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Purpose: To assess the relative impact of elevated T-helper 2 (TH2)- and reduced T-Helper 1 (TH1)-dependent immune
responses on ocular herpes simplex virus type 1 (HSV-1) infection.
Methods: Signal transducer and activator of transcription protein 4 knockout mice (BALB/c-STAT4−/−) and wild-type
BALB/c control mice were immunized with avirulent HSV-1 strain KOS or were mock-immunized. Three weeks after
the third immunization, neutralizing antibody titers were determined by plaque reduction assays. Following ocular
infection with virulent HSV-1 strain McKrae, viral replication in the eye, blepharitis, corneal scarring (CS), survival, and
immunoglobulin (Ig) isotypes in sera were determined.
Results: Vaccinated STAT4−/− and BALB/c mice contained significant and similar neutralizing antibody titers and were
completely protected against HSV-1-induced death and CS. In contrast to vaccinated STAT4−/− mice, mock-vaccinated
STAT4−/−  mice  had  higher  ocular  HSV-1  titers  than  mock-vaccinated  BALB/c  mice on  days 2–3 post-ocular
infection. There were also significant differences in the levels of IgG2a, IgG2b, and IgG3 in the sera of STAT4−/− mice
when compared to the control BALB/c mice.
Conclusions: These results suggest that the absence of TH1 cytokine responses did alter protection against viral replication
and IgG isotypes but not eye disease or survival.

Signal transducers and activators of transcription (STAT)
proteins are activated in response to a large number of
cytokines, growth factors, and hormones [1]. Upon activation
following the binding of ligands to their receptors, STAT
proteins dimerize, translocate to the nucleus, and bind to the
promoters of specific target genes. At present the STAT
family is classified into seven groups [2] of cytoplasmic
proteins, which are activated by phosphorylation of a specific
tyrosine [3]. Although some cytokines and growth factors can
activate multiple STAT proteins, certain STAT proteins are
activated with considerable specificity. In turn, each activated
STAT protein activates transcription of a specific cytokine.
For example, STAT6 is involved in production of several
interleukins (IL) such as IL-4 and IL-13 [4,5], while STAT4
is involved in production of IL-2 [6,7]. Thus, STAT6−/− mice
have a reduced T-helper 2 (TH2)-mediated immune response,
while STAT4−/− mice have an increased TH2-mediated
immune response.

Following stimulation by foreign antigens, CD4+ and
CD8+ T-cell clones of mice and humans produce specific
patterns of cytokine expression [8,9]. Based on the cytokines
produced, CD4+ T cells are designated TH1 or TH2, and
CD8+ T cells are designated TC1 or TC2 [8,10,11]. Usually,
either a TH1/TC1 or a TH2/TC2 cytokine pattern predominates
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in response to a specific antigenic challenge [12-14]. TH1/
TC1 cells are involved in cellular immunity (delayed type
hypersensitivity and cellular cytotoxicity) and produce IL-2,
tumor necrosis factor beta (TNF-β), and interferon-gamma
(IFN-γ). TH2/TC2 cells are involved in humoral immunity
(antibody mediated) and produce IL-4, IL-5, IL-6, and IL-10
[9,15]. IL-4 enhances TH2/TC2 development and inhibits TH1/
TC1 development [16,17]. IL-2 stimulates development of
TH1/TC1 and inhibits development of TH2/TC2 [18,19]. The
TH1/TC1 to TH2/TC2 balance determines the outcome of a wide
variety of immune responses involving infectious,
autoimmune, and allergic diseases [10].

We previously demonstrated faster clearance and lower
eye disease in STAT6−/− mice [20]. These results indicated that
increased level of IL-2 in STAT6−/− mice was associated with
improved vaccine efficacy. Immunohistochemical analyses of
corneal sections of ocularly infected mice had shown that lack
of protection against corneal scarring (CS) correlated with the
absence of neutralizing antibody titer and the presence of IL-4
in the cornea [13,21]. Since IL-4 is an indicator of a TH2
response [8,14], these results suggested that TH2 responses are
either neutral or enhance CS [13,22]. The studies presented
here with STAT4−/− mice, which are deficient in IL-2
production and lack a TH1 response, were undertaken to
determine if these observed correlations reflected function.
We report that the absence of TH1 and elevation of TH2
responses in STAT4−/− mice had no role in protection against
ocular herpes simpex virus type 1 (HSV-1) infection but did
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have an effect on immunoglobulin-G (IgG)-subtype switching
and early viral replication.

METHODS
 
Virus and cells: Plaque-purified HSV-1 strains (maintained
in-house) were grown in rabbit skin (RS) cell monolayers in
minimal essential media (MEM) containing 5% fetal bovine
serum. McKrae, a stromal disease-causing neurovirulent
HSV-1 strain was the ocular challenge virus. KOS, a
avirulent nonstromal disease-producing strain was used  as
a live virus vaccine.
 
Mice: All animal procedures adhered to the Association for
Research in Vision and Ophthalmology (ARVO) statement
for the Use of Animals in Ophthalmic and Vision Research
and according to institutional animal care and use guidelines.
Six-week-old inbred BALB/c mice and homozygous BALB/
c-STAT4−/− mice (Jackson Laboratory, Bar Harbor, ME) were
used in this study.
 

Vaccinations of mice: Mice were vaccinated three times
intraperitoneum (IP) at 3-week intervals with 2×105 plaque-
forming units (PFU) of live KOS in tissue culture media.
Mock-vaccinated mice were similarly inoculated but with

Figure 1. Neutralizing antibody titers in vaccinated mice. Mice were
vaccinated three times and bled 3 weeks after the third vaccination.
Neutralization titers are expressed as the reciprocal of the geometric
means± the standard error of the mean (SEM) from seven individual
mice sera. The p values were calculated from the Student t test.

tissue culture media (MEM with %5 FBS) alone. Serum-
neutralizing antibody titers were determined by 50% plaque
reduction assays, as we described previously [23], using sera
collected 3 weeks after the final vaccination. Briefly, the sera
from vaccinated or mock-vaccinated mice were heat
inactivated for 30 min. at 56 °C, diluted in MEM, mixed with
200 PFU of HSV-1 strain McKrae, and incubated for 30 min
at 37 °C. Samples were added to RS cells in 6-well microtiter
plates, the plates were incubated at 37 °C for 72 h, stained with
1% crystal violet, and the plaques were counted. The means
of the antibody titers (50% plaque reduction) were expressed
as the reciprocal of the serum dilution.
Ocular infection: Mice were infected ocularly, without
corneal scarification, with 2×105 PFU of HSV-1 strain
McKrae per eye, in 1 μl of tissue culture medium [23].
Titration of virus in tears: Tear films were collected from both
eyes of five or ten mice per group at various times, using a
Dacron-tipped swab [22]. Each swab was placed in 0.5 ml
tissue culture medium, squeezed, and the amount of virus was
determined by a standard plaque assay on RS cells.
Analysis of immunoglobulin subtypes and isotypes in the sera:
Mice were bled by retro-orbital bleeding; sera were collected,
and stored at -80 °C until use. IgG1, IgG2a, IgG2b, IgG3, IgM,
and IgA concentrations were determined in sera collected
from vaccinated mice, using a mouse immunoglobulin
isotyping enzyme-linked immunosorbent assay (ELISA) kit
(Becton Dickinson, San Diego, CA). Briefly, plates were
coated with different rat anti- mouse antibody isotypes and
incubated at 4 °C overnight. Sera was then added to each well,
incubated overnight at 4 °C and washed with 0.05% Tween in
1× phosphate-buffered saline (PBS). Horseradish peroxidase
(HRP)-labeled rat anti-mouse immunoglobulin G (IgG) was
incubated for 1 h at room temperature and color was
developed using an enzyme substrate solution (kit provided)
for 10 min at room temperature. Concentration was
determined by spectrophotometric absorbance at 450 nm.
Monitoring blepharitis and corneal scarring: The severity of
blepharitis and CS were scored in a masked fashion by
examination with slit lamp biomicroscope following addition
of 1% fluorescein as eye drops. Disease was scored on a 0 to
4 scale (0=no disease, 1=25%, 2=50%, 3=75%, and 4=100%
involvement) as we described previously [24].
Statistical analysis: Protective parameters were analyzed by
the Student t test and Fisher's exact test, using Instat
(GraphPad, San Diego, CA). Results were considered
statistically significant when the p value was <0.05.

RESULTS
Herpes simplex virus type 1 (HSV-1) neutralizing antibody:
BALB/c-STAT4−/− and wild-type BALB/c mice were
vaccinated three times with an avirulent HSV-1 strain KOS in
MEM or mock-vaccinated with MEM alone, as described in
the Methods section. Three weeks after the third vaccination,
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sera were collected and individually heat inactivated.
Neutralization titers of these sera were then determined by
plaque reduction assays. The average neutralizing antibody
titer for vaccinated STAT4−/− mice was not significantly
different than for vaccinated BALB/c mice (Figure 1; p>0.05,
Student t test). As expected, both vaccinated groups had
significantly higher neutralizing antibody titers than did the
mock-vaccinated mice (Figure 1; p<0.0001, Student t test).
Immunoglobulin isotypes and subtypes: Sera from vaccinated
mice were analyzed for the relative expression of each Ig
subtype and IgG subtypes (Table 1). No significant
differences were detected between the two groups for IgG1,
IgA, or IgM. However, we did detect a significant decrease in
the levels of IgG2a, IgG2b, and IgG3 in the STAT4−/− mice.
Thus, the absence of STAT4 altered the IgG2a, IgG2b, and
IgG3 subtypes in vaccinated mice when compared with mock-
vaccinated control wild-type mice.
Vaccine protection against lethal ocular infection:
Vaccinated and mock-vaccinated STAT4−/−and BALB/c mice
were infected ocularly with 2×105 PFU/eye of HSV-1 strain
McKrae, as described in the Methods section. All of the
vaccinated STAT4−/− and BALB/c mice survived lethal ocular
infection (Table 2). The vaccine-induced protection was
highly significant for both groups compared to their mock-
vaccinated counterparts (Table 2). Thus, even in the absence
of STAT4, vaccination protected 100% of the mice against
lethal ocular infection.
Herpes simplex virus type 1 (HSV-1) ocular clearance in
STAT4−/− mice: Tear films from mice infected ocularly with

2×105 PFU/eye of HSV-1 (strain McKrae) were collected
from 20 eyes/group on days 1–10 post infection (PI), and the
amount of infectious HSV-1 was determined (Figure 2A,B).
Mock-vaccinated STAT4−/− mice had no significant
differences in ocular HSV-1 titers on days 1 and on days 4
thru 10 PI (Figure 2A; p>0.05), while STAT4−/− mice had
significantly higher virus titers during days 2–3 PI than their
corresponding BALB/c mice (Figure 2A; p<0.05); by day 4
PI, no differences were detected between STAT4−/− mice and
BALB/c mice. No significant differences were detected
between virus titers in vaccinated STAT4−/− mice or their
corresponding BALB/c control (Figure 2B; p>0.05).
However, in vaccinated STAT4−/− mice, virus was completely
cleared by day 5 PI (Figure 2B). In contrast, in vaccinated
BALB/c mice, HSV-1 was completely cleared by day 4 PI
(Figure 2B). Thus, during early times PI in mock-vaccinated
but not vaccinated mice, the absence of STAT4 appears to
enhance HSV-1 replication and in vaccinated mice STAT4−/

− leads to a slightly longer time to viral clearance.
Protection against blepharitis and corneal scarring: Herpetic
blepharitis was measured 7 days after ocular infection, as
described in the Methods section. Vaccinated STAT4−/− and
BALB/c mice were completely protected against blepharitis
(Figure 3A; KOS, p>0.05). Mock-vaccinated STAT4−/− and
BALB/c mice exhibited similar levels of blepharitis, and both
groups  had  significantly  higher  levels  of  blepharitis  than
did  their   vaccinated  counterparts  (Figure   3A;   p<0.0001
CS  was  measured  in   surviving   mice  on  day  28  post-
ocular infection, as described in the Methods section. All of

TABLE 1. IMMUNOGLOBULIN ISOTYPES IN THE BLOOD OF VACCINATED STAT4−/− AND BALB/C MICE.

Ig isotype STAT4−/− BALB/c p
IgG1 2.34±0.07 2.44±0.02 0.2068
IgG2a 2.04±0.14 2.62±0.09 0.0083
IgG2b 2.00±0.07 2.32±0.07 0.0120
IgG3 1.21±0.03 1.49±0.10 0.0278
IgA 1.98±0.17 2.31±0.05 0.0996
IgM 1.22±0.06 1.47±0.11 0.0811

Optical density (OD) of immunoglobulin isotypes and subtypes were determined (as described in Methods) in sera collected
from five vaccinated STAT4−/− or vaccinated BALB/c mice three weeks after the third vaccination and before ocular infection.
Student’s t-test was used to compare results from vaccinated STAT4−/− mice to vaccinated BALB/c mice.

TABLE 2. SURVIVAL FOLLOWING OCULAR HSV-1 INFECTION OF VACCINATED MICE.

Survival/Total
 Vaccine STAT4−/− BALB/C

KOS 10/10 (100%) 10/10 (100%)
Mock 3/10 (30%) 2/20 (20%)
p (KOS versus Mock) 0.0031 0.0007

Mice were vaccinated three times and infected ocularly with McKrae as described in the Methods. p-Values were determined
using Fisher’s exact test.
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the vaccinated STAT4−/− and BALB/c mice were completely
protected against CS (Figure 3B; KOS, p>0.05). The
protection against CS in vaccinated mice was highly
significant when compared with their corresponding mock-
vaccinated mice (Figure 3B; p<0.0001, Student t test). The
level of CS between mock-vaccinated STAT4−/− and BALB/
c mice was similar (Figure 3B; Mock, p>0.05). Thus, the
absence of STAT4 did not alter the level of blepharitis or CS
in either vaccinated or mock-vaccinated mice.

DISCUSSION
HSV-1 infections are among the most frequent serious viral
eye infections in the USA and are a major cause of viral-
induced blindness [24-29]. HSV-1-induced CS, also broadly
referred to as herpes stromal keratitis, can lead to blindness,
and HSV-1 is the leading cause of corneal blindness from an
infectious agent in developed countries [28,30,31]. The

immune response(s) leading to CS following ocular HSV-1
infection is a T-helper response, and both TH1 and TH2 have
been implicated [13,32,33]. Previous work demonstrated that
an increase of TH1 response leads to lesser herpetic eye
disease, an increase of neutralizing antibody titers, and
ultimately an expedited viral clearance in STAT6−/− knockout
mice [20].

The present study was designed to extend our previous
study with STAT6−/− mice to determine what role, if any,
elevation of TH2- and reduction of TH1-mediated immune
responses may play in viral clearance and eye disease, using
STAT4−/− mice. The STAT4−/− mice have impaired IL-12
processes and thus a reduced TH1 response and an increased
TH2 response [34,35]. One would expect worsened eye disease
in these animals, as IL-4 has been previously correlated with
enhanced eye disease and increased HSV-1 replication [36,
37]. However, we observed equal levels of eye disease, equal

Figure 2. Virus titers in mouse eyes
following ocular infection. Three weeks
after the third vaccination, STAT4
knockout (STAT4−/−) (open symbols)
and BALB/c mice (closed symbols)
were infected ocularly, and the presence
of Herpes Simplex Virus Type 1
(HSV-1) in tear films was monitored
daily. For each point, the virus titer (y-
axis) represents the average of the titers
from 20 eyes. The error bars indicate the
standard errors. A: Graph A shows virus
replication in mock-vaccinated mice
infected with 2×105 plaque-forming
units (PFU) per eye. B: Graph B shows
virus replication in KOS-vaccinated
mice infected with 2×105 PFU/eye.
Asterisks indicate significance (p<0.05)
when titers are compared with the
Student t test.

Figure 3. Blepharitis and corneal
scarring (CS) following ocular
infection. Three weeks after the third
vaccination, STAT4−/− and BALB/c
mice were infected infected ocularly
with Herpes simplex virus type 1
neurovirulent strain McKrae.
Blepharitis was measured 7 days after
ocular infection based on 20 eyes, while
CS was measured 28 days after ocular
infection from surviving mice listed in
Table 2. The error bars indicate the
standard errors. A: Graph A shows
blepharitis on day 7 post-infection. B:
Graph B shows CS on day 28 post-
infection. The p values were calculated
from the Student t test.
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survival, and generally equal viral replication between
STAT4−/− and wild-type control BALB/c mice. Also,
STAT4−/− did not affect vaccine-induced protection as
survival, eye disease, and viral replication were equal between
the immunized STAT4−/− mice and the immunized BALB/c
control mice.

At the antibody level as we have shown here, the TH2
responses are associated with greater production of IgG1 and
IgG2b, while the TH1 responses are associated with
production of the IgG2a and IgG3 antibody (Ab) subclasses
[38-40]. We observed a highly significant decrease in the level
of IgG2a in the sera of STAT4−/− mice when compared to
BALB/c control mice and to our published results with
STAT6−/− mice [20]. This is most likely caused by the
reduction in IFN-γ, as this cytokine has been shown to
stimulate IgG2a secretion [41], and a reduction in IFN-γ
production has been reported in STAT4−/− mice [42]. Since
TH1 cells are associated with the production of IgG2a
antibodies [43], our results of decreased IgG2a levels correlate
with a reduced TH1 response in the STAT4−/− vaccinated mice.
It was shown previously that IgG2a antibodies are associated
with efficacious viral vaccines [43]. The decrease in
expression of IgG2a in STAT4−/− vaccinated mice is
associated with a slight reduction in vaccine efficacy. Since
IgG2a is still produced, most likely due to the immunization
response, there is still protection. However, this might explain
the increased early viral replication seen in STAT4−/− mock-
vaccinated mice as well as the delayed viral clearance
observed in STAT4−/− vaccinated mice. Murine-neutralizing
antibody against HSV-1 is predominantly associated with

STAT4 responses did not appear to be involved in
protection since mock-vaccinated STAT4−/− mice were not
more susceptible to lethal ocular HSV-1 infection than mock-
vaccinated BALB/c mice. Mock-vaccinated STAT4−/− mice
had increased virus titers in their eyes on days 2 and 3 PI.
However, this higher level of viral replication did not alter eye
disease or survival in these mice, and it is likely that this
increased viral replication was due to decreased TH1
responses. Previously we showed that an increase in IL-2
responses in the eye correlated with an increase in protection
from eye disease in vaccinated mice [36,50]. The seemingly
apparent lack of effect of STAT4−/− in HSV-1 infection most
likely indicates immune compensation orchestrated by
STAT4-independent pathways [42] or differences in response

from the triggering antigen as seen during influenza infection
of STAT4−/− mice [51] and in autoimmune diabetes [52]. In
contrast to this study, it was previously shown that STAT4−/

− mice that were ocularly infected with the RE strain of HSV-1
had exacerbated eye disease when compared with control
BALB/c mice [53]. The discrepancy between this study and
our own may be related to the use of different virus strains or
the methods used to measure protection.

In summary, the results presented here strongly suggest
that STAT4 responses are not essential for vaccine-induced
neutralizing antibody titers against HSV-1 or vaccine-induced
protection against lethal HSV-1 infection. However, STAT4
responses were involved in induction of Ig subtype switching
in the sera of ocularly infected mice. Taken together, our
results suggest that enhanced TH1 responses are more effective
in clearing HSV-1 infection, a result that mimics our previous
vaccine studies [36,50].
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