk − uo‖2 and RMSE(u) =
√
(1/K)∑K

k=1
∥∥uk − uo∥∥2. The estimation

bias in terms of norm of estimation bias is defined as bias(u) = (1/K)‖∑K
k=1(uk − uo)‖ and bias(u) =

(1/K)‖∑K
k=1
(
uk − uo)‖, where uo and uo stand for the true value of the source location, and each Monte

Carlo estimate of source location is expressed as uk and uk. K = 10000 is the number of independent
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Monte Carlo runs. In particular, we use the estimated and noisy measurement values to replace the
true values in (31) throughout the simulations.

Figure 7 shows the comparison between theoretical bias and actual bias of estimation of source
location by MLE for a near-field source. As shown in this figure, the theoretical bias matches the actual
bias well when the noise level is smaller than −10 dB. Therefore, it is efficient to use the theoretical
bias to compensate the source location estimate and improve the estimated accuracy of the proposed
method. However, with the increase of sensor location error noise level, the theoretical bias value
gradually deviates from the actual bias, especially the source velocity bias. The major cause of this
phenomenon is the approximation of the (14) such that the high-order terms are ignored during the
process of derivation. Therefore, in order to obtain the more accurate estimation of source location and
we should do the Taylor-series expansion of (14) at ϕo up to high-order.
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Figure 7. Comparison between theoretical and actual bias of near-field source location estimate by
MLE. (a) Position Bias; (b) Velocity Bias.

Figure 8 shows the RMSE of the proposed method with the sensor location error noise level
increases, and comparing it with the existing localization algorithm Taylor-series method [14], the
novel Taylor-series method [15], the modified Newton method [16], MLE [10], as well as CRLB
considering sensor location uncertainties. The initial values of them are both true source location.
The RMSE of proposed method is always higher than that of the other localization algorithms and
all the algorithms can attain the CRLB at low moderate noise level. After compensating by (32), the
position and velocity RMSE of the source decrease 3.16 dB and 2.36 dB respectively compared with
the estimated result without considering the bias compensation when σ2

s ≥ 100. In the drawing of
partial enlargement, compared with other localization algorithm, the RMSE of the proposed estimator
is lower, which indicates that the proposed method exhibits the best performance.
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Figure 8. RMSE Comparison among different methods for the near-field source. (a) Position RMSE;
(b) Velocity RMSE.

In Figure 9, the estimation results clearly demonstrate that the bias of the proposed method is
nonetheless smaller than the MLE for low sensor location error noise level. More specifically, when
sensor location error noise is lower than −20 dB, the position and velocity bias of proposed method
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are at least 30 dB and 35 dB lower than the MLE. It is efficient to reduce the impact of the MLE bias on
estimation. With the increase of the noise power, the original MLE is affected by the threshold effect,
which leads to the decrease of the estimation performance.
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Figure 9. Bias comparison of the proposed method with the original MLE for near-field source. (a)
Position Bias; (b) Velocity Bias.

5.4. RMSE Comparison for A Far-Field Source

This section is concerned with far-field source localization. Other simulation conditions are similar
to Section 5.1. Figure 10 shows the comparison between theoretical and actual bias of estimation of
source position and velocity by MLE. The trend of the result is the same as Figure 7 and compared
with the result for the near-field source, the phenomenon that the theoretical bias value gradually
deviates from the actual bias for the far-field source occurs earlier than that for the near-field source.Sensors 2018, 18, x FOR PEER REVIEW  14 of 20 
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Figure 10. Comparison between theoretical and actual bias of far-field source location estimate by MLE.
(a) Position Bias; (b) Velocity Bias.

Figure 11 has similar simulation contents with the Figure 8, but the source is located in the
far-field scenarios. As for far-field source, the distances between source and different sensors are
approximately the same, hence the value of each range different is nearly equal to zero, which is
indicated as the following

ro
1 ≈ ro

2 ≈ · · · ≈ ro
M

ro
21 ≈ ro

43 ≈ · · · ≈ ro
M,M−1 ≈ 0

(40)

Then, considering that the value of each range rate is far less than that of each range, the
relationship between the range rate and the range can be approximately expressed as

ro
1

ro
1
≈ · · · ≈ ro

M
ro

M
≈ 0 (41)

Thus, according to (40), (41) and the analysis mentioned above, the estimated performance for
the far-field source is commonly worse than that for the near-field source. In this case, although
the estimated performance for far-field source is not guaranteed when the noise level is high, the
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estimation precision of the proposed method is always higher than that of the other comparison
algorithms, which is shown in partial enlargement.
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Figure 11. RMSE Comparison among different methods for the near-field source. (a) Position RMSE;
(b) Velocity RMSE.

Figure 12 is the result for a far-field source about the bias analysis of the proposed method and
the trend of the result is the same as Figure 9. When compared with result of the near-field source in
Figure 9, although the gap between the proposed method and MLE for the far-field source is smaller
than that for the near-field source because of the two conditions shown in (41), the proposed method is
still effective in reducing the bias of the MLE.Sensors 2018, 18, x FOR PEER REVIEW  15 of 20 
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6. Conclusions

Moving source localization is a challenging problem due to its nonlinearity characteristic and
increasing demand for high performance. To reduce estimation error and make the localization model
closer to the practical environment, an algebraic moving source localization method using TDOA,
FDOA and Doppler Rate measurements with receiver location errors is presented in this paper. The
proposed method gives a final closed-form solution in the second step without iteration and extra
mathematics operations by employing the basic idea of WLS processing. A new CRLB with receiver
location errors is also derived. Theoretical analysis demonstrates that the proposed method can
achieve CRLB under moderate noise conditions. Simulation results show that the proposed method
can efficiently avoid the rank deficiency problem and outperforms the compared methods as the SNR
and location error change.
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Appendix A

The first derivatives of the α for ϕ is shown in this part. Based on the Section 2, let α =
[
rT , rT

]T
,

β =
[
sT , sT

]T
, r = [r2,1, r4,3, . . . , rM,M−1]

T , and r = [r2,1, r4,3, . . . , rM,M−1]
T . So, the ∂α/∂ϕT in (18) can

be expressed as
∂α

∂ϕT =
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∂α
∂θT

∂α
∂βT

]
M×(6+6M)

(A1)
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∂θT =
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According to (5) and (7), we let
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i (u− si)

T

vi = r−1
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i ri(u− si)

T (A3)

Thus, the partial derivatives of r and r with respect to u and u yields (A6), shown as
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,
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∂uT = O(M/2)×3 (A4)

In addition, the partial derivatives of r and r with respect to s and s yields (A7), which are
shown as

∂r
∂sT =


x1 −x2

x3 −x4

· · ·
xM−1 −xM


(M/2)×3M

∂r
∂sT =


v1 −v2
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· · ·
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∂r
∂sT = O(M/2)×3M, ∂r
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∂sT

(A5)

Appendix B

The first derivatives of the β for ϕ is shown in this part. According to Appendix A, the ∂β/∂ϕT in
(18) can be expressed as

∂β

∂ϕT =

[
∂s

∂θT
∂s

∂sT
∂s

∂sT
∂s

∂θT
∂s

∂sT
∂s

∂sT

]
6M×(6+6M)

(A6)

where
∂s

∂θT
1
=

∂s
∂θT

1
= O3M×6,

∂s
∂sT =

∂s

∂sT = O3M×3M,
∂s

∂sT =
∂s

∂sT = I3M×3M (A7)

Appendix C

The second derivatives of the α for ϕ is shown in this part.
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When the 1 ≤ j ≤ M/2, the ∂2αj/∂ϕ∂ϕT in (18) can be expressed as

∂2αj

∂ϕ∂ϕT =

 ∂2r2j,2j−1

∂θ∂θT
∂2r2j,2j−1

∂θ∂βT

∂2r2j,2j−1

∂β∂θT
∂2r2j,2j−1

∂β∂βT


(6M+6)×(6M+6)

(A8)

where
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According to (5) and (7), we let

Xj =
(

I3×3 − xT
j xj

)
r−1

j (A10)

Therefore, the second-order partial derivatives of r with respect to θ yields (A13), shown as
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∂u∂uT = X2j −X2j−1
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(A11)

In addition, the second-order partial derivatives of r with respect to θ and β yields (A14), which
are shown as
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∂2r2j,2j−1

∂u∂sT =
∂2r2j,2j−1

∂u∂sT =
∂2r2j,2j−1

∂u∂sT = O3×3M

(A12)

The second-order partial derivatives of r with respect to β are expressed as

When k1 = k2

∂2r2j,2j−1

∂sk1
∂sT

k2

=


−Xj k1 = k2 = 2j− 1
Xj k1 = k2 = 2j
O3×3 else

When k1 6= k2
∂2r2j,2j−1

∂sk1
∂sT

k2

= O3×3

(A13)

and
∂2r2j,2j−1

∂s∂sT =
∂2r2j,2j−1

∂s∂sT =
∂2r2j,2j−1

∂s∂sT = O3M×3M (A14)

When M/2 + 1 ≤ j ≤ M, the ∂2αj/∂ϕ∂ϕT in (18) can be expressed as

∂2αj

∂ϕ∂ϕT =

 ∂2r2j−M,2j−1−M
∂θ∂θT

∂2r2j−M,2j−1−M
∂θ∂βT

∂2r2j−M,2j−1−M
∂β∂θT

∂2r2j−M,2j−1−M
∂β∂βT


(6M+6)×(6M+6)

(A15)
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where

∂2r2j−M,2j−1−M
∂θ∂θT =

 ∂2r2j−M,2j−1−M
∂u∂uT

∂2r2j−M,2j−1−M

∂u∂uT

∂2r2j−M,2j−1−M
∂u∂uT

∂2r2j−M,2j−1−M

∂u∂uT


6×6

∂2r2j−M,2j−1−M
∂θ∂βT =

 ∂2r2j−M,2j−1−M
∂u∂sT

∂2r2j−M,2j−1−M

∂u∂sT

∂2r2j−M,2j−1−M
∂u∂sT

∂2r2j−M,2j−1−M

∂u∂sT


6×6M

∂2r2j−M,2j−1−M
∂β∂βT =

 ∂2r2j−M,2j−1−M
∂s∂sT

∂2r2j−M,2j−1−M

∂s∂sT

∂2r2j−M,2j−1−M
∂s∂sT

∂2r2j−M,2j−1−M

∂s∂sT


6M×6M

∂2r2j−M,2j−1−M
∂β∂θT =

(
∂2r2j−M,2j−1−M

∂θ∂βT

)T

(A16)

Let
Yj = rjr−2

j

(
3xT

j xj − I3×3

)
wj = r−1

j
(
u− sj

)T

Wj = r−1
j xT

j wj

Ψj = Yj −Wj −WT
j

(A17)

The second-order partial derivatives of r with respect to θ yields (A20), shown as

∂2r2j−M,2j−1−M
∂u∂uT = Ψ2j−M −Ψ2j−1−M,

∂2r2j−M,2j−1−M
∂u∂uT = X2j−M −X2j−1−M

∂2r2j−M,2j−1−M

∂u∂uT = X2j−M −X2j−1−M,
∂2r2j−M,2j−1−M

∂u∂uT = O3×3

(A18)

In addition, the second-order partial derivatives of r with respect to θ and β yields (A21), which
are shown as

∂2r2j−M,2j−1−M

∂u∂sT
k

=


Ψ2j−M k = 2j− 1
−Ψ2j−M k = 2j
O3×3 else

∂2r2j−M,2j−1−M
∂u∂sk

T =
∂2r2j,2j−1

∂u∂sT
k

,
∂2r2j−M,2j−1−M

∂u∂sT =
∂2r2j,2j−1

∂u∂sT ,
∂2r2j−M,2j−1−M

∂u∂sT = O3M×3M

(A19)

The second-order partial derivatives of r with respect to β are expressed as

When k1 = k2

∂2r2j−M,2j−1−M

∂sk1
∂sT

k2

=


−Ψ2j−M k1 = k2 = 2j− 1
Ψ2j−M k1 = k2 = 2j
O3×3 else

When k1 6= k2
∂2r2j−M,2j−1−M

∂sk1
∂sT

k2

= O3×3

(A20)

and
∂2r2j−M,2j−1−M

∂s∂sT =
∂2r2j−M,2j−1−M

∂s∂sT =
∂2r2j,2j−1

∂u∂sT ,
∂2r2j−M,2j−1−M

∂s∂sT = O3×3 (A21)

Appendix D

The second derivatives of the β for ϕ is shown as following:
When 1 ≤ j ≤ M/2, the ∂2β j/∂ϕ∂ϕT in (18) can be expressed as

∂2β j

∂ϕ∂ϕT = O(6M+6)×(6M+6) (A22)
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When M/2 + 1 ≤ j ≤ M, the ∂2β j/∂ϕ∂ϕT in (18) can be expressed as

∂2β2j−M,2j−1−M

∂ϕ∂ϕT = O(6M+6)×(6M+6) (A23)
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