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Abstract

Seagrasses form the foundation of many coastal ecosystems but are rapidly declining on a

global scale. The Dutch Wadden Sea once supported extensive subtidal seagrass mead-

ows that have all disappeared. Here, we report on the setbacks and successes of intertidal

seed-based restoration experiments in the Dutch Wadden Sea between 2014–2017. Our

main goals were to 1) optimize plant densities, and 2) reduce seed losses. To achieve our

goals, we conducted research-based, adaptive seagrass (Zostera marina) restoration,

adjusting methods yearly based on previous results. We applied various seeding methods

in three subsequent years–from Buoy Deployed Seeding (BuDS), and ‘BuDS-in-frame’ in

fall, to a newly developed ‘Dispenser Injection Seeding’ (DIS) method. Our adaptive experi-

mental approach revealed high seed losses between seeding and seedling establishment of

the BuDS methods (>99.9%), which we mitigated by controlled harvest and storage of

seeds throughout fall and winter, followed by DIS-seeding in spring. These iterative innova-

tions resulted in 83 times higher plant densities in the field (0.012 to 1.00 plants m-2) and a

small reduction in seed loss (99.94 to 99.75%) between 2015–2017. Although these devel-

opments have not yet resulted in self-sustaining seagrass populations, we are one step

closer towards upscaling seagrass restoration in the Dutch Wadden Sea. Our outcomes

suggest that an iterative, research-based restoration approach that focuses on technologi-

cal advancement of precision-seeding may result in advancing knowledge and improved

seed-based seagrass restoration successes.

Introduction

Seagrasses form the foundation of many coastal ecosystems and support millions of people liv-

ing in coastal areas across the planet [1, 2]. These vital ecosystems are, however, globally disap-

pearing as a result of anthropogenic activities [3, 4] such as eutrophication, habitat-destruction

and climate-induced heat waves [5–7]. To halt and reverse these losses, many attempts to

restore seagrass meadows are currently undertaken [8, 9]. About 50% of these attempts
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concern Zostera marina (eelgrass), the most common habitat-forming seagrass species in the

Northern Hemisphere [10]. However, seagrass restoration is challenging and success rates are

generally low. Hence, rapid advancements in this field are currently needed [11].

The Dutch Wadden Sea once harboured extensive seagrass meadows. Before the 1930s, the

Dutch Wadden Sea was covered by around 15,000 hectares of subtidal, perennial Z. marina
beds, which disappeared due to the wasting disease which coincided with the construction of a

major dam (‘de Afsluitdijk’) that reduced light availability to submerged plants [12, 13].

Although intertidal beds survived, they have mostly withered away, most likely due accumula-

tion of stressors such as eutrophication [14], increased bioturbation [15, 16] and increased sed-

iment dynamics resulting from large-scale modification of the landscape [17, 18]. Currently,

the Dutch Wadden Sea contains only a meagre 11.3 ha of seagrass of which only 0.5 ha with a

plant cover higher than 20% [19]. Most of this seagrass is perennial Zostera noltii with a very

rare occurrence of Z. marina. This low number contrasts with the total seagrass area in the

northern Wadden Sea (Germany, Denmark), where intertidal seagrass meadows rapidly

recovered in recent decades. Here, over 200 km2 of intertidal seagrass is thriving in mixed

meadows of perennial Z. noltii and annual Z. marina [19–22].

Due to its high ecological importance, several intertidal restoration attempts have been con-

ducted in the Dutch Wadden Sea, starting in the 1950s [12], followed by more research-based

attempts from 1990–2005, that explored both the use of plants and seeds as donor material

[23–25]. The next episode in Dutch Seagrass Restoration (2010–2013) involved a “Let’s try”

[26] attitude, initiated by Rijkswaterstaat (Dutch implementation agency of the Ministry of

Infrastructure and Water Management) and an NGO (de Waddenvereniging). Large-scale

seed-based restoration attempts (1 ha site-1, 3 sites) were conducted in two consecutive years

(2011 and 2012) using buoy deployed seeding (BuDS) [27, 28], targeting intertidal, annual Z.

marina. Plants emerged after seeding by BuDS across large surface areas (~300 ha), indicating

large seeded areas, but plant densities were very low (<1% cover) [29].

Here, we describe the results of seed-based intertidal seagrass restoration trials in the Dutch

Wadden Sea between 2014–2017, which built upon earlier work from 2011–2012 and 1990–

2006 [23]. Rather than targeting large-scale restoration, this episode (2014–2017, or ‘project’)

focused on developing the tools needed for large-scale restoration by identifying and tackling

vital restoration bottlenecks through an iterative, experimental approach. We conducted

research-based, adaptive seagrass restoration focusing on technological advancement to

improve restoration successes. This meant that results were evaluated yearly and methods

adapted accordingly. This approach yielded new methods and techniques through which we

aimed to 1) increase restoration success in terms of plant densities (m-2) and 2) reduce seed

losses. Target plant densities were>10 plants m-2 to enable self-facilitation [25], with seed

losses<99%, as plants typically produce around 100 seeds plant-1, yielding negative population

growth when loss rates exceed 99% [29]. Restoration experiments were conducted on five sites

in the Dutch Wadden Sea (Fig 1), using seeds from a German seed-donor site.

Materials and methods

Site description

The Wadden Sea encompasses an area of around 15,000 km2, spanning from the Netherlands

to Denmark (Fig 1). It is a UNESCO world heritage area and the world’s largest unbroken sys-

tem of intertidal mud and sand flats [30]. Despite its recognized status, the Wadden Sea is

heavily modified by human activities, both by resource depletion [16, 31] and large-scale mod-

ification of the landscape by the construction of dams and dikes [32]. This study focuses on

restoration experiments in the intertidal Dutch Wadden Sea (2500km2).
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Restoration sites

Restoration sites varied among years (2014–2017). Initially (2014), four sites were selected (Fig

1): Balgzand (N 52.92824, E 4.82349), Texel (N 53.12321, E 4.90133), Schiermonnikoog (N

53.46979, E 6.17340) and Uithuizen (N 53.46632, E 6.68830). Site selection was based on sea-

grass habitat suitability models [21, 33] and seed dispersal models [29, 34, 35]. Apart from

their apparent potential high suitability for seagrass growth, restoration sites were all exposed

at low tide for 5–6 hours and varied in sediment type from fine sand to muddy. All restoration

sites lacked Z. marina presence prior to the first seed-based restoration trials in 2011 [36]. In

the summer of 2014, very small densities of Z. marina (all<1% cover) were observed across a

limited extend of the restoration sites prior to seeding: 0.04 ha on Balgzand, 1.32 ha on Uithui-

zen, 0.72 ha on Schiermonnikoog, 0.0 ha on Texel [37]. All seeding experiments were con-

ducted outside areas where plants were encountered. Because some sites had no or extremely

low plant numbers in the summer of 2015 (Table 1, Balgzand and Texel, for detailed descrip-

tion see below), restoration experiments in successive years only focused on the most success-

ful sites (Uithuizen, Schiermonnikoog).

Donor site and seed collection. Seed material (Z. marina) for restoration experiments

was collected on Sylt (Puan Klent, N 54.7831, E 8.29487) in the Northern German Wadden

Sea (Fig 1). Seed-bearing shoots (spathes) were collected by a group of citizen volunteers

Fig 1. Location maps. (A) Location of restoration sites and donor site in North Western Europe, (B) Locations of restoration sites (black

dots) and donor site (Sylt, white dot) in the Dutch Wadden Sea. Abbreviations of donor sites stand for: BZ = Balgzand, TX = Texel,

Vlakte van Kerke, SCH = Schiermonnikoog, UH = Uithuizen. Maps were obtained through Eurostat/GISCO, and are freely available for

non-commercial use.

https://doi.org/10.1371/journal.pone.0262845.g001
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(NGO Natuurmonumenten), from a healthy mixed Z. marina/Z. noltii meadow [19] with a

mean Z. marina plant density of 26 ± 10 plants m-2. The material was collected yearly (2014–

2017) between 20 August and 15 September. These dates were determined based on the

amount of spathes containing ripe seeds (>40%, Fig 2A). Although seed-bearing shoots were

targeted for harvest, these comprised only 40 ± 4% of the harvested material (Fig 2B), while the

other 60% consisted of vegetative parts of Z. marina and Z. noltii (Fig 2B). This composition

did not differ significantly between moments of harvesting. Yearly, a total amount of 200–400

kg of seagrass material (~15,000–30,000 Z. marina plants) was harvested from the donor site,

equaling <1% of the plants growing at the>50 ha donor site. Each kilogram of material con-

tained an average of 75 plants that each contained 113 ± 30 seeds (Fig 2D), yielding an esti-

mated 8459 ± 2134 (n = 4) seeds on average per kilogram (Fig 2C). Harvested seagrass

material was transported to the Netherlands under refrigerated (~7˚C) conditions, within a

day after harvest.

Seeding methods

2014. buoy deployed seeding. Since scale-dependent self-facilitating processes appear to

be important for seagrass restoration [8, 38], we first attempted large-scale seagrass restoration

using the BuDS-method [28], which was adopted from previous seed-based restoration

attempts in 2011 and 2012 [27]. Seed-based seagrass restoration is gaining traction as a restora-

tion method [39–41], as it is cost-effective [42], can be easily upscaled [28], and ensures

Table 1. Overview of restoration activities in four subsequent years (2014–2017) on five sites in the Dutch Wadden Sea.

Location Year Period of

Seeding

Size

seeded

area (m2)

Seeding

method

Biomass

seeded (kg)

# Seeds

seeded

Monitoring

period

Monitoring

Method

# Total

number of

plant

Surface

area with

plants (ha)

Plant

density (#

m-2)

% seed

loss

Balgzand 2014 Fall 5760 BuDS 22.5 190,000 - - - - - -

2015 - - - - - Summer BCPD 14 0.1 0.014 99.992

2016 - - - - - - - - - - -

2017 - - - - - - - - - - -

Schiermonnikoog 2014 Fall 5760 BuDS 22.5 190,000 - - - - - -

2015 Fall 200 BuDS in

frame

132 780,000 Summer BCPD 995 15 0.007 99.476

2016 - - - - - Summer BCPD 2076 5.6 0.037 99.734

2017 - - - - - Summer BCPD 759 13 0.006 -

Uithuizen 2014 Fall 5760 BuDS 22.5 190,000 - - - - - -

2015 Fall 200 BuDS in

frame

132 780,000 Summer BCPD 406 3.5 0.012 99.937

2016 - - - - - Summer BCPD 831 5 0.017 99.893

2017� Spring 2640 DIS NA 600,000 Summer Ground

counts

1546� 0.26� 0.590� 99.742

Texel 2014 Fall 20,320 BuDS 318 2,686,000 - - - - - -

2015 - - - - - Summer BCPD 0 0 - 100.00

2016 - - - - - - - - - - -

2017 - - - - - - - - - - -

Seeding was performed in either Fall or Spring. Seeding methods are abbreviated: BuDS stands for Buoy Deployed Seeding and DIS stands for Dispenser Injection

Seeding. Number of seeds seeded are truncated to the nearest 10000. Note that except for UH17, seeding was generally conducted in fall, whereas monitoring was

conducted in the preceding year in summer. The result from the 2017 seeding experiment on Uithuizen (indicated by �) are also separately displayed in Fig 4. Uithuizen

2017 numbers displayed in this table are only counted within plots. Since many plants also settled outside the plots, but were not counted, total seed losses could not be

determined. BCPD is the abbreviation for ‘Batcheler Point Corrected Distance’ monitoring method.

https://doi.org/10.1371/journal.pone.0262845.t001

PLOS ONE Intertidal seed-based seagrass restoration

PLOS ONE | https://doi.org/10.1371/journal.pone.0262845 February 9, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0262845.t001
https://doi.org/10.1371/journal.pone.0262845


maintenance of desirable high genetic diversity [43–45]. For the BuDS-method, 800 g of har-

vested seed-bearing shoot material (unprocessed, also containing vegetative Z. marina and Z.

noltii) was placed in 2 mm mesh bags (nylon ‘potato bags’) with a small buoy. Filled mesh bags

were subsequently tied to another buoy (Fig 3A), connected to a 4 m long rope that was

securely anchored in the mudflat by a 0.7 m long PVC pole. The poles were placed in such a

way that an estimated surface area of 5760 m2 was seeded by the movement of the mesh bags

on the ropes. On Texel, this surface area was increased to 20,320 m2 by deployment of more

mesh bags. An estimated 190,000 seeds were seeded per site, except for Texel where 2,686,000

seeds were seeded (Fig 1, Table 1). BuDS-units were deployed within 5 days after seed harvest,

and were left out in the field for 8–10 weeks.

2015. Buoy deployed seeding in frame. To enhance seeding densities, we decided to

adapt the method of seeding in 2015 and test it at the most successful sites from 2014 –Uithui-

zen and Schiermonnikoog–(Fig 1). Rather than being tied to poles, BuDS were tied to horizon-

tal ropes spaced 1 m apart within four PVC frames of 5x10 m (Fig 3E), covering a total surface

area of 200 m2. The frames were deployed at the site during high tide, where they were sub-

merged by filling them with water, and securely anchored to the sediment. This method

reduced the seeding circle of the bags to around 1 m2. Each frame contained 11 rows with six

BuDS (66 per frame, 264 per site) that were filled with 500 g harvested seagrass material. Thus,

Fig 2. Measurements from the seed donor site on Sylt. (A) Spathe composition per plant with spathes containing

ripe seeds at time of harvest (% ripe spathes), spathes containing flowers or developing seeds (% non-ripe spathes) and

spathes which have already shed seeds (% empty spathes), (B) Composition of harvested seagrass material divided into

seed-bearing spathes of Z. marina, vegetative (leaf, rhizome, root) material of Z. marina, and accidentally harvested Z.

noltii (whole plant) (n = 4). (C) Number of seeds per harvested kilogram estimated based on measurements on

composition of harvest material, the weight per spathe, ration spathes containing ripe/non-ripe seeds and number of

ripe seeds/spathe and (D) number of seeds plant-1 during harvest (n = 10).

https://doi.org/10.1371/journal.pone.0262845.g002
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a total of 132 kg harvested seagrass material, containing an estimated 780,000 seeds (Table 1),

was seeded per site.

2016–2017. Processing harvest and controlled seed storage and ‘Dispenser Injection

Seeding’ (DIS). As both BuDS methods resulted in high seed loss in winter, we moved on to

alternative methods aimed at storing seeds inside during winter to reduce both winter losses

through hydrodynamics and losses from Phytophthora spp. infection [46]. Hence, for the 2017

seeding experiments, all harvested seagrass (420 kg in total) was processed after harvest. Har-

vested material was deposited in big, 1 mm mesh sieves hanging in strongly aerated seawater

tanks (max 21 kg/ 500 L) with flow-through system (Fig 3B). Seawater originated from the

nearest Wadden Sea harbour (Lauwersoog, N 53.41177, E 6.19918) and had an average salinity

of around 27 ppt (Rijkswaterstaat Waterdata). Harvested material was left in the seawater for a

maximum of 5 weeks and all debris that had sunken through the sieves to the bottom (includ-

ing seeds) was collected on a weekly basis and then processed to separate seeds from mud

snails (Peringia ulvae) and dead organic matter [47]. Cleaned-up seeds were subsequently

stored in 4 m x 10 cm roof gutters filled with a 2-cm layer of aerated, and a constant flow-

through of artificial seawater (30 ppt, Tropic Marin ©) (Fig 3C). Seeds were spread out across

the gutters (five in total) to minimize the seed layer depth (max 0.5cm) to prevent anoxia [36].

This set-up was located in a cool (4˚C) and dark climate-controlled room. Seeds were addi-

tionally treated with a 0.2 ppm copper sulfate treatment to reduce infection by Phytophthora
spp. and Halophytophthora spp. [48]. The total harvested seagrass material (420 kg) contained

an estimated 2.5 million seeds. However, we stored only about 1.2 million seeds, indicating a

loss of about 47% due to seed-processing. Stored seeds were also checked for viability using

Fig 3. Visual overview of methods. (A) volunteer is selectively harvesting seed-bearing eelgrass shoots from the donor

site on Sylt, (B) Harvested seed-bearing shoots are kept in aerated seawater tubs until all the seeds have dropped out of

the spathes, (C) seeds are stored under controlled conditions with flow-through system, (D) Buoy Deployed Seeding

(BuDS) in the intertidal, harvested material is put in a mesh bag (photo, illustration), (E) Buoy Deployed Seeding in

frame (BuDS-in-frame) in the field (photo) and birdeye view (illustration), (F) Dispenser Injection Seeding (DIS) on

the intertidal mudflats in spring (photo, illustration).

https://doi.org/10.1371/journal.pone.0262845.g003
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germination tests [46] and 92 ± 4% of the stored seeds were tested as viable. Viability was not

checked for seeds that were directly transferred to the field in 2014 and 2015. Additional test-

planting of seeds in a mesocosm with mudflat sediment was conducted with or without fresh

water (1h, 0 ppt DI) water pre-treatment to stimulate germination [49], to test additional

expected viability in the field. This yielded seed germination rates (as counted by the emer-

gence of green seedlings) of 42 ± 27% (no freshwater treatment) up to 79 ± 25% (freshwater

treatment), indicating high seed quality.

After winter seed storage, we needed to develop a new method to disperse seeds into the

field in spring. We therefore developed the DIS-method. For this method, seeds were injected

into the sediment in a blend of seeds and thickened mudflat sediment. Mudflat sediment

(median grain size of 24 μm, 15% OM), originating from a nearby natural seagrass meadow,

was collected for this purpose. Next, this sediment was sieved over a 1 mm mesh to remove

benthic animals and large particles. Subsequently, the sieved sediment was left in a fine sieve

(1mm mesh) overnight to reduce the water content by using gravity to release some moisture

from the sediment through the mesh. This resulted in a thickened, aerobic sediment paste that

was stored at 6˚C until seeding. Before seeding, a set volume of sediment paste was homo-

geneously mixed with a fixed number of seeds (measured by volume), to be able to obtain tar-

get seed densities when injecting. Seeds were soaked in freshwater (0 ppt) for 24 h before being

added to the mixture [50]. This mixture was used to fill-up 310 mL sealant tubes, which were

loaded into sealant guns (Fig 3F). Sealant guns were tuned and seed ‘blobs’ were subsequently

injected at a set depth of 2 cm, by adding a plastic disc to the nozzle to mark the required

depth (Fig 3F, S1 Movie).

2017. Plot size and seed density experiment. In 2017, we set-up a small-scale, full-facto-

rial experiment to test the DIS-method and the effects of plot size (two levels: 200 and 20 m2)

crossed with number of seeds injection-1 (two levels: 2 and 20 seeds injection-1, resulting in a

seed density of 40 or 400 injected seeds m-2, the error margin was estimated to be 10%). This

resulted in four treatments with six replicates each. Seeds were injected early April, with a den-

sity of 20 injections m-2. Thus, seed density treatments received the same number of injections,

but had more seeds injection-1. Plots were 14.10 x 14.10 m (200 m2) or 4.5 x 4.5m (20 m2). The

experiment was set-up on the restoration site that was consistently the most successful based

on previous years’ results (Uithuizen, Fig 1). An estimated number of 600,000 seeds were

applied in this experiment. The rest of the estimated 1.2 million seeds were applied in other

experiments (mesocosm and field experiments).

Monitoring: Batcheler-Corrected Point Distance method. Monitoring was conducted

once per growing season in August. Intertidal seagrass monitoring in the Dutch Wadden Sea,

commissioned by the government, is performed every 3 years, and uses percent cover to report

seagrass presence and density. Since almost all seagrass densities are below 1% cover [19], we

performed additional monitoring of our restoration sites based on the Batcheler-Corrected

Point Distance (BCPD) method [51, 52] to estimate the plant density and the overall popula-

tion size. For this method, the distance from starting points along a transect to their nearest

object is measured, followed by a measurement from that object to the next nearest object, and

again, from that second object to its next nearest object (S1 Fig, [53]). We first mapped the spa-

tial extent of the seagrass-inhabited area, using a handheld GPS; the outer border was drawn

where the distance between plants fell below 30 m. Next, we set-up two perpendicular transects

across the mapped area, with a Batcheler-Corrected Point Distance starting point every 20 m

along the transect. From each transect point, we searched for plants within a 10 (in 2016–

2017) to 15 (2015) m radius circle, with the diameter depending on the plant density [50].

After the first plant (rp) was found we repeated this procedure for the second (rn) and third

(rm) plant if possible. Plant densities (# m-2) were calculated as total plant number / total area
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with plants (m2) [53]. Plant densities rather than shoot densities were monitored due to the

annual morphology of intertidal eelgrass in the Wadden Sea: plants grow in clumps, investing

in seed production rather than rhizome elongation. In addition, plant counts provided more

information on population demographics compared to shoot counts. In 2017, plant densities

were higher and spread out across a smaller surface area, rendering the BCPD method useless.

We therefore counted all plants per plot instead. Since our target species, annual Z. marina,

cannot build up a seed bank>1 year, plant counts were determined to be representative of

results from seeding trials in the same year.

Comparison of restoration methods. To compare restoration methods (i.e. BuDS, BuDS

in frame and DIS), we compared plant densities and seed losses between 2015–2017 from our

Uithuizen site, which was the only site which was repetitively seeded throughout this period.

Plant densities were determined using the two different monitoring methods indicated above:

the Batcheler-Corrected Point-Distance Method for 2015 and 2016 and plant counts per plot

for 2017. Plant densities in 2015/2016 were inferred from the Batcheler-Corrected Point-Dis-

tance Method that yielded total plant numbers per site by #total plant count / total areal extent

with plants (m2). In 2017, plant densities were determined per plot by #total plant count per

plot / plot size (m2). Percentage seed loss as reported in Table 1 were also determined in two

different ways. In 2015 and 2016, seed losses were calculated as 100-(#total adult plants moni-

tored on a restoration site / # total seeds applied to that site) �100%. In 2017, Percentage seed

loss was calculated per plot as 1- (#total adult plants counted plot-1 / #injected seeds plot-1) �

100%. In addition, we report establishment rates, which were inferred from seed losses and cal-

culated as 100 –(% seed loss).

Statistical analyses. We made a comparison between the two BuDS methods by compar-

ing the plant density and seed loss results from 2015 and 2016 using chi-square tests. Differ-

ences in composition of harvest between moments of harvest and seed numbers per plant were

tested using separate (Z. marina spathes, Z. marina vegetative and Z. noltii, seeds plant-1) linear

mixed models (lme, nlme package) with “moment of harvest” as a fixed factor and “year” as a

random factor. Results (plant densities, seed loss) from the 2017 experiment were also tested

using linear mixed models with “density” and “plot size” as fixed factors (interactively tested)

and “block” as a random factor. Model assumptions were checked on model residuals using a

Shapiro-test and by visually inspecting qq-plots and histograms. All statistical tests were per-

formed in R version 3.5.1 (© 2021 the R Foundation for statistical computing).

Ethics statement

Permits for Z. marina seed collection on Sylt were obtained (verbal approval) from the Alfred

Wegener Institute (AWI) on Sylt. Permission to conduct seagrass (Z. marina) restoration

experiments was obtained (written approval) from the Province of Fryslân, the Netherlands.

In addition, local nature managers (Natuurmonumenten, Landschap Noord-Holland) pro-

vided verbal consent for conducting these experiments on their land.

Results

2015. BuDS

Although three of our experimental sites were seeded with the same amount of seeds in 2014

(190,000 seeds per 5760 m2 equaling 33 seeds m-2), we found great differences in plant num-

bers among sites in 2015. Total plant numbers per site were generally low, ranging from 14

(Balgzand) to 406 (Uithuizen) and 995 (Schiermonnikoog). On Texel, where 132 seeds m-2

were seeded, plants were completely absent (Table 1).
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On sites with plants, plants were distributed across a large area (3.5–15 ha), resulting in

extremely low densities (0.007–0.012 plants m-2). These results indicate high seed loss (99.84–

100%), very likely due to seeds being washed away by waves and currents, apparent from the

large area where adult plants were found.

2016. “BuDS-in-frame”

In 2015, the “BuDS-in-frame” method was applied, seeding 780,000 seeds per 200 m2

(~3900 seeds m-2). This method yielded on average 2x higher plant densities in 2016 (Χ2, P
< 0.001) than the regular BuDS method in 2015: 831 plants in Uithuizen and 2076 plants

on Schiermonnikoog (Table 1). The actual seeded area in 2016 (5.6 ha Schiermonnikoog,

5.0 ha Uithuizen) was significantly lower compare to 2015 (Χ2, P = 0.011). In addition,

plant densities did not increase significantly (Χ2, P = 0.921), and were still far below target

densities (>10 plants m-2) with only 0.017 and 0.037 plants m-2 on Uithuizen and Schier-

monnikoog respectively (Table 1). Seed loss was also still very high: 99.73–99.89%. These

results indicate that the adapted “BuDS-in-frame” method was inadequate to reach our res-

toration targets.

2017. Scale and seed density experiment

In 2017, we switched from the BuDS methods to the controlled seed storage over winter and

DIS-seeding in spring. This method yielded up to 100x higher plant densities than in previous

years (Up to a max. of 1.8 plants m-2, Fig 4). Plot size (20 vs. 200 m2) did not affect plant densi-

ties (Fig 5), but high seed density plots yielded 3x higher plant densities (1.0 plants m-2) than

low seed density plots (0.33 plants m-2, Linear Mixed Model, F1,15 = 21.357, P< 0.001). Since

high seed density plots received 10x more seeds (40 vs. 400 seeds m-2), plant densities in the

high seed density plots were actually >3x lower than expected. Although absolute plant num-

bers were higher in the high seed density plots, the low-density plots experienced significantly

(3.6x, Linear Mixed Model, F1,15 = 17.4, P< 0.001) lower seed loss than the high-density plots

(99.2 vs. 99.8% respectively), indicating that every 1000 seeds seeded yielded 8.4 and 2.3 plants

in the low- and high-density plots respectively. Plot size did not affect seed loss. Although seed

loss in this experiment was reduced in this experiment compared to previous years at this loca-

tion (2015 & 2016, Table 1), average seed loss was still>99% (except for three individual

plots).

Fig 4. Comparison results Uithuizen experiment (2017) with results of previous (2015–2016) years. (A) Plant

densities (m-2) (B) Loss rates (%).

https://doi.org/10.1371/journal.pone.0262845.g004
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Discussion

Attempts at seagrass restoration around the world have been challenging and successes have

been linked to large-scale planting attempts [8, 9, 54]. We deployed multiple seed-based resto-

ration experiments targeting intertidal annual Z. marina in the Dutch Wadden Sea in 2014–

2017. Despite early set-backs, an adaptive approach using yearly advancing insights allowed us

to develop a new seed-based restoration technique, the DIS-method. Due to the storage of

seeds during winter and seed out-planting using this method, we managed to produce 100x

higher plant densities within two years (0.012 to 1.8 plants m-2). This new method needs fur-

ther improvement, but shows great promise for successfully upscaling seed-based seagrass res-

toration. Previously used methods (2014/2015), BuDS and ‘BuDS in frame’, were deemed

unsuitable at our restoration sites as these methods resulted in very low (0.007–0.037 plants m-

2) plant densities and high seed losses (>99.48%). Our results indicate that despite early set-

backs in restoration success, an adaptive, research-based approach focused on technological

advancement allows for taking successful steps towards understanding key-processes for seed-

based seagrass restoration in intertidal areas.

Comparison of restoration methods

Interest in seed-based seagrass restoration is growing, as it has some major benefits in compar-

ison with other planting techniques. It is cost-effective, allows for maintaining high genetic

diversity and enables upscaling of restoration attempts [39–42, 44, 55].

A variety of seagrass seeding methods have been developed, including hand-broadcasting

[42], a mechanical seed planter [56], the use of protective bags [57], and buoy-deployed seed-

ing techniques [28].Most of these methods found relatively low seedling establishment rates in

the field, with a maximum of 20% [58], but commonly as low as 1% [57, 59]. Although we

could not distinguish between seedling settlement and plant settlement, we found even lower

plant establishment rates (<0.5%) on all our intertidal study sites. We assume that most losses

that occurred in our study area occurred in the seed-phase as several studies have shown that if

seeds are retained in suitable spots, seedling establishment and development is generally high

[14, 60, 61]. Our two BuDS-methods (regular and “BuDS-in-frame”) yielded plant establish-

ment rates lower than 0.1%. We considered this to be problematic for restoration success since

we were targeting annual plants that completely depend on successful seedling establishment

every single year. Furthermore, to maintain a self-sustaining population, a >0.9% plant estab-

lishment would be needed based on measurements on seed production of donor plants on Sylt

Fig 5. Results restoration experiment Uithuizen 2017. (A) Mean plant densities (m-2) and (B) Loss rates (%) from

seeds to seed-bearing plants.

https://doi.org/10.1371/journal.pone.0262845.g005
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(mean 113 seeds plant-1). Next to low plant establishment rates, we also found extremely low

total plant numbers in our BuDS-trials (Table 1). Surprisingly, the BuDS-method did result in

seed dispersal across a large areal extent, as opposed to findings from previous studies that

mostly reported short-range seed transport after BuDS-deployment [28, 39].

In contrast to the BuDS-method, that led to very high seed losses and low establishment

success rates, the DIS-methods yielded far more promising results in our study system (inter-

tidal Wadden Sea). The DIS-method yielded promising results in terms of plant densities

(mean of 1.0 and max. 1.8 plants m-2 in the highest seed density treatment), as compared to

2015 and 2016 (BuDS-methods, 0.01 and 0.02 plants m-2 respectively). However, plant-estab-

lishment rates with this method were still low (0.23–0.84%), but maximum seed establishment

rates were as high as 1.62%. The DIS-method is thus a promising method to reach target plant

densities for intertidal Z. marina restoration, but the method should still be improved in terms

of optimal planting depth, # seeds inject-1 and # injects m-2 to optimize both plant densities

and establishment. After optimization, this method (hand- or machine-labour) might even

enable practitioners to upscale restoration attempts of Z. marina, which is vital to restore posi-

tive density-dependent feedbacks [8]. With further research on mechanisms of seed losses, this

method may also be adapted for seed-based restoration of other seagrass species.

Key to the success of the DIS-method is the controlled storage of seeds during the winter

prior to spring seeding. In the field, high winter seed losses may have resulted from bioturba-

tion [62–64], seed predation [65], disease [46], high sediment mobility [66] and waves and cur-

rents moving seeds into unsuitable growth conditions [67]. Winter storage has resulted in high

seed viability rates (>75%), successfully keeping seeds away from all bottlenecks listed above

except for disease (i.e. Phytophthora spp. infection), which we reduced by treating stored seeds

with copper [48].

Scale and density

van Katwijk, Thorhaug [8] found that large-scale plantings generally yielded higher restoration

success. This may be due to the ecosystem engineer-properties of seagrasses: seagrasses are

able to manipulate their own biotic and abiotic environment, which enables them to improve

their own growing conditions with increasing densities [38, 68]. For instance, by alleviating

hydrodynamic stress, by attenuating waves and currents and by stabilizing the sediment with

their dense root mats [69, 70]. Secondly, the scale of restoration may be important to deal with

environmental stochasticity of dynamic coastal habitats [71]. In our 2017 experiment, we did

not observe a positive scale effect on plant densities (Fig 5): large-scale plots (200 m2) did not

yield higher plant densities than small-scale plots (20 m2). This lack of positive scale effects

may be due to the overall low plant densities that do not enable self-facilitating density-depen-

dent feedbacks to operate. Despite our low densities, our findings are in line with the findings

of Orth, Fishman [72] who found no scale-effect in seed germination and seedling establish-

ment in Chesapeake Bay. However, we did find negative effects of high seed densities on plant

establishment as we only found 3x higher plant establishment while we had planted 10x more

seeds (40 vs. 400 seeds m-2). This may be due to our seeding method (DIS), where we obtained

high seed densities by increasing the number of seeds per injected ‘blob’ (2 or 20 seeds blob-1)

rather than increasing seed density by increasing the number of injections m-2. This may actu-

ally have facilitated intraspecific competition rather than facilitation as was found by Granger,

Traber [73]

Next to the lack of density-dependent facilitation, low plant densities may also strongly

affect population dynamics of a restored annual seagrass population. These populations

completely depend on successful fertilization, seed production and seed retention for the
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establishment of next year’s generation. Low plant densities may prevent successful fertiliza-

tion of flowers [74], although pollination may occur up to 70 m away [75]. Additionally, self-

pollination does occur in Z. marina [76], but may decrease genetic diversity through inbreed-

ing at the risk of extinction [43]. Low plant densities may also negatively affect seed retention

through reduced structural complexity of intertidal soft-bottom systems that usually aids Z.

marina seed retention [77]. Thus, positive effects of scale-dependent intraspecific facilitation

may be context-dependent and alternative facilitation strategies, e.g. interspecific facilitation,

could also be explored.

Environmental suitability

The first step in ecological restoration is to reduce existing pressures (either anthropogenic or

natural) on a species, population or ecosystem, before engaging in active restoration. Thus,

causes of degradation need to be assessed and removed to ensure restoration success [78, 79].

Despite our relative increase in the restoration successes of intertidal eelgrass (yielding 100x

higher plant densities between 2015–2017), absolute plant numbers were still very low (max. 1

plant m-2) and seed losses extremely high (>99.75%). This may not only be due to limitations

in restoration techniques, but could also result from insufficient environmental suitability of

the selected restoration sites. Natural intertidal seagrass beds have all but disappeared from the

Dutch Wadden Sea [19], very likely due to an accumulation of stressors such as eutrophica-

tion, increased sediment dynamics and bioturbation [14–17]. Despite a strong improvement

in water quality since the 1980s [80], natural recovery of intertidal seagrass (Z. marina and Z.

noltii) has not occurred. This may be an indication of an ongoing low environmental suitabil-

ity, or a general lack of donor material to support recovery. However, despite actively provid-

ing donor material through restoration experiments, most of our selected sites turned out to

be unsuitable for the restoration of intertidal Z. marina. This is surprising, because site selec-

tion was based on multiple habitat suitability models that took the most important determi-

nants for intertidal seagrass presence into account (e.g. nutrients, sediment characteristics,

bathymetry, hydrodynamics, salinity) [21, 33]. This indicates that some unaccounted factors

may be present, e.g. seed predation, pathogens, bioturbation or others, yielding sites unsuit-

able. Thus, next to advancing restoration methods, a careful evaluation of environmental habi-

tat suitability is needed to warrant restoration success [81].

Implications and recommendations

Seagrass restoration is challenging and success rates are generally low [8]. Although large-scale

scale planting generally improves restoration success [8], large-scale efforts using the BuDS-

method did not lead to restoration success (in density and plant numbers) in our trials in the

Dutch Wadden Sea. We conclude that the BuDS method, and the follow-up “BuDS-in-frame”

method are unsuitable for the intertidal Wadden Sea due to high seed loss rates due to waves

and currents, bioturbation and disease. Our newly developed DIS-method, combined with

controlled seed storage, seems like a promising technique to improve restored plant densities

in our intertidal study area. This method however still needs some fine-tuning to optimize

results and to allow for large-scale planting. Additionally causes of seed loss should be further

investigated to further enhance restoration successes. Finally, even though we experienced

major setbacks in our seed-based eelgrass restoration project in the intertidal Wadden Sea, we

recommend an adaptive, research-based approach focused on technological advancement, to

improve restoration. This may aid in taking small, but successful steps towards seagrass resto-

ration in intertidal areas.
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