

Protocol

Protocol for detecting *Helicobacter suis* infection in gastric biopsies and serum by PCR and ELISA

Infection with *Helicobacter suis*, which causes many cases of gastric disease, is not reliably diagnosed. Here, we present a protocol for detecting *H. suis* infection. We describe steps for collecting gastric biopsies and sera from patients, preparing DNA for PCR, and targeting the *H. suis*-specific gene. We then define procedures for inoculating biopsies onto primary agar plates and transferring colonies to secondary agar plates. Finally, we detail whole-genome sequencing of bacteria and assess *H. suis* infection in sera with ELISA.

Publisher's note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.

Hidenori Matsui, Masato Suzuki, Sae Aoki, ..., Katsuhiro Mabe, Tsuyoshi Kenri, Emiko Rimbara

hmatsui@niid.go.jp (H.M.) rimbara@niid.go.jp (E.R.)

Highlights

Protocol for detecting *H. suis* infection in clinical practice

Steps to collect and transport gastric biopsies and serum specimens

Detecting *H. suis* in gastric biopsies by PCR, culture, and whole-genome sequencing

Establishing serological detection of *H. suis* infection by ELISA

Matsui et al., STAR Protocols 4, 102556 December 15, 2023 © 2023 The Author(s). https://doi.org/10.1016/ j.xpro.2023.102556

Protocol

Protocol for detecting Helicobacter suis infection in gastric biopsies and serum by PCR and ELISA

Hidenori Matsui,^{1,2,3,*} Masato Suzuki,⁴ Sae Aoki,¹ Keigo Shibayama,² Kengo Tokunaga,⁵ Hidekazu Suzuki,⁶ Katsuhiro Mabe,⁷ Tsuyoshi Kenri,¹ and Emiko Rimbara^{1,8,9,*}

SUMMARY

Infection with *Helicobacter suis*, which causes many cases of gastric disease, is not reliably diagnosed. Here, we present a protocol for detecting *H. suis* infection. We describe steps for collecting gastric biopsies and sera from patients, preparing DNA for PCR, and targeting the *H. suis*-specific gene. We then define procedures for inoculating biopsies onto primary agar plates and transferring colonies to secondary agar plates. Finally, we detail whole-genome sequencing of bacteria and assess *H. suis* infection in sera with ELISA. For complete details on the use and execution of these protocols, please refer to

BEFORE YOU BEGIN

Matsui et al.1

Institutional permissions

△ CRITICAL: This study has been approved by the Research Ethics Committees (RECs) of NIID and Kitasato University under registration numbers 1284 and 18100, respectively.

△ CRITICAL: Ethical reviews have also been approved by medical institutes.

△ CRITICAL: Written informed consent has been obtained from all of the patients participating in the study.

Note: Individuals with healthy stomachs or gastric disease under 20 years old are excluded from this study.

Processing of samples

© Timing: 1-7 days

¹Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan

²Department of Bacteriology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan

³Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan

⁴Antimicrobial Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan

⁵Department of General Medicine, Kyorin University School of Medicine, Tokyo 208-0011, Japan

⁶Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan

⁷Junpukai Health Maintenance Center Kurashiki, Okayama 712-8014, Japan

⁸Technical contact

⁹Lead contact

^{*}Correspondence: hmatsui@niid.go.jp (H.M.), rimbara@niid.go.jp (E.R.) https://doi.org/10.1016/j.xpro.2023.102556

1. Collect gastric biopsies and serum samples from individuals undergoing medical check-ups or those with gastric disorders who underwent upper gastrointestinal endoscopy.

Note: The presence of a mottled pattern or marbling findings in the glandular border region from the antrum or vestibule of the stomach to the gastric angle raises the suspicion of an ongoing *H. suis* infection.

Note: Gastric biopsies are collected from each of the following three sites: the greater curvature of the gastric antrum, the greater curvature of the lower gastric body, and the lesser curvature of the gastric angle.²

Note: Use separate gastric biopsy transport media for each gastric biopsy.

2. Transport gastric biopsies to the laboratory at 19°C–22°C within five days of collection using the non-H. pylori Helicobacter species (NHPH) biopsy transport media.²

△ CRITICAL: Step 2 is crucial for successful H. suis cultivation.

- 3. Remove each gastric biopsy from the biopsy transport media and homogenize it with 300 μ L of *H. suis culture* broth using a microtube homogenizer.
 - Δ CRITICAL: Of the 300 μ L homogenate, a 200 μ L aliquot should be used immediately for cultivation, while the remaining 100 μ L aliquot should be stored at -20° C for PCR until ready for use.

Alternatives: To obtain a gastric specimen from gastric juice, promptly transfer the juice to a sterile tube and transport it to the laboratory at 19°C–22°C. Centrifuge 3.0 mL of the juice at 15,000 \times g for 3 min at 22°C using a Microfuge 20R. Then, homogenize the resulting precipitate with 300 μ L of H. suis culture broth using a microtube homogenizer.

4. Transport serum samples to the laboratory at 4°C within one week of collection, aliquot, and store at -80°C until ready for ELISA testing.

Preparation of ELISA

© Timing: 7 days

- 5. Prepare ELISA antigens from broth cultures of H. pylori and H. suis.
 - a. Inoculate the frozen stock of H. pylori strain TN2GF4 onto a Helicobacter-selective agar plate for three days in a humidified gas mixture (5% O_2 , 10% CO_2 , and 85% N_2) at 37°C in a multigas incubator.³
 - b. Inoculate the grown colonies of H. pylori into 25 mL of H. pylori culture broth in a 100 mL sterile glass Erlenmeyer flask.³
 - c. Maintain the culture for three days with orbital shaking at 120 rpm in the humidified gas mixture (5% O_2 , 10% CO_2 , and 85% N_2) at 37°C.³
 - d. Inoculate the frozen stock of *H. suis* strain NHP 19-4004 onto NHPH selective agar coated with *H. suis* culture broth. ⁴ Use five 25 cm² tissue culture flasks, each containing 5 mL of culture broth.
 - e. Maintain the culture for five days under orbital shaking at 50 rpm using an ultra-compact rotary shaker in a humidified gas mixture (5% O_2 , 12% CO_2 , and 83% N_2) at 37°C.⁴
 - f. Collect whole bacterial cells by centrifugation at 10,400 \times g for 10 min at 4°C by a compact multifunctional centrifuge Allegra X-30R. Use two 15 mL centrifuge tubes for each culture of *H. pylori* and *H. suis*.

Protocol

- g. Wash the collected cells twice with 12.5 mL of PBS and once with 12.5 mL of distilled water by centrifugation at 10,400 \times g for 10 min at 4°C by the Allegra X-30R using 15 mL centrifuge tubes.
- h. Suspend the washed cells in 0.5 mL of distilled water at 4° C in a 1.5 mL microtube.
- i. Disrupt using a Bioruptor II through sonication (20 kHz for five cycles of 30 s each, with a 30-s interval between each sonication at 0°C).
- j. Remove the insoluble components by centrifugation at 15,000 \times g for 20 min at 4°C using the Microfuge 20R.
- k. Measure the protein concentration of the whole bacterial cell solution using a BioSpectrometer with a μ Cuvette G1.0, employing BSA solution (1 mg/mL) as the standard.
- I. Aliquot and store the prepared whole bacterial cell solutions at -20° C until ready for ELISA testing.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Horseradish peroxidase (HRP)-conjugated goat anti-human IgA + IgG + IgM (H + L) antibody (1:10,000)	Jackson ImmunoResearch	Cat#109-035-064; PRID: AB_2337583
Bacterial and virus strains		
H. suis strain NHP19-4004	Rimbara et al. ²	N/A
H. pylori strain TN2GF4	Matsui et al. ³	N/A
Biological samples		
Gastric biopsies from patients	Matsui et al. ¹	N/A
Serum samples from patients (1:3,600)	Matsui et al. ¹	N/A
Positive control serum for <i>Helicobacter</i> suis infection (no. 04029) (1:3,600)	Matsui et al. ¹	N/A
Positive control serum for <i>Helicobacter</i> pylori infection (no. 04279) (1:3,600)	Matsui et al. ¹	N/A
Negative control serum (no. 04075) (1:3,600)	Matsui et al. ¹	N/A
Chemicals, peptides, and recombinant proteins		
Bovine serum albumin (BSA) standard solution (1 mg/mL)	BMS	Cat#BR-220700053
Sodium carbonate	FUJIFILM Wako	Code#199-01605
Sodium bicarbonate	FUJIFILM Wako	Code#199-05985
Phosphate-buffered saline (PBS) 10×, pH 7.4	Gibco	Cat#70011044
10% (wt/vol) Tween 20 solution	FUJIFILM Wako	Cat#161-24801
Blocker BSA (10% [wt/vol] BSA in PBS)	Thermo Fisher Scientific	Cat#37525
Glycerol	FUJIFILM Wako	Cat#070-04941
Critical commercial assays		
DNeasy Blood & Tissue Kit	QIAGEN	Cat#69504/69556
Nextera XT DNA Library Prep Kit	Illumina	Cat#TG-131-1096
ELISA enzyme substrate KPL SureBlue TMB Microwell Peroxidase Substrate (1 component)	SeraCare Life Sciences	Cat##5120-0075
Nunc-Immuno 96-well microtiter plate	Thermo Fisher Scientific	Cat#439454
Plate Seal T (PET sticking seal)	Watson	Cat#547-SBS-PET
5 mL V-bottom freestanding tube (sterile product)	Sarstedt	Cat#62.558.201
Petri dish (ø90 × 15 mm; sterile product)	AS ONE	Cat#GD90-15
Tissue culture flask (vent cap, 25 cm²; sterile product)	Violamo	Cat#VTC-F25P
Helicobacter-selective agar plate	Nissui Pharmaceutical	Cat#51035
Brucella broth	BD BBL	Cat#211088
Brucella agar	BD BBL	Cat#211086
Bacto agar	BD BBL	Cat#63-6531-35
Heat-inactivated fetal bovine serum (FBS)	Biowest	Cat#S181H
Skirrow (Campylobacter selective supplement)	Oxoid	Cat#OXSR0069E

(Continued on next page)

STAR Protocols Protocol

ontinued		
EAGENT or RESOURCE	SOURCE	IDENTIFIER
itox supplement	Oxoid	Cat#R663090
ent (<i>H. pylori</i> selective supplement)	Oxoid	Cat#OXSR0147E
mphotericin B solution (250 μg/mL)	Sigma-Aldrich	Cat#A2942
inezolid	Abcam	Cat#ab141991
HUNDERBIRD Probe qPCR Mix	Toyobo	Cat#QPS-101T
·	•	
ioTaq Green Master Mix	Promega	Cat#M7122
21Aquick PCR Purification Kit	QIAGEN	Cat#28104
eposited data		NI/A
/hole-genome sequences of <i>H. suis</i> 13 rains (GenBank/ENA/DDBJ accession number)	Matsui et al. ¹	N/A
he 23S-rRNA gene sequences of H. ylori 16 strains (GenBank/ENA/DDBJ ccession number)	Matsui et al. ¹	N/A
he 23S-rRNA gene sequences of	Matsui et al. ¹	N/A
elicobacter 21 type strains (GenBank/ NA/DDBJ accession number)	iviatsui et al.	N/A
equence typing (ST) assignment	Matsui et al. ¹	PubMLST https://pubmlst.org/organisms/ helicobacter-suis
Digonucleotides Digonucleotides		
	Rimbara et al. ²	N/A
I. suis hsvA targeting probe-based real-time PCR rimer sequence: NHP194003_11930_reverse: IATGGGCGCTTCTGGTTTA	Rimbara et al. ²	N/A
l. suis hsvA targeting probe-based real-time CR probe sequence: NHP194003_11930_probe: 56-FAM/ GTACACAC/ZEN/CAAACAGATGAGCCGT/3IABkFQ	Rimbara et al. ²	N/A
IHPH 16S rRNA gene targeting probe-based real-time CR primer sequence: NHPH_16S_F: AAGTCGAACGATGAAGCCTA	Matsui et al. ¹	N/A
IHPH 16S rRNA gene targeting probe-based real-time CR primer sequence: NHPH_16S_R: .TTTGGTATTAATCACCATTTCTAGT	Matsui et al. ¹	N/A
IHPH 16S rRNA gene targeting probe-based real-time CR probe sequence: NHPH_16S_probe: 56-FAM/TTA TCACC/ZEN/CGTGCGCCACTAATC/3IABkFQ	Matsui et al. ¹	N/A
I. pylori 651 bp DNA fragment of the 23S rRNA gene argeting colony PCR primer sequence: F3: CGTAGCGAAAGCGAGTCT	Matsui et al. ¹	N/A
I. pylori 651 bp DNA fragment of the 23S rRNA gene argeting colony PCR primer sequence: R3: CCGACTAACCCTACGATGA	Matsui et al. ¹	N/A
oftware and algorithms		
rimerQuest Tool	IDT	https://www.idtdna.com/pages/tools/ primerquest?returnurl=%2FPrimer Quest%2FHome%2FIndex
hovill v1.1.0	Open source	https://github.com/tseemann/shovill
yani 0.2.12	Open source	https://github.com/widdowquinn/pyal
raphPad Prism 9.4.1	GraphPad Software	https://www.graphpad.com/ scientific-software/prism/
Other		
l. suis hsvA targeting probe-based sal-time PCR protocol	Rimbara et al. ²	N/A
	Matsui et al. ¹	N/A
IHPH 16S rRNA gene targeting probe-based	iviatsui et ai.	
IHPH 16S rRNA gene targeting probe-based eal-time PCR protocol I. pylori 651 bp DNA fragment of the 23S rRNA ene targeting colony PCR protocol	Matsui et al. ¹	N/A

Protocol

Continued		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Ultra-compact rotary shaker	Nissin	Cat#NA-M301
Compact multifunctional centrifuge Allegra X-30R	Beckman Coulter	Cat#A99473
Falcon 15 mL conical centrifuge tube (sterile product)	Thermo Fisher Scientific	Cat#352096
Microfuge 20R	Beckman Coulter	Cat#B30-144
1.5 mL Microtube (sterile product)	BMBio	Cat#WNB615601
Microtube homogenizer (sterile product)	AS ONE	Cat#2-3869-2
2.0 mL Screw cap microtube (self-standing type)	AS ONE	Cat#1-2960-02
Bioruptor-II	BMBio	Cat#BR2006A
BioSpectrometer	Eppendorf	Cat#P1EPD1000194-1
Cuvette G1.0	Eppendorf	Cat#6138000018
Applied Biosystems 7500 Fast Real-Time PCR	Thermo Fisher Scientific	Cat#45509
MicroAmp Fast 96-well reaction plate	Thermo Fisher Scientific	Cat#4346907
MicroAmp Optical Adhesive Film	Thermo Fisher Scientific	Cat#4311971
CronoSTAR Portable 8 Real-Time System (4 channels)	Clontech	Cat#640249
CronoSTAR Portable Control PC	Clontech	Cat#WN820
0.2 mL 4-strip tube, individual for CronoSTAR	Clontech	Cat#WN100A
Mastercycler X50s	Eppendorf	Cat#6311000010
Fast PCR tube strips, 0.1 mL	Eppendorf	Cat#0030124928
llumina MiSeq	Illumina	Cat#SY-410-1003
Microplate shaking incubator MyBLP25	AS ONE	Cat#1-2934-01
Microplate washer Wellwash	Thermo Fisher Scientific	Cat#5165000
Microplate Spectrophotometer Multiskan SkyHigh	Thermo Fisher Scientific	Cat#A51119700C
Electric pipette Xplorer single channel (0.1–10 μL)	Eppendorf	Cat#4861000.015
Electric pipette Xplorer single channel (1–20 μL)	Eppendorf	Cat#4861000.017
Electric pipette Xplorer single channel (10–200 μL)	Eppendorf	Cat#4861000.027
Electric pipette Xplorer single channel (50–1000 μL)	Eppendorf	Cat#4861000.163
Electric pipette Xplorer 8-channel (15–300 μL)	Eppendorf	Cat#4861000.147
Electric pipette Xplorer 8-channel (50–1200 μL)	Eppendorf	Cat#4861000.163
Electric pipette single channel (0.1–10 mL)	A&D	Code#MPA10000
Autoclave	Tomy	Code#LSX-500
/ortex-Genie 2 mixer	M&S	Code#\$1-0286
Class II biological safety cabinet	Airtech	Code#BHC-1010IIA2
Medical refrigerated showcase (4°C)	Nihon Freezer	Code#NC-ME31HC
Deep freezer (–80°C)	Nihon Freezer	Code#CLN-32U
Biomedical freezer (–20°C)	PHC	Code#MDF-MU549DH-PJ

MATERIALS AND EQUIPMENT

Reagent	Final concentration	Amount
Brucella broth	Casein peptone (15.0 g/L), Meat peptone (5.0 g/L), Sodium chloride (5.0 g/L), Dextrose (1.0 g/L), Sodium bisulfite (0.1 g/L), Yeast extract (2.0 g/L)	28.1 g
Bacto agar	0.4% (wt/vol)	4 g
Heat-inactivated FBS,	20% (vol/vol)	200 mL
Skirrow	Vancomycin (10.0 μg/mL), Trimethoprim (5.0 μg/mL), Polymyxin B (2.5 IU/mL)	4 mL (2 vials)
Vitox	Glucose (2.0 mg/mL), Vitamin B12 (0.2 μg/mL), Adenine (20.0 μg/mL), L-Glutamine (200.0 μg/mL), Guanine (0.6 μg/mL), p-Aminobenzoic acid (0.26 μg/mL), L-Cystine (22.0 μg/mL), NAD (Coenzyme 1; 5.0 μg/mL), Cocarboxylase (2.0 μg/mL), Iron (III) nitrate (0.4 μg/mL), Thiamine hydrochloride (0.06 μg/mL), Cysteine hydrochloride (518 μg/mL)	20 mL (2 vials)
Amphotericin B (250 μg/mL),	5 μg/mL	20 mL

(Continued on next page)

Continued		
Reagent	Final concentration	Amount
Hydrochloric acid (37%)	N/A	Adjusted to pH 5.0 (approx. 1. 35 mL)
ddH ₂ O	N/A	754.65 mL
Total	N/A	1 L

Note: Suspend the Brucella broth and Bacto agar in ddH_2O and autoclave for 15 min at 121°C. Then cool to 50°C in a hot water bath before adding the remaining reagents. Store 5 mL of the gastric biopsy transport medium in a V-bottom freestanding tube at 4°C for up to 3 months. See Figure 1A.

NHPH selective agar plate ^{1,2}		
Reagent	Final concentration	Amount
Brucella agar	Casein peptone (15.0 g/L), Meat peptone (5.0 g/L), Sodium chloride (5.0 g/L), Dextrose (1.0 g/L), Sodium bisulfite (0.1 g/L), Yeast extract (2.0 g/L), Agar (15.0 g/L)	43.1 g
Heat-inactivated FBS,	20% (vol/vol)	200 mL
Skirrow	Vancomycin (10.0 μg/mL), Trimethoprim (5.0 μg/mL), Polymyxin B (2.5 IU/mL)	4 mL (2 vials)
Vitox	Glucose (2.0 mg/mL), Vitamin B12 (0.2 μg/mL), Adenine (20.0 μg/mL), L-Glutamine (200.0 μg/mL), Guanine (0.6 μg/mL), p-Aminobenzoic acid (0.26 μg/mL), L-Cystine (22.0 μg/mL), NAD (Coenzyme 1; 5.0 μg/mL), Cocarboxylase (2.0 μg/mL), Iron (III) nitrate (0.4 μg/mL), Thiamine hydrochloride (0.06 μg/mL), Cysteine hydrochloride (518 μg/mL)	20 mL (2 vials)
Amphotericin B (250 μg/mL),	5 μg/mL	20 mL
Hydrochloric acid (37%)	N/A	Adjusted to pH 5.0 (approx. 1. 35 mL)
ddH ₂ O	N/A	754.65 mL
Total	N/A	1 L

Note: Suspend the Brucella agar in ddH_2O and autoclave for 15 min at 121°C. Then cool to 50°C in a hot water bath before adding the remaining reagents. Store 18 mL of the NHPH selective agar medium in a Petri dish at 4°C for up to 3 months.

Alternatives: When anticipating Lactobacillus contamination in the gastric specimen, supplement the NHPH selective agar medium with linezolid (final concentration of 10 mg/L).

H. suis culture broth ^{1,2}		
Reagent	Final concentration	Amount
Brucella broth	Casein peptone (15.0 g/L), Meat peptone (5.0 g/L), Sodium chloride (5.0 g/L), Dextrose (1.0 g/L), Sodium bisulfite (0.1 g/L), Yeast extract (2.0 g/L)	28.1 g
Heat-inactivated FBS	20% (vol/vol)	200 mL
Skirrow	Vancomycin (10.0 μg/mL), Trimethoprim (5.0 μg/mL), Polymyxin B (2.5 IU/mL)	4 mL (2 vials)
Vitox	Glucose (2.0 mg/mL), Vitamin B12 (0.2 μg/mL), Adenine (20.0 μg/mL), L-Glutamine (200.0 μg/mL), Guanine (0.6 μg/mL), p-Aminobenzoic acid (0.26 μg/mL), L-Cystine (22.0 μg/mL), NAD (Coenzyme 1; 5.0 μg/mL), Cocarboxylase (2.0 μg/mL), Iron (III) nitrate (0.4 μg/mL), Thiamine hydrochloride (0.06 μg/mL), Cysteine hydrochloride (518 μg/mL)	20 mL (2 vials)
Amphotericin B (250 μg/mL),	5 μg/mL	20 mL
Hydrochloric acid (37%)	N/A	Adjusted to pH 5.0 (approx. 1. 35 mL)
ddH ₂ O	N/A	754.65 mL
Total	N/A	1 L

Protocol

Note: Dissolve the Brucella broth in ddH_2O and autoclave for 15 min at 121°C. Then cool to 50°C in a hot water bath before adding the remaining reagents. Store the *H. suis culture* broth in a sterilized bottle at 4°C for up to 3 months.

H. suis modified biphasic culture ¹		
Reagent	Final concentration	Amount
NHPH selective agar	N/A	50 mL
H. suis culture broth	N/A	50 mL
Total	N/A	100 mL

△ CRITICAL: Prepare 5 mL of NHPH selective agar in a 25 cm² tissue culture flask which can be stored at 4°C for up to 3 months. After inoculation of *H. suis*, add 5 mL of fresh *H. suis* culture broth and begin cultivation. See Figure 1B.

H. pylori culture broth ³		
Reagent	Final concentration	Amount
Brucella broth	Casein peptone (15.0 g/L), Meat peptone (5.0 g/L), Sodium chloride (5.0 g/L), Dextrose (1.0 g/L), Sodium bisulfite (0.1 g/L), Yeast extract (2.0 g/L)	28.1 g
Heat-inactivated FBS	10% (vol/vol)	100 mL
Dent	Vancomycin (10.0 µg/mL), Trimethoprim (5.0 µg/mL), Cefsulodin (5.0 µg/mL), Amphotericin B (5.0 µg/mL)	4 mL (2 vials)
Vitox	Glucose (2.0 mg/mL), Vitamin B12 (0.2 μg/mL), Adenine (20.0 μg/mL), L-Glutamine (200.0 μg/mL), Guanine (0.6 μg/mL), p-Aminobenzoic acid (0.26 μg/mL), L-Cystine (22.0 μg/mL), NAD (Coenzyme 1; 5.0 μg/mL), Cocarboxylase (2.0 μg/mL), Iron (III) nitrate (0.4 μg/mL), Thiamine hydrochloride (0.06 μg/mL), Cysteine hydrochloride (518 μg/mL)	4 mL (2 vials)
ddH₂O	N/A	892 mL
Total	N/A	1 L

Note: Dissolve the Brucella broth in ddH_2O and autoclave for 15 min at 121°C. Then cool to 50°C in a hot water bath before adding the remaining reagents. Store the *H. pylori culture* broth in a sterilized bottle at 4°C for up to 3 months.

Helicobacter stock media		
Reagent	Final concentration	Amount
Brucella broth	Casein peptone (15.0 g/L), Meat peptone (5.0 g/L), Sodium chloride (5.0 g/L), Dextrose (1.0 g/L), Sodium bisulfite (0.1 g/L), Yeast extract (2.0 g/L)	2.81 g
Glycerol	50% (vol/vol)	50 mL
ddH ₂ O	N/A	45 mL
Total	N/A	100 mL

Note: Dissolve Brucella broth in a mixture containing 45~mL of ddH_2O and 50~mL of glycerol, then add more ddH_2O to make 100~mL.

Note: Dispense 0.5 mL of *Helicobacter* stock media into each 2.0 mL screw cap microtube. Store the *Helicobacter* stock media at 4° C for up to one year after autoclaving for 20 min at 120° C.

0.1 M Carbonate/bicarbonate buffer, pH 9.4 ¹		
ent	Final concentration	Amount
m carbonate	0.019 M	2.014 g
ii carbonate	0.017 IVI	40 /

(Continued on next page)

Continued		
Reagent	Final concentration	Amount
Sodium bicarbonate	0.081 M	6.805 g
ddH ₂ O	N/A	900 mL
Total	N/A	1 L

Note: Dissolve sodium carbonate and sodium bicarbonate in 900 mL of ddH_2O , then add more ddH_2O to make 1 L.

Note: Store the 0.1 M carbonate/bicarbonate buffer at 4° C for up to one year after autoclaving for 15 min at 121° C.

PBS-T ¹								
Reagent	Final concentration	Amount						
PBS 10×, pH 7.4	Potassium phosphate monobasic (144.0 mg/L), Sodium chloride (9.0 g/L), Sodium phosphate dibasic (795 mg/L)	100 mL						
Tween 20 solution (10% [wt/vol])	0.05% (wt/vol)	5 mL						
ddH ₂ O	N/A	895 mL						
Total	N/A	1 L						

Note: Store the PBS-T at 4°C for up to one year after autoclaving for 15 min at 121°C.

Blocking buffer ¹							
Reagent	Final concentration	Amount					
PBS 10×, pH 7.4	Potassium phosphate monobasic (144.0 mg/L), Sodium chloride (9.0 g/L), Sodium phosphate dibasic (795 mg/L)	5 mL					
Blocker BSA (10% [wt/vol])	1% (wt/vol)	5 mL					
ddH₂O	N/A	40 mL					
Total	N/A	50 mL					

Note: Store the blocking buffer in a sterilized bottle at 4°C for up to one year.

STEP-BY-STEP METHOD DETAILS

Perform PCR testing

© Timing: 1 day

- 1. Extract DNA from the 100 μ L aliquot of the gastric biopsy homogenates using the DNeasy Blood & Tissue Kit. ^{1,2}
- 2. Measure the DNA concentration using the BioSpectrometer with the μ Cuvette G1.0.
- 3. Use the prepared DNA as the template for probe-based real-time PCR, targeting the *H. suis*-specific *vacA*-type autotransporter protein gene (*hsvA*) and the NHPH-common region of the 16S rRNA gene.
- 4. The sequences of the two sets of primers and probes, designed using the PrimerQuest Tool, are as follows:

NHP194003_11930_forward (5'-CTGGTAATGCATCATTAGAAGCAAA-3'), NHP194003_11930_reverse (5'-GATGGGCGCTTCTGGTTTA-3'), and NHP194003_11930_probe (5'-/56-FAM/TGTACA-CAC/ZEN/CAAACAGATGAGCCGT/3IABkFQ-3') for targeting the *hsvA* gene; NHPH_16S_F (5'-CAAGTCGAACGATGAAGCCTA-3'), NHPH_16S_R (5'- ATTTGGTATTAATCACCATTTCTAGT-

Protocol

3'), and NHPH_16S_probe (5'-/56-FAM/TTACTCACC/ZEN/CGTGCGCCACTAATC/3IABkFQ/-3') for targeting the NHPH 16S rRNA gene.

PCR master mix targeting the *H. suis*-specific *hsvA* gene or the NHPH-common region of the 16S rRNA gene utilizing the THUNDERBIRD Probe qPCR Mix

Reagent	Amount
DNA Template	3 pg-100 ng
qPCR Mix (2×)	10 μL
Primer 1	6 pmol
Primer 2	6 pmol
Probe	4 pmol
ROX reference dye	0.04 μL
ddH ₂ O	Х μL
Total Volume	20 μL

Note: Perform real-time PCR primarily on the Applied Biosystems 7500 Fast using the MicroAmp Fast 96-well reaction plates and MicroAmp Optical Adhesive Film.

Alternatives: When dealing with a small number of samples, perform real-time PCR on the CronoSTAR Portable 8 Real-Time System (4 channels) using 0.2 mL 4-strip tubes.

PCR cycling conditions							
Steps	Temperature	Time	Cycles 1				
Initial Denaturation	95°C	20 s					
Denaturation	95°C	3 s	40				
Extension	60°C	30 s					

5. The diagnosis of *H. suis* infection is confirmed when positive results are obtained from both types of PCR targeting the *H. suis*-specific *hsvA* and NHPH-common 16S rRNA genes.⁴

Note: NHPH, other than *H. suis*, is diagnosed when negative and positive results are obtained by PCR targeting the *H. suis*-specific *hsvA* and NHPH-common 16S rRNA genes, respectively. See Problem 4.

Perform culture testing

© Timing: 19-26 days

- 6. Inoculate the 200 μL aliquot of the gastric biopsy homogenates onto NHPH selective agar plates. 1,2
- 7. Incubate the plates for 2–3 weeks at 37°C in a humidified gas mixture (5% O_2 , 12% CO_2 , and 83% N_2).

Note: Although both *H. pylori* and *H. suis* are grown as primary cultures on NHPH selective agar plates, the *H. pylori* colonies tend to grow faster and larger than the small, slow-growing colonies formed by *H. suis*. See Figure 2.

Note: We include the culture as a diagnostic criterion to confirm *H. pylori* infection, whereas we exclude the culture as a diagnostic criterion to confirm *H. suis* infection.

8. To identify *H. pylori* infection, amplify the 651 bp DNA fragment of the 23S rRNA gene by the colony PCR using the following set of primers: F3 (5'-CCGACGAAAGCGAGTCT-3') and R3 (5'-CCCGACTAACCCTACGATGA-3').

PCR master mix targeting the 651 bp DNA fragment of the 23S rRNA gene of *H. pylori* using the GoTaq Green Master Mix.

Reagent	Amount
Master Mix (2×)	12.5 μL
Primer 1	2.5 μL (10 μM)
Primer 2	2.5 μL (10 μM)
ddH ₂ O	7.5 µL
Total Volume	25 μL

Note: Suspend the colony in PCR master mix by pipetting it up and down using the tip of a micropipette.

Note: Perform the PCR on the Mastercycler X50s using the Fast PCR Tube Strips.

PCR cycling conditions							
Steps	Temperature	Time	Cycles				
Initial Denaturation	95°C	2 min	1				
Denaturation	95°C	30 s	30				
Annealing	55°C	1 min					
Extension	72°C	2 min					
Final extension	72°C	7 min	1				
Hold	4°C	forever					

- 9. After PCR, confirm the presence of amplified bands by performing agarose gel electrophoresis.
- 10. Purify the amplified DNA fragments using the QIAquick PCR Purification Kit and stored at -20° C for subsequent DNA sequencing.

Note: *H. pylori* strains will be identified if the homology of the 23S rRNA gene to *H. pylori* strain ATCC43504 (GenBank #: AP017632.1) is greater than 99.0%.¹

11. Inoculate the grown colonies of primary culture onto NHPH selective agar coated with *H. suis* culture broth and enriched by modified biphasic culture for five days with orbital shaking at 50 rpm in the humidified gas mixture at 37°C.

Note: Use four 25 cm² tissue culture flasks, each containing 5 mL of culture broth.

- 12. Collect whole bacterial cells from 20 mL of culture broth by centrifugation at $10,400 \times g$ for 10 min at 22° C by the Allegra X-30R using two 15 mL centrifuge tubes. Dissolve the resulting pellet from 10 mL of culture broth with 0.5 mL of *H. suis* culture broth and mix it with 0.5 mL of the *Helicobacter* stock media in the 2.0 mL screw cap microtube. Then, stock the *Helicobacter* strains at -80° C for up to 10 years.
- 13. Store the resulting pellet from 10 mL of culture broth at -20° C until ready for whole-genome sequencing.

Perform whole-genome sequencing

© Timing: 14 days

- 14. Extract DNA from the culture broth pellet for whole-genome sequencing using the DNeasy Blood & Tissue Kit.¹
- 15. Measure the DNA concentration using the BioSpectrometer with the μ Cuvette G1.0.

Protocol

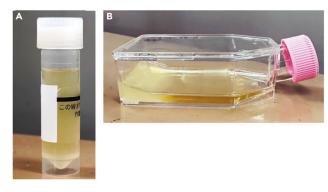
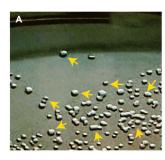


Figure 1. H. suis transport and culture media

(A and B) The gastric biopsy transport medium (A) and the modified biphasic culture of *H. suis* (B) are provided. The gastric biopsy transport medium contains a line indicating the appropriate location of gastric biopsy insertion (A).

- 16. Prepare the library for Illumina sequencing (150-bp paired-end, insert size of 500–900 bp) using the Nextera XT DNA Library Prep Kit.
- 17. Perform whole-genome sequencing of all culture-derived *H. suis* strains using the Illumina MiSeq platform.
- 18. Use the Illumina reads for *de novo* assembly by employing Shovill v1.1.0. and default parameters, aiming to acquire the draft genome sequences.
- 19. Determine bacterial species by calculating the average nucleotide identity (ANI) using pyani 0.2.12.


Note: We have shown that all H. suis strains have more than 99% ANI values against the H. suis type strain HS1. 1

Perform ELISA testing

© Timing: 2 days

- 20. Prepare the Immuno microtiter plates by adding 100 μ L of whole bacterial cell solution of *H. suis* strain NHP19-4004 or *H. pylori* strain TN2GF4 (at a concentration of 4 μ g/mL) in 0.1 M carbonate/bicarbonate buffer, pH 9.4 to each well.¹
- 21. Seal the plates with the Plate Seal T and incubate for 8-16~h at $4^{\circ}C$.
- 22. Remove the whole bacterial cell solution from the wells.
- 23. Wash the wells three times with 200 μ L of PBS-T using a microplate washer (Wellwash), then saturate the wells with 200 μ L of blocking buffer.
- 24. Seal the plates with the Plate Seal T and incubate for 1 h at 37°C while shaking at 500 rpm on a microplate shaking incubator (MyBLP25).
- 25. Discard the blocking buffer from the wells.
- 26. After three washes with 200 μ L of PBS-T on the Wellwash, fill the wells with 50 μ L of serum samples that have been diluted at a ratio of 1:3,600 with blocking buffer.
- 27. Seal the plates with the Plate Seal T and incubate for 1 h at 37°C while shaking at 500 rpm on the MyBLP25.
- 28. Discard the serum samples from the wells.
- 29. After three washes with 200 μ L of PBS-T on the Wellwash, fill the wells with 50 μ L of HRP-conjugated goat anti-human IgA + IgG + IgM (H + L) secondary antibody that has been diluted at a ratio of 1:10,000 with blocking buffer.
- 30. Seal the plates with the Plate Seal T and incubate for 1 h at 37°C while shaking at 500 rpm on the MyBLP25.
- 31. Discard the secondary antibody from the wells.
- 32. After three washes with 200 μ L of PBS-T on the Wellwash, fill the wells with 50 μ L of KPL SureBlue TMB Microwell Peroxidase Substrate (1-Component).

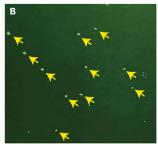


Figure 2. Primary cultures of Helicobacter

(A and B) The image shows colonies (indicated by arrows) of *H. pylori* (A) and *H. suis* (B) grown on NHPH selective agar plates after three days and 14 days of cultivation, respectively.

- 33. Allow the substrate to react for 5 min at 22°C.
- 34. Stop the color reaction by adding 50 μ L of 1 N hydrochloric acid into the wells.
- 35. Measure the absorbance at 450 nm (with a reference wavelength 620 nm) using a microplate reader (Multiskan SkyHigh).
- 36. Calculate the cut-off index as follows:

$$Cut - off index = \frac{(Abs of test serum) - (Abs of negative control)}{(Abs of positive control) - (Abs of negative control)}$$

37. Determine the positive and negative results based on the cut-off index values obtained.

Note: The positive control for *H. suis* infection, the positive control for *H. pylori* infection, and the negative control are serum sample numbers 04029, 04279, and 04075 from the previous study, respectively obtained from a previous study.

Note: Positive cut-off index \geq 1.0. Negative cut-off index<1.0. See Table 1.

EXPECTED OUTCOMES

Helicobacter suis, which is hosted by wild boars, hogs, and macaques, 5,6 is the most prevalent NHPH found in the human stomach. 1,7 The infection rate of H. suis may have increased due to the decrease in H. pylori infection rate. Recent studies have suggested that H. suis infection has caused many cases of gastric disease, 7-9 but the transmission route from hogs remains unclear. Diagnostic methods based on H. suis urease activity often yield negative results, and there is no reliable method for diagnosing H. suis infection in clinical practice without gastric biopsy specimens. In this study, we include the culture as a diagnostic criterion to confirm H. pylori infection, whereas we exclude the culture as a diagnostic criterion to confirm H. suis infection. The ELISA showed high accuracy with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.96 \pm 0.02 (95% CI: 0.93 to 1.00), 100% (95% CI: 83.9%-100%) sensitivity, 92.6% (95% CI: 84.8%-96.6%) specificity, 76.9% (95% CI: 55.9%-90.2%) positive predictive value, and 100% (95% CI: 93.9%-100%) negative predictive value for the H. suis test. The H. suis infection could be a predictive marker for the efficacy of eradication therapy for H. pylori-negative gastric mucosa-associated lymphoid tissue (MALT) lymphoma.¹⁰ Therefore, the development of comprehensive methods to diagnose H. suis infection has become a matter of urgency for clinical practice. From now on, accurate diagnosis of H. suis infection will help avoid wasting valuable time with incorrect treatment.

Protocol

LIMITATIONS

Validation of serological tests for diagnosing infectious diseases requires agreement between several independent analytical and measurement results under defined conditions. However, this study represents the first to develop a serological diagnostic method for *H. suis* infection in humans. Therefore, this assay has only one independent validation group to confirm its validity. This is the current limitation of the study.

TROUBLESHOOTING

Problem 1

• The interpretations may show discrepancies between the ELISA and the PCR/culture (handling of infection diagnosis results, steps 5, 7, and 37).

Potential solution

• In case the PCR/culture results are negative, there is a possibility of a positive ELISA due to a previous infection in which *H. suis* or *H. pylori* was eradicated spontaneously or by chance.¹

Problem 2

• The individual tested shows a strong positive result for *H. pylori* infection, but there is a possibility of a positive result for *H. suis* infection based on ELISA testing (handling of infection diagnosis results, step 37).

Potential solution

• Because whole bacterial cell solution of *H. suis* may react with high titer anti-*H. pylori* serum anti-bodies, as shown in Table 1, sample 12, we advocate simultaneous ELISA testing for *H. suis* and *H. pylori* infection.

Problem 3

• Even if *H. suis* and *H. pylori* infection test negative, positive results can still be obtained in PCR targeting the NHPH-common 16S rRNA gene (handling of infection diagnosis results, steps 5 and 37).

Potential solution

• This case indicates the presence of gastric disease caused by NHPH other than *H. suis*, such as *H. ailurogastricus* infection. ¹¹ Therefore, it is crucial to isolate infectious bacteria from gastric biopsies in order to accurately diagnose the condition.

Problem 4

• If an *H. suis* infection is detected in a healthy individual, can it be identified to be the cause of future gastric disease, such as gastric MALT lymphoma? (handling of infection diagnosis results, steps 5, 7, 37)

Potential solution

• Because *H. suis* infection has been detected in individuals with gastric diseases, including gastritis, peptic ulcers, and gastric MALT lymphoma, ¹ monitoring the individual's gastric health and being aware of any symptoms or changes are essential.

Table 1. Example of raw ELISA data for the detection of H. suis (Hs) and H. pylori (Hp) infections measured on a plate reader

	Hs	Hs	Hs	Hs	Hs	Hs	Нр	Нр	Нр	Нр	Нр	Нр	
Sample	Abs. 1 (450 nm)	Blank substraction n) (450 nm)	Abs. 2 (620 nm)	Blank substraction (620 nm)	Basic calculation	Cut-off index	Abs. 1 (450 nm)	Blank substraction (450 nm)	Abs. 2 (620 nm)	Blank substraction (620 nm)	Basic calculation	Cut-off index	Decision
Blank	0.153		0.039				0.158		0.039				
Positive control	1.106	0.953	0.053	0.014	0.939		0.962	0.804	0.034	-0.005	0.809		
Negative control	0.287	0.134	0.042	0.003	0.131		0.220	0.062	0.042	0.003	0.059		
Sample 1	0.316	0.163	0.038	-0.001	0.164	0.041	0.239	0.081	0.047	0.008	0.073	0.019	Negative
Sample 2	0461	0.308	0.040	0.001	0.307	0.218	0.372	0.214	0.051	0.012	0.202	0.191	Negative
Sample 3	2.617	2.464	0.037	-0.002	2.466	2.890	0.687	0.529	0.039	0	0.529	0.626	H. suis
Sample 4	1.599	1.446	0.041	0.002	1.444	1.625	0.335	0.177	0.041	0.002	0.175	0.155	H. suis
Sample 5	1.500	1.347	0.038	-0.001	1.348	1.506	0.326	0.168	0.037	-0.002	0.170	0.148	H. suis
Sample 6	2.306	2.153	0.035	-0.004	2.157	2.507	0.211	0.053	0.043	0.004	0.049	-0.013	H. suis
Sample 7	1.836	1.683	0.036	-0.003	1.686	1.925	0.427	0.269	0.052	0.013	0.256	0.263	H. suis
Sample 8	0.364	0.211	0.037	-0,002	0.213	0.101	2.565	2.407	0.038	-0.001	2.408	3.132	H. pylori
Sample 9	0.580	0.427	0.036	-0.003	0.430	0.370	1.506	1.348	0.038	-0.001	1.349	1.720	H. pylori
Sample 10	0.261	0.108	0.039	0	0.108	-0.028	1.377	1.219	0.044	0.005	1.214	1.540	H. pylori
Sample 11	0.873	0.720	0.036	-0.003	0.723	0.733	1.903	1.745	0.036	-0.003	1.748	2.252	H. pylori
Sample 12	2.071	1.918	0.039	0	1.918	2.212	4.063	3.905	0.058	0.019	3.886	5.103	H. pylori

Bold indicates a Cut-off index of 1.0 or greater.

Protocol

Problem 5

• Which method is effective in eradicating *H. suis* infection? (handling of infection diagnosis results, steps 5, 7, 37)

Potential solution

• Based on our experience, ¹ the treatment for gastric diseases with *H. suis* infection involved the administration of the following three agents twice daily for one week to eradicate *H. suis*: vonoprazan (20 mg), amoxicillin (750 mg), and clarithromycin (200 mg or 400 mg). Following the eradication treatment, an upper GI endoscopy was performed at least two months later to confirm the remission of gastric disease and the eradication of *H. suis* through PCR testing. The anti-*H. suis* antibody titers also decreased over time after eradication.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to the lead contact, Emiko Rimbara (rimbara@niid.go.jp).

Materials availability

ELISA prototypes, bacterial strains, and control antibodies for ELISA are available from the lead contact upon reasonable request.

Data and code availability

- We have deposited the 23S rRNA gene data of H. pylori strains at GenBank/ENA/DDBJ.
- We have deposited the complete whole-genome sequences of H. suis strains at GenBank/EMBL/ DDBJ.
- No original code is reported in this paper.
- Additional information about the analysis in this paper is available from the lead contact upon reasonable request.

ACKNOWLEDGMENTS

This work was supported by MEXT/JSPS KAKENHI under grant numbers JP19H03474 (H.M.), JP23H02636 (E.R.), JP20K08365 (T.K.), and JP20H03667 (H.S.) and by AMED under grant numbers JP20fk0108148 and JP23fk0108678 (E.R.) and JP20fk0108133 (M.S.).

AUTHOR CONTRIBUTIONS

Conceptualization, H.M., E.R., K.S., and T.K.; methodology – cultures and PCR, E.R. and S.A.; methodology – genomic analysis, M.S.; methodology – ELISA, H.M.; medical practice, K.T., H.S., and K.M.; writing, H.M. and E.R. All authors verified the underlying data and approved the final version of the manuscript for publication.

DECLARATION OF INTERESTS

H.M., E.R., and M.S. are inventors of the technology described in this manuscript and are listed as applicants in the international patent applications under the PCT (PCT/JP2023/002328, PCT/JP2023/002329, and PCT/JP2023/002330).

REFERENCES

 Matsui, H., Rimbara, E., Suzuki, M., Tokunaga, K., Suzuki, H., Sano, M., Ueda, T., Tsugawa, H., Nanjo, S., Takeda, A., et al. (2023). Development of serological assays to identify Helicobacter suis and H. pylori infections. iScience 26, 106522. https://doi.org/10.1016/j.isci.2023.106522.

2. Rimbara, E., Suzuki, M., Matsui, H., Nakamura, M., Morimoto, M., Sasakawa, C., Masuda, H.,

Nomura, S., Osaki, T., Nagata, N., et al. (2021). Isolation and characterization of *Helicobacter suis* from human stomach. Proc. Natl. Acad. Sci. USA 118, e2026337118. https://doi.org/10.1073/pnas.2026337118.

STAR Protocols Protocol

- Matsui, H., Takahashi, T., Murayama, S.Y., Kawaguchi, M., Matsuo, K., and Nakamura, M. (2017). Protective efficacy of a hydroxy fatty acid against gastric Helicobacter infections. Helicobacter 22, e12430. https://doi.org/10. 1111/hel.12430.
- Rimbara, E., Suzuki, M., Matsui, H., Nakamura, M., Kobayashi, H., Mori, S., and Shibayama, K. (2020). Complete Genome Sequence of Helicobacter suis Strain SNTW101c, Originally Isolated from a Patient with Nodular Gastritis. Microbiol. Resour. Announc. 9. e01340-19. https://doi.org/10.1128/MRA.01340-19.
- Flahou, B., Rossi, M., Bakker, J., Langermans, J.A., Heuvelman, E., Solnick, J.V., Martin, M.E., O'Rourke, J., Ngoan, L.D., Hoa, N.X., et al. (2018). Evidence for a primate origin of zoonotic *Helicobacter suis* colonizing domesticated pigs. ISME J. 12, 77–86. https://doi.org/10.1038/ismej. 2017.145.
- 6. Smet, A., Yahara, K., Rossi, M., Tay, A., Backert, S., Armin, E., Fox, J.G., Flahou, B., Ducatelle, R., Haesebrouck, F., and Corander, J. (2018).

- Macroevolution of gastric *Helicobacter* species unveils interspecies admixture and time of divergence. ISME J. 12, 2518–2531. https://doi.org/10.1038/s41396-018-0199-5.
- 7. Tsukadaira, T., Hayashi, S., Ota, H., Kobayashi, N., Sekiguchi, Y., Kodaira, H., Matsumoto, T., Horiuchi, K., Negishi, T., and Kurahashi, M. (2021). Prevalence, clinical features, and esophagogastroduodenoscopy (EGD) findings of non-Helicobacter pylori Helicobacter infection: A study of 50 cases at a single facility in Japan. Helicobacter 26, e12811. https://doi.org/10.1111/hel.12811.
- Øverby, A., Murayama, S.Y., Michimae, H., Suzuki, H., Suzuki, M., Serizawa, H., Tamura, R., Nakamura, S., Takahashi, S., and Nakamura, M. (2017). Prevalence of Gastric Non-Helicobacter pylori-Helicobacters in Japanese Patients with Gastric Disease. Digestion 95, 61–66. https://doi.org/10.1159/ 000452400.
- 9. Nakamura, M., Øverby, A., Michimae, H., Matsui, H., Takahashi, S., Mabe, K., Shimoyama, T., Sasaki, M., Terao, S.,

- Kamada, T., et al. (2020). PCR analysis and specific immunohistochemistry revealing a high prevalence of non-Helicobacter pylori Helicobacters in Helicobacter pylori-negative gastric disease patients in Japan: High susceptibility to an Hp eradication regimen. Helicobacter 25, e12700. https://doi.org/10.1111/hel.12700.
- Kadota, H., Yuge, R., Miyamoto, R., Otani, R., Takigawa, H., Hayashi, R., Urabe, Y., Oka, S., Sentani, K., Oue, N., et al. (2022). Investigation of endoscopic findings in nine cases of *Helicobacter* suis-infected gastritis complicated by gastric mucosa-associated lymphoid tissue lymphoma. Helicobacter 27, e12887. https:// doi.org/10.1111/hel.12887.
- Sano, M., Rimbara, E., Suzuki, M., Matsui, H., Hirai, M., Aoki, S., Kenri, T., Shibayama, K., and Suzuki, H. (2023). Helicobacter ailurogastricus in patient with multiple refractory gastric ulcers, Japan. Emerg. Infect. Dis. 29, 833–835. https://doi.org/10.3201/ eid/2904.221807