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The intestinal microbiome maintains a close relationship with the host immunity.

This connection fosters a health state by direct and indirect mechanisms. Direct

influences occur mainly through the production of short-chain fatty acids (SCFAs),

gastrointestinal hormones and precursors of bioactive molecules. Indirect mechanisms

comprise the crosstalk between bacterial products and the host’s innate immune system.

Conversely, intestinal dysbiosis is a condition found in a large number of chronic

intestinal inflammatory diseases, such as ulcerative colitis and Crohn’s disease, as

well as in diseases associated with low-grade inflammation, such as obesity, type 1

and 2 diabetes mellitus and cardiovascular diseases. NOD-Like receptors (NLRs) are

cytoplasmic receptors expressed by adaptive and innate immune cells that form a

multiprotein complex, termed the inflammasome, responsible for the release of mature

interleukin (IL)-1β and IL-18. NLRs are also involved in the recognition of bacterial

components and production of antimicrobial molecules that shape the gut microbiota

and maintain the intestinal homeostasis. Recent novel findings show that NLRs may act

as positive or negative regulators of inflammation by modulating NF-κB activation. This

mini-review presents current and updated evidence on the interplay between NLRs and

gut microbiota and their dual role, contributing to progression or conferring protection,

in diabetes and other inflammatory diseases.
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INTRODUCTION

The healthy human intestine is colonized by several microorganisms, including fungi, viruses,
and bacteria belonging to different families (1). Studies on the gut microbiome show a high
number of bacteria from the Bacteroidaceae, Prevotellaceae, Rikenellaceae, and Ruminococcaceae
families in the colon (2). On the other hand, the small intestine is mainly colonized by bacteria
from the Lactobacillaceae and Enterobacteriaceae families (3). In recent years, sequencing analysis
of the 16S rRNA gene revealed an association between the gut microbiota and inflammatory
diseases (4). Changes in the composition of the intestinal microbiota, a process called dysbiosis,
play a key role in the pathogenesis of inflammatory diseases, such as rheumatoid arthritis (5),
atherosclerosis (6), ulcerative colitis, Crohn’s disease (7), and diabetes mellitus type 1 and 2 (8, 9).
Accordingly, modulation of the gut microbiota by prebiotics and probiotics, as preventive or
therapeutic strategies to mitigate the pathogenesis of inflammatory diseases, has been increasingly
investigated (10).
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Innate immunity receptors, also called pattern recognition
receptors (PRRs), are expressed by several cells and are involved
in the recognition of microbial products or endogenous self-
molecules. PRRs are key components in the pathogenesis of
inflammatory and autoimmune diseases (11, 12). Toll-Like
Receptors (TLRs) and NOD-Like Receptors (NLRs) are among
the main families that comprise the PRRs superfamily (13).
In the process of dysbiosis, the increased pathobiontic bacteria
modulates the expression and activation of TLRs, leading to
a pro-inflammatory response in the intestine and in extra-
intestinal sites (14, 15). On the other hand, NLRs have either
beneficial or harmful effects that rely on the antimicrobial factors
and pro-inflammatory cytokine profile following gut microbiota
activation. This mini review highlights the divergent roles of
NLRs in metabolic and inflammatory diseases associated with
gut dysbiosis.

GUT DYSBIOSIS IN INFLAMMATORY
DISEASES

The intestinalmicrobiota, when in homeostasis, is directly related
to the host’s health. The intestinal microbiota influences host
metabolism (16), immune system (17, 18), gut microbicide
mechanisms (19), and maintains the intestinal barrier (20).
Many studies show that environmental factors, such as the use
of antibiotics (21, 22), diet (23) and stress (24) can alter the
intestinal microbiota, increasing pathobiontic bacteria at the
expense of commensal bacteria, a process known as dysbiosis
(25). Gut dysbiosis contributes to the development of several
autoimmune, inflammatory and metabolic diseases, such as
rheumatoid arthritis (RA), inflammatory bowel diseases (IBD),
and diabetes mellitus (26, 27). However, in many cases, as in IBD
for example, it is not yet known whether dysbiosis is the cause
or consequence of the disease (28, 29). The exact role of the gut
microbiota in the pathogenesis of RA is not fully understood
either. However, germ-free (GF) mice exhibit a delay in the
development of RA when compared to the control group (30). In
the early stages of RA, a decrease in some commensal bacteria,
such as those belonging to the Bifidobacteria and Bacteroides
genus, and an increase in Escherichia coli and Proteus mirabilis
have been reported (31, 32). In addition, RA patients have an
increase in Prevotella copri as well as in anti-P. copri IgA and IgG,
suggesting that this bacteria may contribute to the pathogenesis
of RA (33).

Inflammatory bowel diseases, such as Crohn’s disease (CD)
and ulcerative colitis (UC), affect ∼3 million people in Europe
and the USA, with a high and accelerated incidence in developing
countries (34, 35). Although the etiology is still unclear, genetic
predisposition and environmental factors, such as diet and use of
antibiotics, are triggers of these diseases, characterized mainly by
chronic intestinal inflammation (34, 36). In addition, disruption
of the epithelial barrier and gut dysbiosis are widely reported
in patients and in experimental models of gastrointestinal
infections (37, 38) including patients with IBD (39, 40). 16S
rRNA metagenomic analysis showed that the microbiota present
in the feces of mice with UC is very different from microbiota

in the feces of healthy mice, mainly by an increase in species
of the phylum Verrucomicrobia and a decrease in Tenericutes
in mice with colitis, which correlates with a higher disease
score (41, 42). An increase in Enterobacteria is observed in
fecal samples from patients with CD (43). Escherichia and
Shigella abundance is also increased in this condition, when
compared to healthy individuals. In addition, a reduction of
the Roseburia, Coprococcus, and Ruminococcus genera, which
are important butyrate producers, has been reported (44, 45).
Analysis of colon biopsies from patients with IBD also shows a
decrease in Firmicutes and an increase in Bacteroidetes (46) and
patients with IBD exhibit increased biofilm production of strains
of Enterococcus when compared to strains from the control
group (47).

An imbalanced gut microbiota and changes in the intestinal
barrier function are also closely linked to the pathogenesis
of diabetes mellitus (DM) (48). DM comprises a group
of metabolic diseases characterized mainly by chronic
hyperglycemia, resulting from impaired secretion and/or
insulin functionality (49). In type 1 diabetes (T1D), also
called autoimmune diabetes, autoantibodies are present and
autoreactive lymphocytes mediate pancreatic β-cell destruction,
leading to complete insulin deficiency (50). The impact of the
microbiota on the development of T1D was demonstrated
using Myd88-deficient non-obese diabetic (NOD) mice bred in
pathogen-free (SPF) or germ-free (GF) conditions. Whereas,
SPF NOD.Myd88−/− mice are protected from T1D, mice
under GF conditions develop T1D, showing that Myd88
protective effects depend on the presence of gut microbiota
(51). In this context, many studies have shown differences in
the composition of the microbiota between diabetic and non-
diabetic patients, suggesting that these changes are associated
with the development and severity of T1D (52, 53). Bacterial
proteome studies show high enrichment with Clostridium
and Bacteroides proteins in children with T1D, whereas the
control group exhibit greater enrichment with Bifidobacterium
proteins (54). Furthermore, the decrease in lactate- and butyrate-
producing species, such B. adolescentis, is associated with T1D
autoimmunity (55).

In models of type 2 diabetes (T2D), gut dysbiosis aggravates
the inflammatory process, increases intestinal permeability and
also alters the metabolism of short-chain fatty acids, which are
important in insulin resistance (56), in addition to accelerating
the development of obesity, retinopathy and nephropathy (57).
In patients with T2D, excessive intake of carbohydrates and
proteins is associated with an imbalance in the gut microbiota,
with an increase in the Clostridium genus and a decrease in
Bifidobacterium spp. and Lactobacillus, in addition to glucose
intolerance (58). Moreover, in experimental models of T2D,
the administration of bacteria of the Bifidobacterium genus
improves glucose tolerance and confers a protective role in the
development of T2D (59, 60). Similarly, the administration of
Bacteroides acidifaciens decreases insulin resistance and even
prevents obesity (61).

Innate immunity receptors, such as NLRs, have a decisive
role in protecting the intestinal barrier against various
microorganisms from the environment. These receptors
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also modulate microbial intestinal composition, being associated
with the development of inflammatory diseases (62).

PROTECTIVE ROLE OF NLRs IN GUT
MICROBIOTA HOMEOSTASIS AND IBD

The innate immune system components are the first barrier
against infections and recognize cell death, generating a
rapid immune response due to the recognition of Pathogen-
Associated Molecular Pattern (PAMPs) and Damage-associated
molecular patterns (DAMPs), respectively (63). NLRs are part
of a variety of innate immunity receptors, located in the
intracellular environment, and initiate inflammatory processes.
NOD1 and NOD2, central members of NLRs, mainly recognize
bacterial peptidoglycan and, thus, induce gene transcription
of NF-kB and mitogen-activated protein kinases (MAPKs),
activating the expression of pro-inflammatory factors by different
cells (13).

The NOD1 receptor detects gamma D-glutamyl-meso-
diaminopimelic acid (γ iE-DAP), a peptide found mainly in
Gram-negative bacteria, but also in groups of Gram-positive
bacteria such as Listeria spp. and Bacillus spp (64–66). In the
absence of NOD1, there is expansion of some intestinal bacteria,
such as Clostridiales, Bacteroides spp., segmented filamentous
bacteria (SFB), and Enterobacteriaceae. The NOD2 receptor
detects the muramyl dipeptide (MDP) present in the bacterial
peptideoglycan and is the most important receptor in intestinal
homeostatic control (67). This receptor controls commensal
microbiota and the elimination of pathogenic bacteria in
intestinal crypts, minimizing the risk of intestinal inflammation
and colorectal cancer (68–70). Interestingly, NOD2 expression
depends on the presence of intestinal commensal bacteria,
indicating a positive feedback relationship. NOD2 deficiency
breaks this homeostatic interaction, resulting in gut dysbiosis,
and increased IBD susceptibility (69).

Other NLRs also play an important role in intestinal
homeostasis. The activation of NOD-like receptor family-pyrin
domain containing 6 (NLRP6), through oligomerization and
assembly of proteins–inflammasome complex–activates caspase-
1 and leads to the synthesis of IL-1β and IL-18 in the
intestinal epithelium (71). The deficiency of NLRP6 in mouse
colonic epithelial cells decreases IL-18 levels, promotes gut
dysbiosis and increases the risk of colitis (72, 73). IL-18
secreted by epithelial cells stimulates the barrier function and
the regeneration of epithelial cells (73). In addition, commensal
microbiota itself activates the NLRP6 inflammasome, leading
to the production of mucus by goblet cells and antimicrobial
peptides, maintaining a healthy composition of the intestinal
microbiota (74).

NLRP3, another type of NLRs, is highly expressed in the
monocytic lineage (75), and favors a greater production of IL-1β
over IL-18, leading to changes in the composition of the intestinal
microbiota (76). Under normal conditions, NLRP3 deficient
mice exhibit gut dysbiosis associated with an excessive growth
of Prevotellaceae and Bacteroidetes (77), whereas the ratio
between Firmicutes and Bacterioidetes decreases (78). Unlike

other NLRs, NLRP12 has anti-inflammatory effects, inhibiting
canonical and non-canonical NF-κB; decreasing the production
of inflammatory cytokines, chemokines and tumorigenic factors
(79–82), and controlling infection by Gram-negative bacteria
(83). NLRP12 deficiency, in a dextran sodium sulfate (DSS)-
induced colitis model, promotes colon inflammation, decreases
gut microbiota diversity and increases colitogenic bacteria, such
Erysipelotrichaceae family, depicting a protective role of NLRP12
in IBD (84).

DIVERGENT ROLES OF NLRs AND AIM2 IN
T1D DEVELOPMENT

In the past few years, several lines of evidence have demonstrated
that members of the NLRs family participate in T1D
pathogenesis. Recently, we reported that mice lacking NOD2,
but not NOD1, are resistant to streptozotocin (STZ)-induced
T1D and are unable to induce a Th1 and Th17 immune
response in the pancreatic lymph nodes (PLNs) and pancreas.
Interestingly, diabetic mice exhibit changes in the composition
of the gut microbiota, and this is associated with gut microbiota
translocation to PLNs (Figure 1). When these mice are
submitted to a broad-spectrum antibiotic treatment, previously
to the STZ injections, they do not develop signs of T1D, such as
hyperglycemia. Additionally, the administration of the NOD2
ligand, MDP, promotes STZ-induced T1D in antibiotic-treated,
STZ-injected wild-type (WT) mice. Our results demonstrate
that gut microbiota recognition by NOD2 in the PLNs triggers a
proinflammatory response, which induces a Th1 and Th17 cell
pathogenic immune response, thus contributing to STZ-induced
T1D pathogenesis (Table 1) (85).

STZ-injectedWTmice display an increase in different bacteria
groups in the gut microbiota, such as Bacteroidaceae family
and the Bacteroides genus that have been associated with
increased susceptibility to T1D in humans (91, 92). These results
recapitulate what has been found in type 1 diabetic patients, with
the Bacteroidetes phylum, the Bacteroidaceae family, and the
Bacteroides genus being more commonly found in autoantibody-
positive children than in autoantibody-negative peers (55). Other
important observation found among type 1 diabetic patients is
decreased microbiota diversity, associated with reduced relative
abundance of Bifidobacterium, Roseburia, Faecalibacterium, and
Lachnospira (91). These data indicate that gut dysbiosis observed
in type 1 diabetic patients may act as an environmental trigger
in the development of the disease and that strategies aiming
blockade of NOD2 signaling emerge as potential therapies for
T1D. Similar results were reported in spontaneous T1D mice
model. Non-cohoused NOD.NOD2−/− mice exhibit reduced
T1D incidence and a decrease in CD4+ IFN-γ+/CD8+ IFN-
γ+ (Th1/Tc1) and CD4+ IL-17+/CD8+ IL-17+ (Th17/Tc17) T
cells in PLNs, indicating that NOD2 activation regulates T1D
development by altering the composition of gut microbiota and
by modulating the adaptive immune response (86).

Other studies also revealed that NLRP3 is required for
T1D pathogenesis. NLRP3 deficiency in NOD mice protects
against T1D by inhibiting the expression of chemokines and
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FIGURE 1 | Expression and differential functions of NLRs in Type 1 diabetes development. Elevated AIM2 expression was detected into intestinal mucosa of

pre-diabetic mice, and its activation induces the IL-18 release, which in turn, promotes the RegIIIγ production. This mechanism attenuates the gut dysbiosis,

reinforces the gut barrier and dampens the Th1 and Tc1 lymphocyte response against insulin-producing β cells, which ultimately protects against T1D. On the other

hand, NOD2 recognizes translocated muramyl dipeptide (MDP) from dysbiotic microbiota, and contributes to the activation of Th1 and Th17 lymphocytes in T1D.

Finally, upregulation of NLRP3 expression in PLNs was observed in diabetic mice, which is activated in macrophages by recognition of mitochondrial DNA (mDNA),

leads to IL-1β production and drives the pathogenic Th17 and Th1 lymphocyte generation, resulting in T1D onset.

chemokine receptors involved in immune cell migration to
pancreatic islets. NLRP3 deficiency in NOD mice reduces the
expression of CCR5 and CXRC3 on T cells and also the
gene expression of CCL5 and CXCL10 in pancreatic tissue
and these processes occur in an IRF1-dependent manner (87).
Additionally, our research group demonstrated that NLRP3
inflammasome activation by mitochondrial DNA (mDNA)
promotes IL-1β release by macrophages, contributing to the
generation of pathogenic Th17/Th1 cells in the PLNs and
to T1D susceptibility in STZ-induced T1D model (Figure 1,
Table 1) (88). In accordance, an association study in a north-
eastern Brazilian population identified two single-nucleotide
polymorphisms (SNPs) in NLRP3, rs10754558, and rs358294199,
that are associated with T1D in humans, suggesting that
variations in NLRP3 may be a predisposing genetic factor for the
development of autoimmune T1D (89).

Another innate immune receptor that results in
inflammasome assembly upon its activation, is the DNA sensor
absent in melanoma 2 (AIM2) (93, 94). The activation of AIM2
is involved in autoimmune and inflammatory diseases (95). In
the STZ T1D model, AIM2 is highly expressed in the ileum at
early stages of the disease. Interestingly, AIM2−/− STZ-injected
mice display increased T1D incidence, augmented intestinal
permeability and bacterial translocation to PLNs, which leads to a
proinflammatory response mediated by Th1 and Tc1 cells. When
the gut microbiota is depleted by a broad-spectrum antibiotic
cocktail before STZ-injections, the increased susceptibility to
T1D observed in AIM2−/− mice is abrogated (Table 1). The
effects induced by AIM2 activation in vivo are mediated by
IL-18 release, which favors regenerating islet-derived III gamma
(RegIIIγ) production, thus mitigating gut microbiota alterations
and reinforcing the intestinal barrier function. Together, our
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TABLE 1 | Summary of experimental studies about the role of NLRs in T1D.

NLR Main findings References

NOD2 Gut microbiota translocation to PLNs triggers

proinflammatory response mediated by NOD2 activation,

which contributes to STZ-induced T1D onset;

Nod2-deficient NOD mice are protected from diabetes

development and the protection is most likely mediated

by altered gut microbiota

(85, 86)

NLRP3 NLRP3 inflammasome activation by mitochondrial DNA

promotes IL-1β release, contributing to the generation of

pathogenic Th17/Th1 cells in the PLNs, and increasing

T1D susceptibility in STZ-induced T1D model;

NLRP3 deficiency in NOD mice inhibits the expression of

chemokines and chemokine receptors involved in

immune cell migration to pancreatic islets of NOD mice,

which protects NOD mice against T1D development.

(87–89)

AIM2 AIM2 plays a protective role in STZ-induced T1D by

regulating gut dysbiosis, intestinal permeability, and

reducing bacterial translocation to PLNs, which limits the

generation of diabetogenic pathogenic Th1 and Tc1 cells.

(90)

data show that AIM2 activation limits gut microbiota dysbiosis,
intestinal permeability and translocation to PLNs, decreasing a
proinflammatory response, and conferring protection against
T1D (90).

NLRs ROLE IN OBESITY, T2D AND
COMORBIDITIES

Gut dysbiosis can lead to increased permeability of the intestinal
barrier, resulting in low-grade systemic inflammation and
metabolic disorders such as obesity, T2D and ischemic stroke
(96, 97). Receptors of the innate immunity play a role in
systemic inflammation caused by obesity. Mice fed a high-
fat diet (HFD) exhibit an increase in colonic inflammation
and endotoxemia due to elevated intestinal permeability of
the colon mucosa (98). Additionally, increased TLR4 signaling
in the colon and activation of NF-κB are observed (98).
However, female mice lacking TLR4 display higher risk of
developing obesity, but also greater protection to insulin
resistance, perhaps due to the lack of TLR4 signaling in
important organs for metabolic homeostasis (99). In addition,
other studies showed that gut dysbiosis promotes a state of
metabolic endotoxemia during obesity, resulting in blood LPS
accumulation, metainflammation and insulin resistance through
CD14/TLR4 pathway (100–102).

T2D is a chronic metabolic inflammatory condition and
is the most common type of diabetes in adults worldwide
(103). This disease is initiated by the worsening of pancreatic
dysfunction, established when insulin production by β-
pancreatic cells cannot keep up with the increase in
peripheral insulin resistance (104, 105). Low-grade systemic
inflammation accompanies diabetes, with high serum levels
of C-reactive protein (CRP), tumor necrosis factor (TNF-
α), monocyte chemo-attracting protein-1 (MCP-1) and
IL-1β (106, 107). In addition, obesity, aging and other

conditions that promote low-grade chronic inflammation
are linked to increased risk of developing T2D (108–
110). Systemically, the high serum concentrations of IL-6,
IL-1β, and TNF-α increase insulin resistance and cause
endothelial dysfunction, priming the vascular system to
the development of diabetes-related diseases, including
systemic arterial hypertension (111). Meanwhile, increased
pancreatic IL-1β, IL-6, and IL-8 decrease insulin gene
expression in β-pancreatic cells, contributing to increased
insulin resistance (112).

A fine balance between the activation of innate NOD1
and NOD2 receptors is crucial for maintaining peripheral
insulin resistance. Direct activation of NOD1 receptors through
intraperitoneal administration of NOD1 ligand in WT mice
leads to an increase in peripheral insulin resistance in up to 6 h
(113). In this same study, the activation of NOD1 induced small
increases in circulating proinflammatory cytokines. In addition,
higher concentrations of inflammatory mediators are observed
in cultures of 3T3-L1 fibroblasts differentiated into adipocytes
and exposed for 18 h to NOD1 ligands (113). Inflammation of
peripheral tissues, especially adipose tissue (114), is a hallmark
of T2D and directly contributes to its pathogenesis through
adipose tissue dysfunction and subsequent complications in
energy homeostasis and intermediate metabolism (115). In this
context, double knockout NOD1/NOD2 mice are protected
against peripheral insulin resistance and peripheral inflammation
observed in the obesity (HFD)-induced T2D model (113).

NOD2 is an innate immunity receptor that recognizes
peptidoglycan in the cell wall of bacteria and, therefore,
constitutes an important link between gut microbiota and
immunity (116). Therefore, NOD2 activation profile may be
important in metabolic diseases with immune branches and,
therefore, may represent the link in the cross-talk between the
gut microbiota and these diseases. The deficiency of NOD2 in
mice allows greater translocation of bacteria from the intestine
(116). In a model of HFD, mice deficient in NOD2 exhibit
greater peripheral resistance to insulin, inflammation of visceral
adipose tissue, and higher content of bacterial DNA in the liver
(117). HFD increases the Firmicutes to Bacteriodetes ratio and
NOD2−/− mice submitted to HFD exhibit dysbiosis, represented
by an increase in the number of Helicobacter bacteria and in
the Peptococcaceae family and reduction of the Clostridium
genus, when compared to HFD-fed WT mice (117). Fecal
transplantation from obese mice to lean GF mice increases
total body mass and adipose-tissue mass. Alternatively, fecal
transplantation from lean mice to obese GF mice reduces
the adipose-tissue mass (118). In this last experimental setup,
there is an increase in the number of Bacteriodetes phylum
in the gut, which has been related to the production of
microbiota metabolites with host modulatory properties, in
particular: SCFAs (118). Interestingly, adequate consumption
of dietary fiber favors the secretion of SCFAs by the intestinal
microbiota. In addition, the activation of the GPR43 receptor
in mice, by SCFAs, in M2 macrophages of adipose tissue leads
to increased metabolic activity and favors maintenance and
homeostasis of healthy adipose tissue, improving metabolic
health (119).
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CONCLUDING REMARKS

The different categories of NLRs modulate gut dysbiosis-
driven extra-intestinal and intestinal inflammatory diseases.
The effects of NLRs are diverse and may be either protective
or deleterious depending on the immunological context. In
the intestine, NLRs regulate gut microbiota composition and
translocation by influencing mucus secretion and antimicrobial
peptide production, thus playing a key role in the protection
against inflammatory bowel diseases, such as ulcerative colitis
and Crohn’s disease. Alternatively, NLRs also are activated
by microbial PAMPs (gut microbiota) or endogenous DAMPs
(components from dead or dying cells), which act as negative
or positive regulators of the innate and adaptive immunity
response and contribute to the susceptibility or resistance to
metabolic diseases such as obesity, type 1, type 2 diabetes, and

their comorbidities. Thus, the pharmacological modulation of
these receptors may represent new therapeutic strategies for these
inflammatory and metabolic diseases.
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