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Abstract
Objective: Lung adenocarcinoma (LUAD) is a common malignant tumor with a poor prognosis. The present study aimed to
screen the key genes involved in LUAD development and prognosis. Methods: The transcriptome data for 515 LUAD and 347
normal samples were downloaded from The Cancer Genome Atlas and Genotype Tissue Expression databases. The weighted
gene co-expression network and differentially expressed genes were used to identify the central regulatory genes for the
development of LUAD. Univariate Cox, LASSO, and multivariate Cox regression analyses were utilized to identify prognosis-
related genes. Results: The top 10 central regulatory genes of LUAD included IL6, PECAM1, CDH5, VWF, THBS1, CAV1, TEK,
HGF, SPP1, and ENG. Genes that have an impact on survival included PECAM1, HGF, SPP1, and ENG. The favorable prognosis
genes included KDF1, ZNF691, DNASE2B, and ELAPOR1, while unfavorable prognosis genes included RPL22, ENO1, PCSK9,
SNX7, and LCE5A. The areas under the receiver operating characteristic curves of the risk score model in the training and
testing datasets were .78 and .758, respectively. Conclusion: Bioinformatics methods were used to identify genes involved in the
development and prognosis of LUAD, which will provide a basis for further research on the treatment and prognosis of LUAD.
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What Do We Already Know About This Topic?
Genes affecting the development of LUAD included PECAM1, HGF, SPP1, ENG, and The favorable prognosis genes
included KDF1, ZNF691, DNASE2B, and ELAPOR1, while the unfavorable prognosis genes included RPL22, ENO1,
PCSK9, SNX7, and LCE5A.

How Does Your Research Contribute to the Field?
Bioinformatics methods were used to identify genes involved in the development and prognosis of LUAD, which will
provide a basis for further research on its treatment and prognosis.
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What Are Your Research’s Implications Towards Theory, Practice, or Policy?
This study provides basic evidence for the diagnosis and treatment of LUAD.

Background

Lung adenocarcinoma (LUAD) is a common malignant
tumor with high morbidity and mortality.1 Its 5-year sur-
vival rate is 4-17%.2 LUAD treatment is difficult due to
tumor heterogeneity, and the risk of recurrence after
treatment is also higher.3 With the development of geno-
mics and use of bioinformatics analysis for lung cancer, a
large number of molecular markers related to lung cancer
development, drug resistance, and prognosis have been
discovered, such as epidermal growth factor receptor ty-
rosine kinase inhibitors (EGFR TKIs) and anaplastic
lymphoma kinase (ALK) inhibitors.4,5 Therefore, it is
particularly important to study the biological markers of
LUAD development and prognosis. The weighted gene co-
expression network analysis (WGCNA) is a better method
to screen central regulatory genes for tumorigenesis and
development.6 WGCNA explores the relationship between
genes and phenotypes by weighting the correlation net-
work.7 It can analyze signaling networks by converting
gene expression data into co-expression modules.8 It is
also used to screen genes associated with cancer-related
modules and signatures. WGCNA finds relevant genes and
predicts gene functions by analyzing key genes and
identifying potential therapeutic targets and predictive
biomarkers.9 Wei et al10 have adopted WGCNA to analyze
LUAD and have identified modules that were highly
correlated with LUAD. Yi et al11 have identified the oc-
currence- and prognosis-related genes of LUAD using
WGCNA. In recent years, WGCNA has been predomi-
nantly used to screen important hub genes against LUAD
gene expression data. The present study was based on the
transcriptome data and clinical information on LUAD from
The Cancer Genome Atlas (TCGA) and Genotype-Tissue
Expression (GTEx) databases. The development regula-
tory genes in LUAD were screened using WGCNA as well
as differentially expressed genes (DEGs). Univariate Cox,
LASSO, and multivariate Cox regression analyses were
utilized to screen the key genes for the prognosis of LUAD
and to construct a prognostic model in order to ensure
further understanding of the developmental and prognostic
LUAD markers. Experimental design (Figure 1).

Materials and Methods

Data Acquisition

Transcriptome data (mRNA) for LUAD were downloaded
from the UCSC Xena database (https://xenabrowser.net/

datapages/) TCGA in Pan-Cancer (PANCAN). Normal
sample transcriptome data for LUAD were downloaded
from the UCSC Xena database (https://xenabrowser.net/
datapages/) GTEx. The clinical data were downloaded
from the TCGA. Final cohort included a total of 515 LUAD
and 347 normal samples. Ethical approval was not required
for the present study because the data were obtained from
public databases.

Intersection of Differentially Expressed Genes and
Weighted Gene Co-expression Network Analysis

The R package limma was used to screen DEGs. Conditions
for screening included log fold change (logFC) of ≥|2| and
adjusted P ≤ .05. R package WGCNA was used to analyze
genes with TPM≥1. β values and scale-free R2 were adjusted
as a soft-threshold index to construct a scale-free co-
expression network. WGCNA was used to screen out the
relevant LUAD modules. The most relevant LUAD mod-
ules and genes intersecting with DEGs were used for the
next step.

Figure 1. Experimental design.
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Kyoto Encyclopedia of Genes and Genomes, Gene
Ontology, Protein-Protein Interaction Network,
Survival Analyses, and Immunohistochemistry

The R package WGCNA was used to screen-out the relevant
LUAD modules. The most relevant LUAD modules, genes
intersecting with DEGs, and R package clusterprofiler were
used for Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) analyses of this part of the gene set. A
PPI network for the intersection genes was constructed using the
string database, and then the top 10 hub genes were screened
using cytohubba in Cytoscape (version 3.7.2). The network PPI
pairs with a combined confidence score of ≥.4 were visualized.
The GEPIA database (http://gepia.cancer-pku.cn/) survival
analysis was performed for hub genes, which were screened for
survival impact. The HPA database (https://www.proteinatlas.
org/) was used to analyze the level of protein expression for hub
genes.

Prognostic Model Construction

The mRNA results were obtained from the transcriptome data,
the survival data were analyzed, the missing survival data were
deleted, and 487 samples were obtained. The samples were
randomly divided into 2 groups, including 243 training and 244
testing samples. R survival was used to perform a univariate Cox
regression analysis on all genes in the training set to screen for
genes significantly associated with prognosis.12 To eliminate the
problem of collinearity between genes, LASSO regression in R
glmnet and R survival were used. After performing 1000 10-fold
cross-validations, the λ value with minimized error was selected
as the optimum λ parameter value.13 Risk score models were
constructed using multivariate Cox regression in R survminer
and R survival. The risk score model’s predicted risk score
served as a predictor of prognostic status.

The risk score for each sample was calculated using a risk
score model. The total sample was divided into high- and low-
risk groups. Using R survminer and R survival were compared
between high- and low-risk groups. To calculate the potency of
the risk score model, ROC curves for the training and testing
datasets were plotted using R survivalroc ROC. The risk curves
were plotted according to survival time, survival status, gene
expression quantity, and risk score for each sample. A nomo-
gram was created using R RMS based on the clinical infor-
mation provided by the TCGA database, including age, gender,
stage, and risk score, and excluding missing data.

Results

Differentially Expressed Genes and Weighted Gene
Co-expression Network Analysis
Based on the filter conditions of logfc≥|2| and adjusted P ≤
.05, 2518 DEGs out of 19 405 genes were screened. The
β-value was set at 12 (scale free R2 ≥ .90) and adjusted as a

soft-threshold index to construct a scale-free co-expression
network according to the WGCNA. TheWGCNA results had
a total of 10 modules, including MEred, MEblue, MEgreen,
MEmagenta, MEpink, MEyellow, MEblack, MEbrown,
MEturquoise, and MEgrey. MEturquoise was the module
with the highest LUAD correlation with 3449 genes. It had a
total of 526 intersection genes with DEGs (Figure 2).

Enrichment Analysis

KEGG/GO functional enrichment analysis was performed
on 526 genes. Biological process (BP) was mainly en-
riched in extracellular matrix organization, external
structure organization, and external encapsulating
structure organization (Figure 3A). Cellular component
(CC) was mainly enriched in collagen-containing extra-
cellular matrix, focal adhesion, and cell-substrate junc-
tion (Figure 3B). Molecular function (MF) was mainly
enriched in glycosaminoglycan binding, extracellular
matrix structural constituent, and sulfur compound
binding (Figure 3C). KEGG was mainly enriched in the
PI3K-Akt signaling pathway (Figure 3D).

PPI, Hub Gene Survival Analysis,
and Immunohistochemistry

A PPI network for 526 genes was constructed using a
string database. The top 10 hub genes were screened using
the cytohubba module in Cytoscape. These included IL6,
PECAM1, CDH5, VWF, THBS1, CAV1, TEK, HGF,
SPP1, and ENG (Figure 4A). Survival analysis for hub
genes identified 4 genes that had an impact on survival.
They were PECAM1, HGF, SPP1, and ENG (Figure 4B).
Boxplots based on the expression profiles of these 4 genes
were constructed (Figure 4C). PECAM1, HGF, and ENG
were downregulated and SPP1 was upregulated at the

Figure 2. Intersection of 2518 differentially expressed genes and
3447 genes inside the MEturquoise module.

Luo et al. 3

http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
https://www.proteinatlas.org/


mRNA level. Immunohistochemistry results for PE-
CAM1, HGF, and ENG showed that they were down-
regulated and SPP1 was upregulated at the protein level
(Figure 5).

Prognostic Model Construction

An accurate prognostic model was established and univariate
Cox regression analysis was performed on 19 405 genes in 243
training dataset samples, which identified 75 prognostically
influential genes. LASSO regression analysis was performed
on 75 genes, which identified 17 genes. Multivariate Cox
regression analysis of 17 genes filtered out 9 genes (RPL22,
ENO1, KDF1, ZNF691, PCSK9, DNASE2B, SNX7, ELA-
POR1, and LCE5A) that were used to construct a forest plot
(Figure 6A). The favorable prognosis genes included KDF1,
ZNF691, DNASE2B, and ELAPOR1, while unfavorable
prognosis genes included RPL22, ENO1, PCSK9, SNX7,
and LCE5A. The risk score model followed the relationship,

where riskScore = .421*RPL22+.417*ENO1-.522*KDF1-
.502*ZNF691+.169*PCSK9-.13*DNASE2B+.346*SNX7-
.077*ELAPOR1+.179*LCE5A. Risk score analysis for the
training and testing datasets divided the cohort into high-
and low-risk groups according to the median risk score
value. Survival analysis showed that the high risk group had
a worse overall survival than the low-risk group (P < .0001;
Figure 6B-6C).

The ROC curves for the training and testing datasets
were plotted to evaluate the efficacy of the risk score
model. The ROC curves had area under the curve values
of .78 and .758 for the training and testing groups, re-
spectively (Figure 6D-6E). Risk curves were plotted
according to survival time and risk score (Figure 7A).
The number of patients who died continuously increased
and the number of those who survived continuously
decreased with increasing risk scores (Figure 7B). A heat
map of the key genes for prognosis is shown in Figure 7C,
which demonstrated the reliability of the risk score

Figure 3. A. Top 10 GO terms of genes related to biological process, B. cellular component, C. molecular function, D. kyoto encyclopedia of
genes and genomes.
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model. The nomogram with clinical data from the TCGA
database included age, gender, stage, and risk score and
was used to predict the 1-, 3-, and 5-year survival values
(Figure 8).

Discussion

The present study used DEGs with WGCNA to identify the
intersection genes. KEGG/GO enrichment analysis was

Figure 4. A. Top 10 hub genes were screened from 526 genes. B. Top 10 genes were subjected to survival analysis, and 4 genes (PECAM1,
HGF, SPP1, and ENG) had impacts on survival with a log-rank of P < .05. C. Expression profiles of PECAM1, HGF, SPP1, and ENG in LUAD;
SPP1 was upregulated, while PECAM1, HGF, and ENGwere downregulated. *Indicates that the difference between LUAD and normal groups
was statistically significant.

Figure 5. PECAM1, HGF, and ENG were downregulated and SPP1 was upregulated at the protein level.
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performed on the intersection genes, which were then used to
construct the PPI network. Ten hub genes were screened out
and evaluated using the cytohubba module in Cytoscape. The
final results screened-out 4 genes that have effects on the
development of LUAD. KEGG analysis showed that PECAM-
1 participates in cell adhesion molecules, leukocyte trans-
endothelial migration, and malaria. Increased expression of
PECAM-1 promotes migration of endothelial lymphocytes.14

The present study demonstrated that high expression of
PECAM-1 was associated with improved survival, which was
consistent with the study by Cao et al15 PECAM-1 signaling
may be involved in the regulation of VEGF expression16 HGF
and SPP1 were involved in the PI3K-Akt signaling pathway.
The present study demonstrated that high expression of HGF
was associated with improved survival, which was consistent
with the study by Pan et al17 It has also been noted that HGF
regulates the expression of SAE2 and circRNA CCDC66,

thereby increasing EMT and drug resistance in LADC cells.18

Additional studies have demonstrated that HGF activates FAK
and downregulates the expression of AIF.19 The cDNA se-
quence for SPP1 contains a 67-bp 5’ noncoding region and a
415-bp 30 noncoding region, as well as a 942-bp coding region
encoding a 314-amino-acid protein.20 High SPP1 expression
predicts poor survival in LUAD,21 and SPP1 serves as a bi-
ological marker for LUAD prognosis.22-25 It is also involved in
the development of pulmonary fibrosis, as well as affects
macrophage secretion by upregulating its expression.26 The
membrane antigen endoglin, which was first identified in 1985
on the surface of a cell line with acute lymphoblastic leukaemia
using hybrid technology to obtain the murine monoclonal
antibody mab44g4, was mainly localized in vascular endo-
thelial cells.27 In 1988, Gougos et al28 have validated the
presence of endoglin in a variety of vascular endothelial cells
using the monoclonal antibody mab44g4 and have found it to

Figure 6. A. KDF1, ZNF691, DNASE2B, and ELAPOR1 had coefficient values of <1 and were favorable prognostic genes. RPL22, ENO1,
PCSK9, SNX7, and LCE5A had coefficient values of >1 and were unfavorable prognostic genes. B. The high-risk group had lower overall
survival than the low-risk group in the training dataset (P < .0001). C. The high-risk group had a lower overall survival rate than the low-risk
group in the testing dataset (P <.0001). Risk model potency calculated by plotting ROC curves with area under the curve values of .78 and .758
for training D and testing E groups, respectively.
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be a homodimer composed of subunits with a molecular weight
of 95 kDa. Mutations in ENG may cause hereditary hemor-
rhagic telangiectasia,29,30 greater susceptibility to pulmonary
artery malformations,31 and pulmonary hypertension.32

Univariate Cox, LASSO, and multivariate Cox regression
analyses were used in the present study to construct a risk
score model. The model contained 9 genes, including RPL22,
ENO1, KDF1, ZNF691, PCSK9, DNASE2B, SNX7,
ELAPOR1, and LCE5A. Ribosomal protein L22 (rpl22) is
expressed in various cells.33 Studies have shown that rpl22
functions as a tumor suppressor by selectively upregulating
the expression of the tumor suppressor p53 and inhibiting
colony formation of cancer cells.34 The rpl22 is down-
regulated in lung cancer and can interact with casein kinase
2α.35,36 EN01 is the most differentially expressed protein
in humans, and this differential expression depends on the
stress or metabolic status of the pathological cells in the
tissue.37 Additionally, EN01 is involved in many important
physiological processes, such as hypoxia resistance,38

inflammatory responses, and autoimmune activities.39

ENO1 upregulation promotes glycolysis and tumor pro-
gression in LUAD40 and serves as a potential biological
marker in the early occurrence and development of lung
cancer.41 Chemoresistance influences small cell lung
cancer by regulating ENO1 expression.42 The KDF1
mutation may cause abnormal ectodermal development43

and regulates epidermal differentiation via KDF1-
mediated IKKα deubiquitination.44 The low expression
of ZNF691 in patients with ovarian cancer is associated
with poor prognosis.45 Proprotein convertase subtilosin 9
(PCSK9) is the ninth member of the proteinase K subfamily
of the proprotein convertase family. It is currently con-
firmed that PCSK9 can affect blood lipids by regulating
lipid metabolism. It interacts primarily at the cell surface
with epidermal growth factor precursor homology domain
A of the LDLR, limiting the LDLR-mediated lipoprotein
uptake.46 PCSK9 regulates apoptosis of LUAD cells
(A549) via the ER stress and mitochondrial signaling
pathways.47 It may also be a prognostic marker for NSCLC
patients.48 DNASE2B is an enzyme responsible for nuclear
degradation in the mouse lens. However, DNASE2B ex-
pression in zebrafish has a distribution pattern that is

Figure 7. A. High- and low-risk groups were ranked by risk score
of each sample. B. As risk score increased, the number of deaths
continued to increase in each sample. C. Expression of each gene
inside the risk score model in high- and low-risk groups.

Figure 8. “Points” served as a scoring scale for each factor, while “total points” served as a scale for the total score. “riskScore” represents
the risk score. “Stage” represents the 4 stages of LUAD. Based on the total score of each patient, 1-, 3-, and 5-year survival rates were
inferred.
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different from that in mice.49 DNASE2B is highly ex-
pressed in smokers and may have the potential to improve
the prediction of chemosensitivity in gastric cancer
patients.50,51 Sorting nexins (SNXs) are a family of pe-
ripheral membrane proteins that direct protein trafficking
decisions within the endocytic network.52 SNX7 is a
member of the SNX family and contains a PX and BAR
domains. It regulates amyloid β peptide by inducing the
degradation of amyloid precursor protein.53 ELAPOR1 is a
secretory granule maturation-promoting factor that is lost
during paligenosis.54

The study results showed that as the risk score increased,
the patient survival rate gradually decreased, while the
prognostic impact of the risk score increased. The area under
the ROC curve for the training and testing datasets indicated
that the risk score model was valid.

Limitations

The present study did not validate the amount of mRNA
expression of PECAM1, HGF, SPP1, and ENG in lung
cancer and only adopted the mRNA data from the TCGA
database to construct a prognostic model with a single
source of data.

Conclusions

Genes affecting the development of LUAD included PE-
CAM1, HGF, SPP1, and ENG. The favorable prognosis
genes included KDF1, ZNF691, DNASE2B, and ELAPOR1,
while the unfavorable prognosis genes included RPL22,
ENO1, PCSK9, SNX7, and LCE5A.
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tational and clinical analysis of the ENG gene in patients with
pulmonary arterial hypertension. BMC Genet. 2016;17(1):72.

33. Solanki NR, Stadanlick JE, Zhang Y, Duc A-C, Lee S-Y,
Lauritsen JPH, et al. Rpl22 loss selectively impairs αβ T cell
development by dysregulating endoplasmic reticulum stress
signaling. J Immunol. 2016;197(6):2280-2289.

34. Cao B, Fang Z, Liao P, et al. Cancer-mutated ribosome
protein L22 (RPL22/eL22) suppresses cancer cell survival by
blocking p53-MDM2 circuit. Oncotarget. 2017;8(53):
90651-90661.

35. YangM, Sun H, He J, et al. Interaction of ribosomal protein L22
with casein kinase 2α: A novel mechanism for understanding
the biology of non-small cell lung cancer. Oncol Rep. 2014;
32(1):139-144.

36. Yang M, Sun H, Wang H, Zhang S, Yu X, Zhang L. Down-
regulation of ribosomal protein L22 in non-small cell lung
cancer. Med Oncol. 2013;30(3):646.

37. Petrak J, Ivanek R, Toman O, et al. Déjà vu in proteomics. A hit
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