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Abstract: Advances in micro- and nanofabrication technologies have enabled the development 

of novel micro- and nanomechanical resonators which have attracted significant attention 

due to their fascinating physical properties and growing potential applications. In this 

review, we have presented a brief overview of the resonance behavior and frequency 

tuning principles by varying either the mass or the stiffness of resonators. The progress in 

micro- and nanomechanical resonators using the tuning electrode, tuning fork, and 

suspended channel structures and made of graphene have been reviewed. We have also 

highlighted some major influencing factors such as large-amplitude effect, surface effect 

and fluid effect on the performances of resonators. More specifically, we have addressed 

the effects of axial stress/strain, residual surface stress and adsorption-induced surface 

stress on the sensing and detection applications and discussed the current challenges. We 

have significantly focused on the active and passive frequency tuning methods and 

techniques for micro- and nanomechanical resonator applications. On one hand, we have 

comprehensively evaluated the advantages and disadvantages of each strategy, including 

active methods such as electrothermal, electrostatic, piezoelectrical, dielectric, magnetomotive, 

photothermal, mode-coupling as well as tension-based tuning mechanisms, and passive 

techniques such as post-fabrication and post-packaging tuning processes. On the other 

hand, the tuning capability and challenges to integrate reliable and customizable frequency 

tuning methods have been addressed. We have additionally concluded with a discussion of 

important future directions for further tunable micro- and nanomechanical resonators. 
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1. Introduction 

With the rapid advance of the micro- and nanotechnologies in micro/nano-electro-mechanical 

systems (MEMS/NEMS), more and more micro- and nanomechanical resonators have been developed, 

which are of interest to both the scientific community and engineering fields due to their significant 

advantages such as small size, compactness, high sensitivity, high resolution, low power consumption and 

low cost, and high quality factor [1–5]. Due to their small sizes, micro- and nanomechanical resonators can 

oscillate at very high resonant frequencies, which provides them with a remarkable ability to perform 

both sensing and detection in advanced technological applications, including ultrasensitive mass  

and force sensing, ultralow-power radio frequency (RF) signal generation and timing, chemical and 

biological sensing, cooling, environmental control, and quantum measurement [6–12]. However, there 

still exist fundamental and technological challenges to tunable micro- and nanomechanical resonators. 

In general, different techniques for designing the micro- and nanomechanical resonators can be 

categorized into both vibration-based methods and wave propagation-based methods [13]. The 

fundamental characteristics of mechanical resonators are determined by the resonant frequency and 

quality factor (energy dissipation). As one of the important attributions to resonating MEMS/NEMS 

devices, resonant frequency often determines the sensitivity and accuracy of the system. Various  

micro- and nanomechanical resonator applications, such as high resolution sensors, RF oscillators and 

filters, can be benefit from the tuning capability of resonant frequency or operation range, which 

allows fabrication of multi-functional components for multi-band filtering, has low power temperature 

compensation targeted for timing reference and RF synthesizing applications [14–28]. The most 

desirable function is the tunability of the resonant frequency, which can be used to compensate for the 

resonant frequency shift in resonators due to the changes in temperature, pressure, or atmosphere 

composition [14]. An interesting application frequency tuning is the ability to controllably couple the 

out-of-plane and in-plane vibration modes as the frequencies of the two modes are tuned closer to each 

other [15]. It can be used to optimize frequency and nonlinearity tuning and to increase the pull-in 

threshold for specific applications of small and sensitive devices as linear sensors. Frequency tuning 

on short timescales [16] can be necessary for mechanical signal processing which requires signal 

tracking, frequency hopping, etc. Moreover, frequency tuning can be applied when the structure 

dimensions of the resonators changes due to the fabrication process [16], can be useful in controlling 

frequency instability and deterministic switching between bistable states [17], and can realize 

controllable sensitivity [18]. Therefore, the ability to tune the resonant frequency of a micro- and 

nanomechanical resonator is crucial for potential applications. The fundamental understanding of the 

frequency tuning mechanisms becomes important for the future design and optimization of micro- and 

nanomechanical resonators in the very-high frequency (VHF), ultra-high frequency (UHF) ranges. 

The resonant frequency of micro- and nanomechanical resonators depend upon many factors, 

including geometry, structural material properties, stress, external loading, and surface topography. Many 
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methods have been proposed to guarantee frequency tuning throughout the lifetime of micro- and 

nanomechannical resonators, and overcomes the relative drawbacks arouse from the nonlinear effect, 

environmental effect and fabrication related effects such as processing temperatures, fabrication 

tolerances, structural non-idealities and asymmetries, residual stress as well as design errors and 

defects which can cause resonant frequency shift [19–22]. Therefore, it is important to develop tuning 

methods which depend on the change of the stiffness or mass of the mechanical resonators. Inducing 

stresses in the resonator can change its effective stiffness and the resonant frequency [14]. Since 

micro- and nanomechanical resonators are characterized by a large surface-to-volume ratio, it is 

demonstrated that the surface phenomena plays a significant role on not only the resonance behavior 

but also the sensing or actuating performance of the devices [23,24]. In addition, micro- and 

nanomechanical resonators have widely implemented in various fluidic environments, as a result, the 

viscous fluids lead to the shift of resonant frequency in the resonators and the fluid-structure 

interaction causes the challenge to perform measurement in viscous fluids [25,26]. 

Various geometry structures like cantilever and bridge beams, and plates are the most typical  

micro- and nanomechanical resonators. Recent advance of fabrication technologies leads to the 

increasing complexity of resonating devices which generate challenges to potential resonator 

applications [27]. Micro- and nanomechanical resonators using the structures and materials such as 

tuning electrode [28], tuning fork [29], suspended channel structure [30], carbon nanotubes [31], 

nanowires [32], graphene sheets [33] and bulk micromachined structures [34], as well as the smallest 

man-made self-assembled molecular structure [35] provide the promise of new applications and allow 

us to explore fundamental properties at the micro- and nanoscales. It is of great interest to tune and 

control their resonant frequencies reversibly. 

Frequency tuning methods can be usually divided into two major categories: active and passive 

methods [36]. Many researchers have extensively developed various methodologies to address the 

changes by correcting the resonant frequency using tuning procedures. Active tuning is defined as a 

tuning mechanism that is continuously applied even if the resonant frequency closely matches the 

excitation vibration frequency [37]. Real time tuning makes these methods very attractive and some 

active methods, including electrothermal [14,19], electrostatic [38–40], magnetomotive [41], 

piezoelectrical [42,43], dielectric [44], photothermal [45], and modal coupling [46,47], as well as the 

tension-induced tuning mechanisms, have been developed and reported. In contrast, passive tuning 

method often operates periodically and only consumes power during the tuning operation [37]. The 

manufacturing variations due to fabrication processes may cause discrepancies in designed 

specifications, which should be needed to compensate using the post-fabrication tuning processes [48]. 

However, these methods are unable to implement real time frequency tuning for mechanical resonators 

throughout their lift times. Furthermore, zero on-chip energy consumption makes passive methods 

favorable for low power applications [36]. 

During the past several years, some extensive and critical reviews on micro- and nanomechanical 

resonators and comprehensive analyses of their wide rage for MEMS/NEMS applications have 

reported [49–51], such as the recent reviews on carbon nanotube and graphene-based nanomechanical 

resonators [2,13,52–54], microcantilever-based resonator applications and sensing principles [55], 

nanomechanical resonators and their applications in biological/chemical detection [56] and 

visualization of material structure [57], nonlinear dynamics and its applications in micro-and 
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nanomechanical resonators [58], MEMS-based oscillators for frequency reference applications [59], 

micromechanical resonators applied in vibration energy harvesters [60], cantilever-like micromechanical 

resonators for recent sensor applications [61], nanomechanical resonators for all-optical mass sensing [11], 

dissipation in nanomechanical resonator structures [62], some fundamental and nonfundamental noise 

processes limited the performance of nanomechanical resonators [63], and an outlook of how state-of-the 

art mechanical resonators can be improved to study quantum mechanics [64]. The current review focuses 

on the methodologies of frequency tuning for micro- and nanomechanical resonators. The purpose of 

this review is to present not only the current state-of-the-art in the development of frequency tuning 

methods for micro- and nanomechanical resonator applications, but also the resonant frequency shift 

due to the major influencing factors that have enabled fundamental insights into the frequency tuning 

principles and mechanisms as well as the some novel tuning structures and tunable resonators. 

This review is organized as follows: In Section 2, we present the theoretical description of the 

resonance behavior in the flexural and torsional modes of vibration of the beam-based mechanical 

resonators. Section 3 provides the brief overview of the frequency tuning principle for the resonators, 

in which the flexural and torsional operation modes of motion are described via a basic mechanical 

model. Except for the typical beam/plate-based micro- and nanomechanical resonators, an overview of 

some novel tuning structures such as tuning electrodes, tuning fork and suspended channel, and newly 

tunable resonators made from graphene are reviewed and discussed in Section 4. Performance issues 

such as sensitivity, stability and resolution are also addressed. Section 5 focuses on the major 

influencing factors, such as large-amplitude effect, surface stress effect and fluid effect, which affect 

the resonant frequency shift in resonators, and briefly review the efforts implemented to predict, 

control and apply the resonant frequency shift for overcoming challenges and potential applications. 

The active and passive tuning mechanisms, methods and techniques, and extending applications are 

reviewed in detail and discussed in Sections 6 and 7. A perspective on future challenges and conclusion 

remarks are concluded in Section 8. 

2. General Resonance Behavior 

The resonant frequency of any mechanical resonator is determined primarily by the geometrical 

dimensions, structural material properties, stress, and surface topography. To clearly understand the 

general resonance behavior, we briefly review the flexural vibration and torsional vibration modes in 

beam-based resonators in this section. 

2.1. Flexural Vibration Modes 

2.1.1. Single Layer Beam Model 

For small amplitudes, the mechanical resonances of beam structures consisting of uniform material 

can be described analytically by the (Euler–Bernoulli theory [65]. A schematic depiction of the typical 

cantilever and clamped-clamped beam resonators is shown in Figure 1. For flexural modes of 

vibration, the governing equation for the elastic deformation of the beam is given by: 

4 2 2

4 2 2

( , ) ( , ) ( , )
( , )

w x t w x t w x t
EI A N f x t

x t x


  
  

    
(1) 
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where ( , )w x t  is the time dependent transverse displacement of the beam in the z direction, E is 

Young’s modulus, ρ is the density, I and A are the moment of inertia and cross-sectional area of the 

beam, respectively, N denotes the axial (tensile) force, ( , )f x t  indicates the external driving force per 

unit length, x is the spatial coordinate along the length of the beam, and t is time. 

 

Figure 1. Schematic diagram of the beam-based resonators. Doubly clamped beam (a) and 

cantilever beam with the flexural (out-of-plane) mode (b), the lateral (in-plane) bending 

mode (c) and the elongation (in-plane) mode (d). 

The corresponding boundary conditions for the cantilever and clamped-clamped beams are: 

2 3

2 3

0

( , ) ( , ) ( , )
( , ) 0

x x L

w x t w x t w x t
w x t

x x x 

    
            

(2) 

and: 

0

( , ) ( , )
( , ) ( , ) 0

x x L

w x t w x t
w x t w x t

x x 

    
            

(3) 

To calculate the resonant frequency of the beams, we can assume a harmonic transverse vibration 

given by ( , ) ( )exp( )w x t W x i t   in the absence of axial force 0N   and external force ( , ) 0f x t  , the 

general solution for the beam displacement can be given by: 

1 2 3 4( , ) cos sin cosh sinhw x t C x C x C x C x        (4) 

where 1 4~C C  are the various constants, 4 2 / ( )A EI   , and the parameter β takes discrete values 

satisfying the relations, cos cosh 1 0n nL L     and cos cosh 1 0n nL L     in which n is the mode order, 

for the cantilever and doubly clamped beams, respectively. 

Then, the well-known result for the resonant frequencies of the corresponding modes can be  

given by: 

2

2

2
2 n

n n n

EI EI
f

A AL


  

 
  

 
(5) 

where 1.875,4.694,7.855,10.996,...n nL    and 0,4.730,7.853,10.996,14.137,...( 0,1,2,3 )   n nL n  for the 

cantilever and doubly clamped beams, respectively. In addition, calibration of non-rectangular 

cantilever beam or beam with uniform arbitrary cross section is of increasing importance [66,67]. 

Doubly clamped beams have higher resonant frequencies than cantilever beams of the same dimensions. 
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Carbon nanotubes (CNTs) have a high Young’s modulus and excellent stiffness combined with  

low mass [54,68]. The reported resonance frequencies of CNTs vary from several MHz to a few  

hundred MHz [54]. The implication is that a beam can vibrate in certain vibrational modes with the 

distinct spatial shapes. The first four vibrational mode-shapes of a carbon nanotube are shown in Figure 2. 

It can be seen that certain areas of the nanotube have large vibrational amplitude while other areas are 

fluctuating with low amplitude. The number of nodal points increases with increasing mode number. 

Sazonova et al. [31] have detected such vibrations and demonstrated their tunability of both single and 

multiple resonances over a range of frequencies from 5 to 150 MHz in carbon nanotube. It was 

demonstrated that single-walled carbon nanotube (SWCNT) nanomechanical resonators can serve as 

mass sensing that are capable of detecting individual atoms or molecules [69–71]. Liu et al. [72] also 

investigated the first five out-of-plane resonant modes of a single-crystal paddle resonator. The 

measured resonant frequency of the torsional mode is about 43.762 kHz, while these of the flexural 

modes (1–1 and 2–0) are 470.458 kHz and 518.463 kHz, respectively. 

 

Figure 2. First four resonant modes of a carbon nanotube. Reused with permission  

from [73], Copyright 2004 Nature Publishing Group. 

When the width of the beam structure is considerably larger than its thickness, i.e., 5b h , the 

effective Young’s modulus E  instead of E  should be used to calculate the resonant frequency for 

such thin beams and written as: 

2/ (1 )E E    (6) 

where v is the Poisson’s ratio to account for the suppression of the in-plane dilatation accompanying 

axial strain. 

2.1.2. Multilayer Beam Model 

Multilayer beam-based micro- and nanomechanical resonators often use sensitive coating or 

piezoelectric layers for mass and gas detections [74]. Most of them have a variable cross-section that 

complicates the prediction the resonant frequency using conventional beam models [75–79]. The  

Euler-Bernoulli differential equation solutions provide the resonant frequency of a composite beam 
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with uniform cross-sectional by replacing the bending stiffness EI  and density   with the composite 

bending stiffness EI  and composite density   [75,76]. The resonant frequency of a composite beam 

with N layers can be written as: 

2

2

2
2 n

n n n

EI EI
f

A AL


  

 
  

 
(7) 

where: 

1 1

N N

i i i

i i

t t 
 

 
 

(8) 

where it  is the thickness of the individual layers, iI  is the individual moment of inertia for each layer 

and can be computed by: 

3

2

12

i

i i i

bt
I A d 

 
(9) 

where b is the width of the top layer, iA  is the cross-sectional area of the individual layer, id  is the 

distance between the centroidal axis of the composite beam and the neutral axis of each individual 

layer. The width of each normalized layer ib  can be calculated using the transformed-section method to 

be /i i Nb E b E , where iE  is the Young’s modulus of each layer, and NE  is the Young’s modulus of the 

top layer. Melamud et al. [77] presented the nominal mechanical resonant frequency of the composite 

beam resonator composed of three structural materials. The combination of the resonant frequency can 

be given by 
2 2

,norm /n i i r

i

f m f m  ( 1,2,3,i  ), where if  and im  are the resonant frequency and mass of 

the composite structural materials, respectively. 

2.2. Torsional Vibration Modes 

To clearly describe the torsional mode in micro- and nanomechanical resonators, a general 

theoretical model is introduced for the torsional vibration of a cantilever beam. The governing 

equation of a cantilever beam undergoing torsional deformation can be given by [80,81]: 

2 2

2 2

( , ) ( , )
( , )C p

x t x t
GK I M x t

x t


   
  

   
(10) 

where ( , )x t  is the deflection angle about the major axis of the cantilever, G is the shear modulus of 

the cantilever, K is a geometric function of the cross section of the beam, C  is the density, 
pI  is the 

polar moment of initial, and ( , )M x t  indicates the applied torque per unit length along the beam. The 

corresponding boundary conditions are [81]: 

( , )
(0, ) 0

x L

x t
t

x 


  

  
(11) 

Following a similar analysis to that implemented for the flexural modes [81], the Fourier transform 

of Equation (10) can be written as: 

2

2

2

( )
( ) ( )C p

d x
GK I x M x

dx


   


  

 
(12) 
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where the Fourier transform of any function ( )x t  is expressed as ( ) ( ) i tX x t e dt



  . Then the resonant 

frequency in vacuum can be given by [80,81]: 

2 , (2 1)
2

n

n n n

c p

D GK
f D n

L I


 


   

 
(13) 

where 1,2,3,n   is the mode order. For a thin rectangular beam, 3 / 3K bh  and 3 /12pI b h . The 

typical torsional Cleveland method and torsional Sader method are briefly reviewed and discussed  

in [82]. Hall et al. [83] provided a brief review of CNT torsional resonating devices which hold 

particular potential for biological and chemical mass sensing [69,71]. 

2.3. Fundamental Resonant Frequency 

Different structure dimensions play very important role in the resonant frequency [84]. The 

fundamental resonant frequency of a structure can be determined by both its dimensions and 

mechanical properties of the material. The analytical formulas for the fundamental resonant 

frequencies of cantilever beams 0

CBf , clamped-clamped beams 0

CCf  and circular disks 0

CDf  are 

expressed as [84,85]: 

2

0 0.162( / ) / CBf h L E  (14) 

2

0 1.03( / ) / CCf h L E  (15) 

2

0 1.65( / ) / CD

df h D E  (16) 

where E and ρ are the Young’s modulus and the density, respectively, h is the thickness of the 

structure, L is the length of the beam, and 
dD  is the diameter of the disk. 

From the comparison of Equations (14)–(16), it can be found that for similar dimensions, circular 

disks present a resonant frequency approximately ten times higher than cantilever beams and about  

1.6 times higher than clamped-clamped beams. In addition, the effects of internal and residual stresses 

due to the resonator’s material, its design and the fabrication process on the resonant frequency should 

be taken into account [84,85]. 

3. Principle of Frequency Tuning 

Resonant devices, such as vibrating beams, plates and diaphragms are widely used for micro- and 

nanosensor and actuator applications, in which the precise tuning of the resonant frequency is very 

important. Previous frequency tuning methods relied on changing either the stiffness, or the mass of 

the resonators. To briefly introduce and discuss the principle of frequency tuning for resonators, 

flexural (translational) and torsional modes of motion of the beam-based resonators are described in 

this section. 

3.1. Basic Mechanical Model 

Lumped-parameter modeling enables analyzing this structure as a single degree-of-freedom,  

Evoy et al. [86] presented meaningful models for the flexural (translational) and torsional modes  

of motion of a typical paddle resonator, as shown in Figure 3. 
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d

Torsional motion

K

m, I
(a) (b)

  

Figure 3. Principle diagram and two mods of motion of a paddle resonator. (a) Schematic 

diagrams of translational and torsional modes of motion; (b) Equivalent lumped-parameter model. 

The resonant frequency of a damped oscillator can be derived from the lumped-parameter model 

(Figure 3b). For the translational mode, the equation of motion can be given by: 

( )  mx Cx Kx F t  (17) 

where m, C and K are the mass, the damping, and the spring constant of the system, respectively, and F 

is the external force. Using the lumped parameter model, the fundamental resonant frequency of the 

beam structure can be expressed as: 

eff

0

eff

1

2

k
f

m


 
(18) 

where 
effk  and 

effm  are location-dependent, and the effective stiffness and mass of the resonator, 

respectively. The mass and the spring constant are the effective parameters to control the resonant 

frequency. For the micromechanical resonators, which are fabricated using batch micromachining 

processes that entail successive steps of film deposition, lithography and etching, their frequencies are 

strongly dependent on the absolute and matching tolerances of these steps [38]. These finite tolerances 

lead to variations in dimensions and stress, resulting in 
effk  and effm  deviations that then offset the final 

fabricated resonant frequency from the desired design frequency. In the interest of maintaining a 

simple formulation, the frequency of the fabricated device can be given by: 

eff

0

eff

1

2

k k
f

m m

 


 
 

(19) 

where Δk and Δm are stiffness and mass offset coefficient, respectively, generated by finite  

fabrication tolerances. 

For the torsional mode, the equation of motion can be given by [86]: 

0( / ) ( , )I I Q K t         (20) 
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where I is the inertial of the paddle, and K is the torsional spring constant and 2 /pK GI L , where G 

denotes the modulus of elasticity in shear, 
pI  is the polar moment of inertia of the area, and L is the 

equivalent length of the bar. The resonant frequency of the resonator can be written as: 

0

1

2

K
f

I


 
(21) 

The two resonant frequencies are preliminary attributed to the excitation of translational and 

torsional modes of motion, and 
0

translational 0.5f d   and 
0

torsional 1.5f d   in theory. A fit of measurement data a 

0

measurementf Kd  power law reveals experimental power coefficients of 0.5 0.1     and 1.6 0.15     

for translational and torsional modes [86], respectively. The resonant frequency of the resonator is 

affected by the external force and bending moment on the resonance structure, and the force and the 

moment can be determined by the changing frequency. Therefore, the resonant frequency of the 

resonator can be tuned by controlling the force or the moment. 

3.2. Mass Tuning 

Micro- and nanomechanical resonators have frequencies of vibration that are sensitive to small amounts 

of added mass. As one of the typical micro- and nanomechanical resonators, cantilever structure have 

been proposed for highly sensitive detection of organic and biological molecules [23,87].The basic 

principle is the measurement of the resonance frequency shift due to the added mass on the cantilever 

surface [88]. The change in resonant frequency of the resonator can be modeled by an undamped 

spring-mass model, as shown in Figure 4. Any additional mass m  can result in resonant frequency 

reduction, and the resonant frequency can be expressed as 20.162 / / ( (1 4 ))CB af h L E     [87], where a  

is the ratio of the added mass to the mass of the beam. The frequency change f  can be given by: 

add 0

0

1
f f m

f
f m m


   

   
(22) 

where 0f  and addf  are the resonant frequency before and after adding the mass, such as PLD process [89], 

adsorption [23]. The negative resonant frequency shift due to the NC-DNA is related to the mass 

added by the adsorption near the cantilever tip [23]. The cantilevers with the gold and Au areas on the 

free end exhibited the resonant frequency of about 310 kHz and 650 kHz, respectively. The measured 

resonant frequency shifts were 125 Hz and 1.10 kHz corresponding to the added masses of 6.3 and 

213.1 ag [87], respectively. The added mass of the adsorbed bacteria leads to a negative resonant 

frequency shift [90]. Therefore, the structure material and weight of the added mass play an important 

role on the resonant frequency shift of the resonators. 

In addition, Yi et al. [91] have systematically investigated the resonant frequency shift of the 

cantilever due to the added mass effect with various distribution conditions, as listed in Table 1. The 

resonant frequency shift per unit added mass depends on the state of the mass distributed on the beam. 

/f m   distributed over the entire cantilever surface is reduced to 0.236 times that obtained with  

Δm being a point mass or a narrow strip at the tip. The same scaling relationship can be used to a strip 

mass added at the tip as well as uniformly distributed mass on the cantilever surface. 
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effk

(a)

(b)
 

Figure 4. (a) SEM of a clamped-free beam resonator with added mass at the tip. Reused 

with permission from [87]; (b) Schematic of the undamped spring-mass system with added 

mass effect. 

Table 1. Effect of added mass on the resonant frequency shift of the cantilever beam 

reported by Yi et al. [91]. Reused with permission from [91]. 

Description 
Added Point Mass 

at the Tip 

Added Mass Distributed 

on a Narrow Strip 

Added Mass Distributed 

over the Entire Beam 
Size Reduction 

Schematic 

    

Resonant  

frequency shift 

2

3

1 1

4 0.236 12

nf E

m LW



 

 
     

 
2

3

1 1

4 12

nf E

m LW



 

 
     

    4, ,
f f

L W L W
m m

    


 
 

3.2.1. Fixed Mass: Deposition/Adsorption 

To evaluate the added mass effect on the dynamic behavior of the nanomechanical resonators,  

Cho et al. [92] simply introduced the intrinsic nonlinearity into the nanomechanical resonators via a 

geometric design, as shown in Figure 5. A small amount of platinum was deposited on the middle of 

the CNT with electron-beam-induced deposition (Figure 5a). Considering the geometric nonlinearity 

induced by axial tension and added mass effect, the vibration of the beam can be given by [92]: 

 
2 4 2

0

2 4 2

( , ) ( , ) ( , ) ( , )
( ) cos ( )c m

mw x t w x t w x t w x t
A m x L EI N F t x L

Q tt x x


   

   
      

    
(23) 

where cm  is the added mass attached to its middle position, mF  is the transverse point force applied to 

the middle of the wire. 

The ratio of the drop frequency to the resonant frequency can be expressed as: 

1/2

drop

0

1 1 (1 )

1

    
    

  
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f M
f

f M
 

(24) 
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where M is the ratio of the added mass to the overall mass of the beam and 
0/cM m m , 

2 6 4( / ) (2 / ) /d mF Q E L D D  , in which D is the radius of the wire and 0.0303d   [92]. The frequency 

shift of the nonlinear resonator strongly depends on the added mass effect and the inherent geometric 

nonlinearity of the beam. The added mass leads to the resonant frequency shift about 2.0 MHz, as 

illustrated in Figure 5. In addition, the magnitude of the shift in the drop frequency increases with the 

increase in added mass. 

 

Figure 5. Dynamic response of the CNT nonlinear nanomechanical resonator with the added 

mass effect reported by Cho et al. [92]. (a) SEM image of the Pt deposit in the middle of a 

suspended CNT resonator; (b) Schematic diagram of a simple doubly clamped mechanical 

beam model with the intrinsic geometric nonlinearity; (c) The dynamic response of the 

resonator without and with depositing a center mass with electron-beam-induced deposition. 

Reused with permission from [92], Copyright 2010, American Chemical Society. 

Gil-Santos et al. [93] investigated the effect of a molecular adsorbate on the resonant frequency 

shift in a nanowire resonator, as illustrated in Figure 6. The electron-beam causes slow carbon 

deposition near the clamed end of a 100-nm-thick nanowire (Figure 6b). The deposition not only leads 

to the shift of the resonant frequency, but also causes the planes of vibration to rotate. The sum of the 

relative shift of the frequency and the difference in the relative shift of the frequencies can be written 

as [93]: 

2 2

0 0( ) ( )
fs D D D

s f NW NW NW

V E
z z

V E
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(26) 

where Ψ and Φ are the non-dimensional eigenmode amplitude and curvature, 
DE , 

D , 
DV  and

NWE , 
NW , 

NWV  are the Young’s modulus, mass density, and volume of the deposited material and the nanowire, 

respectively. The added mass dominates as the adsorption approaches the free end. Figure 6c shows 

the sum and difference of the relative resonant frequency shifts as a function of the longitudinal deposition 

position. Adsorbate position along the resonator is also known to affect the measurements [23,94,95]. 

The mass and mechanical properties of the adsorbate can be determined by measuring the sum and 
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(b)

(c)
Deposition 
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difference of the relative frequency shifts [93]. The resonant frequency shift of the resonator depends 

on not only the adsorbed mass but also the intermolecular interactions [96]. 

 

Figure 6. Effect of mass deposition position on the frequency shift in a nanowire resonator 

reported by Gil-Santos et al. [93]. (a) Schematic of electron-beam-induced deposition of 

carbon on nanowires; (b) SEM image of the nanowire after electron-beam-induced carbon 

deposition near the clamped end; (c) The sum and difference of the relative frequency shift 

of a nanowire resonator as a function of the position at which a mass deposited on the 

nanowire. Reused with permission from [93], Copyright 2010 Nature Publishing Group. 

3.2.2. Moveable Mass: Migration 

Although nanomechanical resonators for mass sensor applications depend on the resonant 

frequency shifts due to the direct mass adsorption to the resonator, the effective mass of the resonator 

can be control to tune its resonant frequency, as illustrated in Figure 7. 

  

Figure 7. Resonant frequency shift due to mass migration. 

Kim et al. [97] demonstrated reversible frequency tuning of multi-walled carbon nanotube 

(MWNT) resonator by mass migration method. The resonant frequency of the MWNT is sensitive to 

the mass distribution of the resonator, as shown in Figure 8. The images in Figure 8 correspond 

respectively to the unloaded MWNT: (i), after the initial mass loading (ii), and after cleaning and mass 

reloading (iii). Mass redistribution along the resonator provides reversible tuning with frequency shifts 

larger than 20% from the initial migration process (ii). The interesting result is the controllability and 
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repeatability of the mass loading process using the current-driven mass migration onto the MWNT. In 

addition, Kim et al. [97] estimated the resonant frequency shift due to the mass adsorption on the 

MWNT resonator using the Rayleigh-Ritz method. When the masses im  are adsorbed at locations ix , 

the resonant frequency can be expressed as [97]: 

3

0

0

/
0.56

( )


 i i

i

EI L
f

m w x m

 

(27) 

where ( )w x  is the weighting function and denotes the degree of effectiveness of mass on the resonant 

frequency. In the case of knowledge of the position mz  and mass m  of the attached particle (atom, 

cell or molecule), the resonant frequency can be approximately given by [98]: 

1/2

2

0

0

1 ( )n n m

m
f f U z

m





 
  

   
(28) 

where nU  is the mode shape, mz  is the position where the mass 0m  loaded by a point mass m . 

 

Figure 8. Resonant frequency shifts in MWNT nanomechanical resonators due to mass 

migration. Reused with permission from [97], Copyright 2009, American Chemical Society. 

In addition, the shift in resonant frequency is associated with the location of added mass. Kang et al. [99] 

investigate the CNT-resonator tuned by the effective mass changes via classical molecular dynamics (MD) 

simulations. The resonant frequencies can be tuned by the position of the encapsulated nanoparticle. 

The possible resonant frequency-shift-ranges reach 18%–85% via the nanoparticle-position-change. 

The resonant frequency ratio can be expressed as  
1/2

0/ 1 ( / ) k

n kf f m X L




  , where k  is determined 

by m  whereas k  relates to the mechanical properties of CNT. The compassion of the experimental 

results [97], MD simulations [99] and the continuum theory shows that the effective mass change of 

the cantilever due to the position of the localized mass causes the resonant frequency shift. The effect of 

linear-mass-density of the encapsulated nanoclusters leads to the range of resonant frequency shift 

about 22%–45% for different added masses [100]. These good works provide more understanding of 

the CNT-resonators tuned by the mass migration. It notes that the dephasing of nanomechanical 

resonators due to the random mass loading of small particles [101] needs to be well understood and 

qualified for tunable resonator applications. 
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3.3. Stiffness Tuning 

Spring stiffness tuning, whether hardening or softening, is another common principle to tune the 

resonant frequency of the resonators [60]. The spring stiffness of the resonator depends on its materials 

and dimensions. The effective spring stiffness effk  of such a resonant device can be written as: 

eff addk k k   (29) 

where k  denotes the mechanical spring constant and addk  is an additional positive or negative spring 

stiffness due to external loading (thermal, electrostatical, piezoelectrical, magnetical, etc.), as illustrated 

in Figure 9. Then the tuning frequency becomes: 

add1

2


tune

k k
f

m  
(30) 

m

effk

m

k addk

  

Figure 9. Model of the resonator with softened or hardened spring stiffness. 

The relative tuning methods are described and compared in Sections 6 and 7. The variable spring 

stiffness devices are often operated continuously. To clearly understand this principle, one significant 

work is taken for example, Chen and Hone [53] theoretically analyzed the gate voltage based 

frequency tuning for graphene mechanical resonators and accurately described the three contributions, 

including built-in strain, the additional strain upon deformation, and the electrostatic actuation. The 

effective spring stiffness can be simplified as [53]: 

2 2
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3 23

D D

g g

e g
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E W E W
k z C V

L L
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(31) 

where 2DE  is the 2D Young’s modulus, 
gW  is the width of graphene strip, 0  is the built-in strain, 

gL  

is the length of graphene strip, ez  is the maximum static deflection of graphene, C  is the second 

spatial derivative of the capacitance between the graphene and gate, 
gV  is the DC gate voltage. The 

first term in Equation (31) denotes the frequency of the graphene mechanical resonator at 0gV  . The 

second term represents the spring stiffness hardening effect due to the built-in strain. The third term 

provides a spring stiffness softening effect due to the nonlinear electrostatic force. The built-in strain 

plays an important role in controlling the resonant frequency. For small strain, the second term in 

Equation (31) dominates and the frequency increases monotonically with the gate voltage. For large 

strain, the third term dominates and the frequency decreases with the gate voltage [102].  

For intermediate strain, the resonant frequency firstly decreases and then increases with the gate 
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voltage [103]. All the three cases were experimentally observed by Chen and Hone [53]. In addition, the 

idea of programming the resonant frequency of an array of resonators was developed theoretically [104] 

and a multiple state mechanical resonant frequency memory was demonstrated [105]. 

4. Resonator Structures and Materials 

Although micro- and nanoresonators have significant applications in many fields, most of these 

resonators are designed as complex structures that complicate the estimation of their resonant 

frequencies [106]. The resonant frequency changes should be determined by variations of geometrical 

variables and mechanical properties of the resonators [107]. Many materials and nanostructures such as 

SiC [1], carbon nanotubes [31] silicon [32,108,109], graphene [110], Pt [111], GaN [112], rhodium [113] 

and ZnO [114] were widely used for resonator applications. Micro- and nanomechanical resonators 

based on the materials, including SiC and group III-nitrides [115], carbon nanotube [54], and graphene 

sheet [2,52], have been recently reviewed. 

4.1. Beam/Plate-Type Structure 

Micro and nanomechanical resonators of various geometries like cantilever and bridge beams, and 

plates have found widespread use. The increasing complexity of resonant structure generates 

challenges in determining the resonant frequency using analytical models except for the experimental 

measurements [27]. Lobontiu et al. [116–118] had successfully developed mathematical models to 

predict the resonant frequency of single and doubly clamped beam resonators with variable cross 

section or multisegments. Looker and Sader [119] presented an analytical model for the fundamental 

bending resonant frequency of thin rectangular cantilever plates, which is valid for all aspect and 

Poisson ratios. Pasini [79] developed an interesting model applied to obtain the resonant frequency of 

multilayered microresonators with different shaped cross section, symmetry and number of layers, and 

materials. Considering different loading such as concentrated and uniformly distributed loads, and 

bending moments acting on the beam at the same time, Herrera-May [106] developed an analytical 

model for estimating the resonant frequency of micro- and nanoresonators. Zhang et al. [120–122] 

demonstrated the effects of tuning on parametrically excited micromechanical resonators. It can be 

useful in the mechanical design of micro- and nanoresonators with complex structural configurations. 

The structural configuration of resonators often contains beam or plate with different cross sections 

and loading types. Figure 10 in [123] illustrates the characteristic dependence of the resonant 

frequency on the effective geometric parameter 2

eff( / )t l  of the doubly clamped beam resonators with 

different materials. The fundamental out-of-plane and in-plane flexural resonant frequencies of the 

structure are given by the expressions 2

0 / 2 1.03 / ( / )E t l    and 2

0 / 2 1.03 / ( / )E w l   , 

respectively. It can be found that the resonant frequency varies linearly with the geometric factor 
2

eff( / )t l  and varies for different materials even the resonator has the same geometric structures. This 

effect becomes particularly important as the beam size reduces [27]. Greenberg et al. [57] also 

reviewed the dependence of the resonant frequency on the geometric structures and materials of the 

nanomechanical resonators. With appropriate boundary conditions for a beam of length L, Bak et al. [124] 

expressed the length dependence of resonant frequency of a thin-film beam with thickness t  and 

internal stress int  as [125]: 
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2 2 2

0 int1.03( / ) / 1 / (3.4 )f t L E L Et  
 (32) 

From comparison of different beam lengths for a given width, the resonant frequency 0f  was 

verified to be highly dependent on the beam length for compositions both with and without CNTs. 

Different total beam thickness (50 and 100 nm) leads to different length dependences. For the case of 

100 nm resonators of both compositions, Bak et al [124] reported that 2

0f L  for ~ 25μmL   and 
1

0f L  for ~ 25μmL  . The resonant frequency 0f  can easily be fitted by Equation (33) for 50 nm 

resonators. For a given geometry, the Al–Al2O3–CNT (AAC)-nanolaminate-beam resonant frequencies 

observed surpass those of GaAs, Si and AlN and approach SiC values. 

 

Figure 10. Relationship between the resonant frequency and effective geometry of the 

doubly clamped beam resonators made from single-crystal SiC, Si, and GaAs. Reused with 

permission from [123]. 

Nevertheless, novel architectures dissimilar to the classic beam-like nanomechanical resonators, 

such as tuning electrode and tuning fork structures and suspended channel and micropillar resonators, 

have been recently proposed and reported [49,126–128]. In the following, we provide the overview of 

some novel tuning structures and newly micro- and nanomechanical resonators. 

4.2. Tuning Electrode Structure 

Suzuki et al. [129] designed a fishbone-shaped resonator which has the resonant frequency with a 

maximum response changes according to the location and number of several exciting electrodes to 

provide wide-frequency tuning. Furthermore, the selection of tuning frequency among several resonant 

frequencies was demonstrated [126]. The schematic of the resonant frequency tuning principle is 

shown in Figure 11, in which the fabricated resonator has six sub-beams formed at the same interval 

along the main beam and five exciting electrodes. Using these exciting electrodes, the central-electrode (1), 

trans-electrode (2), and central and cis-electrode (3) configurations can be founded [129]. The 

resulting frequency tuning covers 178 to 1746 kHz and indicates that the tapered-anchor resonators are 

suitable for frequency tuning applications. On the other hand, the resonant frequency greatly decreases 

with the increase of suspension length due to the softening effect on the main beam. 
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Figure 11. Frequency tuning principle of a fishbone resonator with five exciting electrodes 

reported by Suzuki et al. [129]. (a) SEM of a fishbone micromechanical resonator with 

five exciting electrodes; (b) Configurations of the exciting electrodes; (c) main beam 

deformations corresponding to each exciting electrode configuration. Reused with 

permission from [129]. 

For the first time, Chen et al. [28] designed the tuning electrodes underneath pull-in frames to 

provide a voltage-dependent quasi-linear frequency tuning for CMOS-MEMS resonators. The 

composite beam resonator is encompassed by the pull-in frames. The resonant frequency can be 

expressed as [130]: 

tun

0 0 01 ( ( ), )M pf f g d V V 
 (33) 

where 0f  is the pure mechanical resonant frequency of the resonator without electrodes or applied 

voltages, 0d  is the electrode-to-resonator gap spacing and controlled by the tuning voltage MV , 
pV  is the 

dc-bias voltage, the function ( )g  denotes the effect of an electric stiffness ek  to soften the mechanical 

stiffness. The electrical stiffness ek  is capable of modulating the resonant frequency determined by 

electrode-to-resonator gap spacing. The resonant frequency satisfies 
0 1/ (2 ) ( ) /m e rf k k m  , where mk  

and rm  are the mechanical stiffness and effective mass of the resonator, respectively. This work had 

successfully developed the quasi-linear frequency tuning mechanism using the adjustment of 

modulated bias voltage without consuming any dc power, allowing a 5000-ppm tuning range and a 

sensitivity of 83.3 ppm/V. 

4.3. Tuning Fork Structure 

Tuning forks are high performance mechanical resonators [131], and typically and widely used as 

frequency references [132], tunable filters [133], force transducer [134], magnetic field sensing [135]. 

Although tuning fork structures have been widely investigated and generally modeled by the beam-spring 

model and two-degrees-of-freedom model [136], the vibration characteristics of nanomechanical 

tuning forks are not well understood [29,127]. 

Ashiba et al. [127] developed a model of the single-ended tuning forks and used it to predict the 

resonant frequencies for the in-phase and antiphase modes. The arm of a tuning fork was modeled by a 

beam connected to one or more torsional springs. Recently, Gronicz et al. [137] demonstrated a  

single-ended tuning fork component with separate signal and tuning electrodes, which make it possible 

Exciting electrode

(a) (b) (c)

(1)

(2)

(3)
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to perform frequency tuning with little interference with the output signal level. The separating tuning 

and driving electrodes enable the resonant frequency adjustment by over 70,000 ppm. 

As one of the typical structures, double-ended-tuning-fork (DETF) can provide high stability,  

high dynamic range, low mechanical compliance and easily digitizable output signals, and was  

widely used in mechanical resonators. The DETF structure is composed of two nominally identical 

suspended parallel tines connected at both ends. Table 2 summarizes some single-ended tuning fork 

(SETF) and double-ended tuning fork (DETF) structures used for micro- and nanomechanical resonators. 

Jha et al. [138] designed a spring mounted DETF to reduce the axial stress in the beams of the 

resonator. Agarwal et al. [139] found that the increase in resonant frequency is associated with beam 

length reduction. These scaling rules of nonlinearities in DETF microresonators are useful for the 

optimization of high precision frequency reference. The asymmetries during fabrication and the 

mechanical coupling between the tines lead to the frequency separation between the in-phase and the 

out-of-phase resonant modes [134]. 

Table 2. Overview of some single-ended tuning fork (SETF) and double-ended tuning fork 

(DETF) resonators. 

Component Fabrication Technique Frequency Range Quality Factor Reference 

SETF 

silicon-on-insulator wafer by a  

two-step process 
>1.5 MHz ~2000 Gronicz et al. [137] 

Focused-ion-beam chemical vapor  

deposition process 

~1.5–11 MHz (10 Pa) ~150–600 
Ashiba et al. [127] 

~1–11 MHz (0.1 MPa) ~5–50 

DETF 

Episeal encapsulation process ~100–2000 kHz ~9000–17,000 Agarwal et al. [139] 

Wafer-scale HFCVD diamond  

deposition process 
~0.5–10 MHz <81,646 Najar et al. [140] 

Ge-blade damascene process (GBDP) 24.04 MHz ~6000 Takeuchi et al. [141] 

Silicon-on-insulator (SOI)  

micromachining process 

47.2 kHz (in-phase) 26,000 
Zhang and Lee [135] 

49.6 kHz (anti-phase) 100,000 

Silicon on-insulator (SOI) MEMS process ~310 kHz 21,221 Thiruvenkatanathan et al. [142] 

4.4. Graphene Mechanical Resonator 

Since the discovery of graphene reported by Novoselov et al. [110] in 2004, it has attracted 

attention due to its unusual two-dimensional structure and wonderful properties such as high Young’s 

modulus, high resonant frequency and unique electrical behavior. Graphene-based mechanical resonators 

offer low inertial masses, ultrahigh frequencies, and, in comparison with nanotubes, low-resistance 

contacts that are essential for matching the impedance of external circuits [143]. The prospects of wide 

tunability and low dissipation have aroused technical interest in mechanical graphene resonators [144]. 

Since the graphene is atomically thin, its resonant frequency is dominated by in-plane tension, 

which can be modified electrostatically by applying a DC voltage. The degree of tunability depends on 

the initial built-in tension [33,145,146] and can reach 400% with lowest built-in tension [147]. With an 

applied voltage ranging from 28 V to 26.2 V, the resonant frequency can be tuned from 51.5 MHz to  

47 MHz [147]. The large range of strain available in graphene provides opportunity for applications 

requiring large frequency tuning and high force sensitivity [53]. Although frequency tuning by strain 
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engineering for graphene mechanical resonators have been demonstrated, the deepened and detailed effects 

of built-in strain on resonator device performances are not well understood and needed to be  

explored [53,145,148]. For resonant devices with suspended graphene lengths L from ~0.5 to 2 mm, 

the graphene resonant frequency scales approximately as (1/L), as expected for a thin membrane [148].  

The strain of the membrane s  varies the resonant frequency significantly and satisfies 

0 1/ (2 ) /sf L E   [149]. The change of frequency tunability with temperature is due to changes in 

the tension of the graphene as it is cooled [145]. The thermal expansion of graphene affected the modal 

dispersion of resonators and reduced the frequency tunability [33]. Exploiting the impermeability of 

graphene membranes to controllably tune the resonant frequency gives us the mass of the suspended 

graphene membrane regardless of this initial tension [150]. Because of the remarkable thinness and 

flexibility of the graphene, the resonant frequency of graphene mechanical resonator can be tuned  

over a wide range [52]. Bunch et al. [150] used pressure differences to tune the mechanical resonant 

frequency of a monolayer graphene membrane resonator by ~100 MHz. Table 3 summarizes several 

graphene-based mechanical resonators reported in the literature. 

Table 3. Comparison of some graphene mechanical resonators reported during the past 

several years. 

Year Resonator Structure Excitation Method Resonant Frequency Quality Factor 

2007 
Doubly clamped single  

layer graphene [151] 

Electrostatic/optical 

excitation 

70.5 MHz  

(room temperature) 
78 

2008 
Fully clamped square  

graphene [150] 
Optical excitation 

66 MHz  

(room temperature) 
25 

2008 
Doubly clamped  

multilayer graphene [152] 

Electrostatic 

excitation 
18–85 MHz 2–30 

2008 
Fully clamped drum  

graphene [153] 
Optical excitation 

10–110 MHz  

(room temperature) 
1500–4000 

2009 
Doubly clamped single  

layer graphene [148] 

Electrostatic 

excitation 

From 30 to 130 MHz 

(room temperature) 

~100 (room temperature), 

~14,000 (at 5 K) 

2009 Doubly clamped graphene [154] Optical excitation 3–100 MHz 50–400 

2010 
Doubly clamped single  

layer graphene [145] 

Optical/electrical 

excitation 
From 5 to 75 MHz 

~250 (room temperature), 

~9000 (at 9 K) 

2010 
Doubly clamped single  

layer graphene [102] 

Electrostatic 

excitation 
34 MHz (at 77 K) ~10,000 

2011 
Doubly clamped single  

layer graphene [155] 

Electrostatic 

excitation 
~255 MHz ~100,000 

2012 
Doubly clamped  

few-layer graphene [156] 
Thermal excitation ~8–23 MHZ ~7000 

2013 
Fully clamped graphene  

drum resonator [157] 

Electrostatic 

excitation 
48–260 MHz ~60 

2014 
Rectangular membrane 

graphene resonator [149] 

Piezoelectric 

excitation 
15.8–17 kHz N/A 
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4.5. Suspended Channel Resonator 

The most severe limitation of mechanical resonators for sensing applications is their significantly 

degraded performance in a liquid environment [49,158]. In 2003, Burg et al. [30] presented a radically 

innovation to overcome this limitation using suspended microchannel resonator (SMR) for biosensor 

applications. During the past decade, further reduction of the size of suspended micro- and 

nanochannel resonators (SMRs and SNRs) are developed to provide resolution to weigh single viruses 

and large biomolecules as density and viscosity measurements [159–162]. 

In contrast to the approaches that used an immersed cantilever in fluids, Burg et al. [163] developed 

a SMR which has enabled novel label-free biological sensing applications with unprecedented  

mass resolution (~1 fg in a 1 Hz bandwidth), as shown in Figure 12. The SMRs are highly sensitive, 

batch-fabricated microcantilevers with embedded microchannels that can directly quantify adsorbed 

mass via shifts in resonant frequency, which is position-dependent. The suspended fluid channel 

constitutes a micromechanical resonator, and the surface adsorption is an effective mechanism for 

biomolecular mass sensing (Figure 12a). Changes in mass inside the microchannel lead to the resonant 

frequency shift, both the spring constant 
ck  and the total effective mass 

cm  determine resonant  

frequency given by: 

0

1

2

c

c c

k
f

m m 


   
(34) 

where 
c  is a numerical constant that depends on the geometric localization of the added mass m , and 

0.24c   for changes in solution density and 1c   when a particle in transit is positioned at the 

maximum point [163]. The exact mass of the different layers can be quantified by the difference in 

resonant frequency before and after each injection, as illustrated in Figure 12b. This SMR can weigh 

single nanoparticles, single bacterial cells and sub-monolayers of adsorbed proteins in water with  

sub-femtogram resolution. More recently, the SMRs were successfully employed to measure liquid 

viscosities [164], temperature-dependent density and volume contraction of binary mixtures [165], 

temperature variations produced by the biological heat sources [166], to handle multiple viscous  

samples [167] and to examine phase transitions of two materials in liquid state [168]. Table 4 

summarizes the comparison of some micro-and nanochannel resonators which were widely applied  

for density and viscosity measurements. Particularly, the high frequency, high quality factor 

demonstrated in Table 4 enable strongly localized, high-sensitivity chemical, biological and 

optomechaical analytes within the fluidic hollow resonators. Modena et al. [169] deduced the 

relationship between the signal-to-noise ratio (SNR) and the limit of detection of suspended micro- and 

nanochannel resonators as: 
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meas2

1
S/N

5

p

p r s

n

f
c V T f




 
(35) 

where 
0pf  is the frequency shift induced by a single particle, 

pc  is the average sample concentration, 

rV  is the volume of the resonator, 
measT  is the measurement time, 

sf  denotes the sampling rate for an 

adequately band limited signal, and 2

n  is the variance of the readout noise and 5 fgn   for the SMR 

and 27 agn   for the SNR [169]. Further improvements focus on the design optimization for 

geometrical dimensions and development of more efficient excitation and detection approaches. 
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Table 4. Overview of some suspended micro- and nanochannel resonators. 

Resonator Type Year 
Dimensions of Resonator and 

Channel (Length × Width × Height) 

Actuation/Sensing 

Method 
Resonant Frequency Quality Factor 

Limit of Detection 

(Sensitivity) 
Target/Application Reference 

Microchannel 

2003 
300μm × N/A × N/A 

Electrostatic/optical 
~42.7 kHz (air); 40.1 kHz  

(2-propanol); 39.6 kHz (water) 
~90 (air) 

-17 210 g/μm  
Avidin and biotinylated 

bovine serum albumin 
Burg et al. [30] 

N/A 

2006 
300 × 33 × 7 μm 

Electrostatic/optical ~33.5 kHz 
~300–700 (vacuum); ~85 

(air) 
0.8 ng/cm2 

Avidin and biotinylated 

bovine serum albumin 
Burg et al. [170] 

200 × 33 × 7 μm 

2007 
200 × 33 × 7 μm 

Electrostatic/optical 
220.5 kHz (air);  

209.6 kHz (water) 
15,000 0.7 ng/mL 

Goat anti-mouse IgG 

molecules 
Burg et al. [163] 

N/A × 8 × 3 μm 

2010 12 × 0.1 × 0.03 mm N/A ~200 kHz 15,000 10 ng/mL 

Activated leukocyte cell 

adhesion molecule 

(ALCAM) 

von Muhlen et al. [171] 

2013 200 × 8 × 3 μm Optical/optical 2–11,000 MHz 1.6E8 N/A Water Bahl et al. [172] 

2011 

406 × 28.5 × 12 μm 

Piezoresistive/optical 92.1 kHz 10,850 18.1 fg Budding yeast cells Lee et al. [173] 
N/A × 7.9 × 8 μm 

2013 

200 × 20 × N/A μm 

Piezoresistive/optical ~137.7 kHz ~15,000 16 Hz/kg/m3 

very light solvents to 

very viscous and sticky 

crude oil samples 

Khan et al. [167] 

N/A × 4 × 3 μm 

2014 
60 × 36 × 7 μm Feedback 

loop/optical 
1.17 MHz 

~23,000 (gas);  

~6000 (liquid) 
~30 fg 

polystyrene 

nanoparticles 
Modena et al. [169] 

N/A × 8 × 3 μm 

2013 300 × 30 × 30 μm Thermal/optical 
2.21 MHz (ambient atmosphere);  

1.25 MHz (water) 

190 (ambient atmosphere); 

170 (water) 
8.6 ppm/μW 

Biological molecules 

and individual cells 
Toda et al. [166] 

Nanochannel 

2010 20 μm × 650 nm~2.5 μm × 107 nm Thermal/optical ~25 kHz 
1300–7000 (before 

filling) 
2 fg Ethanol, H2O and D2O Barton et al. [161] 

2010 
50 × 10 × 1.3 μm 

Electrostatic/optical ~630 kHz ~8000 27 ag Ethanol, H2O and D2O Lee et al. [174] 
N/A × 2 μm × 700 nm 



Sensors 2015, 15 26500 

 

 

(a) (b)

(c)

 

Figure 12. A suspended microchannel microresonator for biomolecular mass sensing 

reported by Burg et al. [163]. Reused with permission from [163], Copyright 2007 Nature 

Publishing Group. (a) Schematic of mass measurement mode by a microcantilever;  

(b) Resonant frequency shifts caused by accumulation of proteins inside the cantilever. 

5. Major Influencing Factors 

In this section, we briefly review the major influencing factors associated with making tunable  

micro- and nanomechanical resonators and describe the efforts implemented to predict, control and 

apply the resonant frequency shift for overcoming challenges and extending applications. 

5.1. Large-Amplitude Effect 

In the field of micro- and nanomechanical resonator design, it is a common misconception that  

large-amplitude motion [175]. The high-amplitude operation of micro- and nanomechanical resonators 

may be useful for various reasons, such as achieving a suitable SNR, and is suitable for signal 

processing, mass and force sensing, micro-gyroscope applications [176–178], and the development of 

other new technologies [179,180]. However, it is difficult to enter into the large-amplitude regime for a 

traditional mechanical system because the dynamic range of the system decreases dramatically as the 

dimensions of the resonator are reduced [181,182]. In the derivation of of Equation (1), small 

amplitudes of the vibration 
maxw  were assumed. To make a clear understanding of the large-amplitude 

effect on the resonant frequency, an additional potential energy term from stretching of the mid-plane 

of the beam is included in Rayleigh’s quotient. The modified expression can be written as [183]: 

1/2
2

2

, max , max( ) (0) 1
12 12

n N n N n n

NL EA
w w

EI EI
   

 
   

   
(36) 

where 
, (0)n N  is the resonant frequency of mode n for zero axial load and ignoring nonlinear  

large-amplitude effects, maxw  is the amplitude of the vibration and n  is a constant given by: 

24 2

2 20 0
,max

( ) ( )3
/

L L
n n

n

n

d x d x
dx dx

dx dx

 




   
    
     
 

 

(37) 

where 
,maxn  is the maximum value of the approximate shape function n . 
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Nonlinear large-amplitude vibration has important role in micro- and nanomechanical resonators [151,184], 

which often are driven into non-linear regime with larger amplitude in order to store enough energy [56]. 

Although practical relevance of large-amplitude effect on the resonant frequency of resonators has 

been reported, up to now, a few investigations discussed the large-amplitude regime. Recently,  

Bagheri et al. [182] firstly demonstrated the zero frequency singularity in nanomechanical resonators 

in the large-amplitude regime, which provides a new mechanism to tune the resonant frequency of the 

resonator over a large range. 

5.2. Surface Stress Effect 

Surface stress has a great effect on the mechanical and physical properties of materials and devices. 

The origin of surface stress can be understood from the chemical bonding of atoms at the surface [185], 

as shown in Figure 13. Generally, the influence of surfaces can be described either by surface energy 

or surface stress. The surface stress 
ij , which is defined in term of surface energy  , can be  

described [186] as:  

/ij ij ij     
 (38) 

where 
ij  is the Kronecker delta and 

ij  is the surface strain tensor. Mathematically, the surface  

stress   is decomposed into residual (strain-independent) and surface elastic (strain-dependent) terms 

as [187,188]: 

0 0C     (39) 

where 0  and 0C   are the residual (strain-independent) and surface-elastic (strain-dependent) parts of 

the surface stress, respectively, and where 0C  is the surface elastic stiffness and 0 0/C       . For 

the one-dimensional and linear case, 0C  denotes the surface Young’s modulus sE  [189]. 

 

Figure 13. Schematic of the tensile surface stress (positive surface stress) inducing a 

concave curvature and the compressive surface stress (negative surface stress) inducing a 

convex curvature. 

Table 5 provides the comparison of some surface elastic models for surface Young’s modulus 

reported in the literature. Figure 14 shows the comparisons of normalized effective bending stiffness of 

circular NWs using some surface elasticity models listed in Table 5. For a circular NW, the expression 

of the effective bending stiffness calculated by high-order surface stress model [190] after incorporating 

surface moment remains the same as that by He and Lilley [191].There exists obvious difference of 

bending stiffness in NWs between He and Lilley’s model [191], core-shell model [192,193] and the  

non-uniform core-shell model developed by Yao et al. [194]. 

Tensile surface stress Compressive surface stress



Sensors 2015, 15 26502 

 

 

Table 5. Comparison of some surface elastic models for surface Young’s modulus of nanowires resonators (The relative parameter 

descriptions can be seen in the literature). 

Model Formulation Materials Theory and Method Effects 

Surface elasticity  

model [195] 
 

* 22 sEI EI E wh   GaAs Classical beam theory Surface elasticity 

Surface Cauchy-Born 

(SCB) model [196] 
 1

s
s s s s
IJKL IJKL IJp KLq

pq
c M A A D   Si 

Based on standard bulk 

Cauchy-Born model 
Surface stress 

He’s model [191] 

2 3
*

3

2 6  (rectangle)
( )  

8              (circular) 

s s

s c

EI E wh E h
EI

EI E d

  
 



 Al and Si 
Euler-Bernoulli beam theory 

and Young-Laplace equation 

Surface stress with different 

boundary conditions 

High-order surface stress 

model [190] 

2 3
1

3

/ 2 / 6 8   (rectangle)*( )
/8                                                 (circular)

    
 



s s s s

s

EI E wh E h E whh D w
EI

EI E d
 Si 

Generalized Young–Laplace 

equation 

High-order surface stress and 

surface moment 

Liu’s model [197]  
  

 

2 3
0 0 0*

3
0 0 0

2 + 2 4 3 2 /   (rectangle)

2 + 8 2 /                (circular)

EI bh h I H
EI

EI D I H

   

    

   
 
  

 Al and Si Gurtin–Murdoch theory 
Surface stress, surface 

elasticity and surface density 

Core-shell model 

[192,193] 

3 2 3 3

4 4

/12 ( +2t) 2 ( / 2 ) / 3 2 ( 2 ) / 3  (rectangle)*( )
( ) / 64 ( 2 ) /64                                           (circular)

s c s c

s c s c

Ew h E tw h E t h t E t w tc c s c c
EI

E E d E d t 

     
 

  

 ZnO 
resonance experiment and 

linear surface elastic theory 
Surface layer thickness 

Rudd’s model [198] 
2 2[1 ( / ) ] ( )tot core tot totE E C t A O t R     

hydrogen-passivated 

Si 

First-principles density 

functional theory 
Plane-wave cut-off energy 

Feng’s model [189] 
* 0 0

0 0 0 0

4 ( 4 )

( 4 4 6 ) 4( 4 ) tanh( / 4)

s

s s

A E t E t
E

l tA E tl E l t l E t E Al



 

  
  

      
 nanoporous materials Gurtin–Murdoch theory 

Surface energy and residual 

surface stress 

Yan’s model [199]  
4 3

2 3 2 31
11 31 33 11 31 31 33* 12

2
11 31 33 11 31 31 3364 8

( / ) ( / )( / 2 / 6)  (rectangle)

( / ) ( )                          (circular)

s s

s sD D

c e bh c e e bh h
EI

c e c e e 

 

 

    
 

  

 
piezoelectric 

materials 

Generalized Young–Laplace 

equations 

residual surface stress, Surface 

elasticity and piezoelectricity 

Non-uniform  

core-shell model [194] 




34
0

0

2 2 3 4

0 0 0
2 3 4

0 0 0

* 4 3

64 8

3 3 62

4

( ) (1 2 / ) [ (1 2 / ) ]

[ (1 2 / ) ] [ (1 2 / )] ( 1)

s

s s s

D rD
s s

D r Dr r

s s

EI E r D e r D

e r D e r D e





  

  

    

       

 ZnO Nonlinear surface elastic theory Non-uniform surface elasticity 
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Figure 14. Comparisons of normalized effective bending stiffness in circular NWs calculated 

by different surface elasticity models with surface layer thickness 1 nm. 

5.2.1. Axial Stress/Strain Effect 

Many resonators are operated under tension, which likely results from the fabrication process and 

increase the resonant frequency [151]. When the axial load N  is taken into account in the resonator, 

its lateral displacement caused by vibration is ( , )w x t . The governing equation can be given by [20,181]: 

4 2

4 2

( , ) ( , ) ( , )
( ) 0

w x t w x t w w x t
EI A N x

x xx t


    
         

(40) 

where ( )N x  the actual axial loading and consists of the following two parts: 

2

0
0

( , )
( )

2

LEA w x t
N x N dx

L x

 
   

 


 
(41) 

where 
0N  is the axial loading depending on the built-in strain [15], fabrication process [200], residual 

stress [201], temperature [202], and surface stress [203]. The second part is the tension due to nonlinear 

mid-plane stretching [15,204]. The resonant frequency can be obtained by employing Rayleigh’s 

energy method as [183]: 

1/2
2

, ,2 1
12

n N n N n n

NL
f

EI
   

 
   

   
(42) 

where 
n  is a mode-dependent coefficient and satisfies    

2 2
2 2 2

0 0
12 / ( ) / / ( ) /

L L

n n nL d x dx dx d x dx dx  
 

  
 
  , 

in which ( )n x  represents an approximate shape function for a particular mode n . For 3n  , 

0.2949,0.1453,0. 812,...n    [107]. It can be found from Equation (42) that the tensile axial force can lead 

to an increase of the resonant frequency of the beam, which is known as the “hard-spring effect” [183]. 

The overestimation of 
,n N  can increase up to 11.6% for high axial strains or for intermediate strains 

but high length-to-width ratios [205]. Under the action of a large tension N  (
2/ 1T EI NL  ), the 

resonance frequency can be expressed as [202,206]: 
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n N n
f

L A


 



  
     

    
(43) 

By / / ( )s E N EA   , the axial strain 
s  can easily be related to the axial stress σ or the axial force N. 

The expression of resonant frequency can be re-written as [207]: 

0 1 /N crf f N N   (44) 

where 
crN  is the critical buckling load for a beam, and 2 27 / (2 )crN EAh L  for the cantilever [20] and 

2 24 / 2crN EI L  for clamped-clamped beam [207]. Karabalin et al. [203] successfully presented the 

expressions for the relative frequency shifts 0/f f  of cantilever and doubly clamped beam resonators 

due the effect of surface stress and geometric effect, which is typically ignored in the classical theory 

of linear elasticity, as listed in Table 6. The application of surface stress induces the change in the 

beam length, width, thickness, and density, which alter the resonant frequency of the beam resonators. 

It can be found that the resonant frequencies of doubly clamped beams are more sensitive to surface 

stress changes than cantilever beams. The application of the resonant frequency shift expressions can 

also enable the axial force to be calibrated against the applied voltage. 

Table 6. Relative frequency shift of cantilever and doubly clamped beam resonators with 

surface stress and geometric effects reported by Karabalin et al. [203]. A normalized load 

(1 ) / ( )T

s Eh     is applied and T

s  is an applied surface stress. 

Resonator Structure 
Relative Frequency Shift 

0
/f f  

Stress Effect Geometric Effect 

Cantilever beam 20.042 ( / )( / )b L b h   [(1 2 ) / (1 )]     

Doubly clamped beam 20.1475( / )L h   {(1 2 )(1 ) / [2(1 )]}       

For the case of SWCNT, the resonant frequency related to the axial strain can be written as [207]: 

2

0 2 2 2

0 0

2
1

(4 )
N s

L
f f

R t



 


 

(45) 

where 
0R  depends on the SWCNT chirality, 

0t  is the fixed thickness of the hollow beam section, and 

s  is the axial strain and its sign or direction can result in the resonant frequency becoming either 

greater or less than the un-tuned one. The frequency shift varies linearly with nano-strain when 
s  is 

very small. The resonant frequency itself may be tuned by increasing tensile strain, which can be 

expressed for the oscillation-induced effective strain as 2 0 2 2

0(3 / 4) / ( )s s kE m L    , where 
s  is the 

actuation energy parameter, 0

kE  is the total kinetic energy [208]. It provides a direct and useful 

relationship between the applied mechanical tensile strain and the strain induced by nonlinear 

oscillations to the resonant frequency of the resonator. For the inadequate strain, Chaste et al. [209] 

presented contracting Au electrodes upon cooling to increase the tensile stress within the CNT and 

tune the resonance frequency less than 100%. The resonant frequencies are about ten times higher than 

those without taking into account the tensile stress within the SiNx layer [210]. Tensile stress in SiC 

resonators [211] caused an increase in resonant frequency of more than 100%. 

More recently, Ning et al. [212] reported a new design of carbon nanotube (CNT) resonator, whose 

resonance frequency can be tuned not only transversally by a gate voltage, but also by the axial strain 
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applied through directly pulling the CNT, as shown in Figure 15. It can be seen from Figure 15a that 

the gate-tuning ability decreases as the strain increases. The resonant frequency increases up from  

9.44 MHz to 21.04 MHz with only 0.004% strain, as shown in Figure 15b, indicating the super 

sensitivity of the resonator to strain. When the the CNT with 2% strain resulting in the tension to about 

7.24 nN, while the gate-induced tension is usually less than 0.5 nN [31], the resonant frequency can 

increase by more than twenty times than that in gate-induced nanotube resonators [69,213–215]. Large 

stress levels developed during the insulator-to-metal transition can result in the frequency tuning for about 

23% and the large sensitivity of buckled microbridge resonators is attributed to the stress changes [216]. 

 

Figure 15. The change of resonant frequency of the CNT as a function of the gate voltage 

and the axial strain (a) and the tension (b) reported by Ning et al. Reused with permission 

from [212]. 

5.2.2. Residual Surface Stress 

The origin of residual stress can be attributed to the mismatch of both thermal expansion coefficient 

and intrinsic stress due to the microstructure of the film, grain size, variation of growth rate during film 

deposition [217,218]. Residual stress is unavoidable in surface micromachining techniques and is 

difficult to control since the fabrication process involves many temperature cycles [219], and can be 

given by: 

0 (1 )r     (46) 

where 
0  is the biaxial residual. In most designs, the residual stress due to the microfabrication 

process is highly undesirable and is released within the film, as shown in Figure 16. The surface stress 

contains residual (strain-independent) and surface elastic (strain-dependent) terms. It is difficult to 

identify which parts of the surface stress in the formulation actually affect the resonant frequency of 

the resonators. On one hand, using the linear elastic continuum theory, Gurtin et al. [195] demonstrated 

that the resonant frequency is independent of the strain-independent surface stress τ0. Lu et al. [220] 

reported that the resonant frequency is only influenced by the strain-dependent part of the surface 

stress. On the other hand, Lachut and Sader [221] found that the effect of the strain-independent part of 

the surface stress on the resonant frequency can be obtained using fully three-dimensional models. 

Effects of residual and axial stresses on the micro-beam resonators were reported in [222]. Park and 

Klein [188,223] quantified, for the first time, how both the residual (strain-independent) and surface 

elastic (strain-dependent) parts of the surface stress impact the resonant frequencies of metal nanowires. 

 

(a) (b)
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Figure 16. Schematic of residual stress gradient in the cantilever with microfabrication.  

(a) An ideal intermediate state, (b) after release and (c) before bending. Reused with 

permission from [224], Copyright 2010, John Wiley and Sons. 

Lachut and Sader [221] predicted the resonant frequency shift due to the strain-independent surface 

stress within the context of linear elastic beam theory and obtained: 

0

(1 )
0.042 sf

f EL

  
 

 
(47) 

where 
s  is the strain-independent surface stress. It indicates that the frequency shift due to the  

strain-independent surface stress should be dependent only on the nanowire length [221]. 

5.2.3. Adsorption-Induced Surface Stress 

Surface stress induced by adsorption can play very important role in the resonant frequency [225,226]. 

Various models have been proposed to explain adsorption-induced surface stress effect on the resonant 

frequency shift of a resonator in vacuum or in gaseous environment [227–229]. The surface stress  

effect can be modeled as an axial force exerted on the resonant structures using two different models, 

including the concentrated load mode [230–233] and the distributed load model [234]. Determining the 

adsorption-induced surface stress and mass from the experimental data of resonant frequencies 

becomes an inverse problem [234,235]. 

To explain the adsorption on the stiffness effect, the model presented by Ramos et al. [90,95] is a 

representative example. The cantilever was modeled as an Euler-Bernoulli beam and differential equation 

of the vibration can be written as: 

 
2 2 2

2 2 2

( , ) ( , )
( ) ( ) 0

w x t w x t
A x D x

t x x
 

   
   

     
(48) 

where ( )x  is the adsorbed mass per unit length, ( )D x  is the flexural rigidity of the cantilever and is 

expressed as: 

2 4 2 4 2 2( ) ( )[2 2 ( ) 3 ( )]
( )

12 ( )

c c b b c b c b c b c b

c c b b

E T E T x E E T T x T T x T T xb
D x

E T E T x

   


  
(49) 
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where b is the cantilever width, T is the thickness, and E is the Young’s modulus, the subscripts c and 

b represents the cantilever and the bacteria, respectively. The resonant frequency is calculated by the 

Rayleigh approximation method as [90]: 

 

2

0

, ,
2

0

( ) ( )
2

( ) ( )

L

n

n N n N L

n

D x x dx
f

A x x dx


 

  
 





  

(50) 

where ( )n x  is the eigenmode shape of the unloaded cantilever when the average rates of  

kinetic energy and potential energy equals and the transverse vibration is assumed to satisfy 

( , ) ( )cos( )r n nw x t A x t    , in which 
rA  and   are the arbitrary values of the amplitude and phase of the 

vibration. The equality of the energies explains that the resonant frequency decreases when a mass is 

added to the resonator [88]. 

Figure 17 shows experimental and calculated frequency shift versus the adsorption position along 

the cantilever due to the added mass (dashed line), the change of flexural rigidity (dashed line), and 

both effects (solid line). The interesting results indicate that the adsorbed bacteria can induce the 

positive resonant frequency shift in nanomechanical resonators for certain adsorption distributions on 

the cantilever. An extensive equation for the resonant frequency shift due to the adsorption of a 

homogeneous layer on the cantilever that explains the effects of added mass and stiffness of the layer 

can be written as [88]: 

2 2 2

,

,

1 3
3 2 4 7

2 8

n N b b b b b b b b

n N c c c c c c c c

f E T E E T

f E T E E T

  

  

            
                
              

(51) 

where ρ is the density. The adsorption-induced shift of the resonant frequency of the nanomechanical 

resonators due to three effects, including added mass (negative), mechanical stiffness (positive), and 

surface stress (negative or positive) are reviewed and discussed in [236] for biosensor applications. 

However, the mechanical properties of adsorbed molecules became increasingly important as the size 

of the resonator reduces. The adsorption-induced frequency shift can be enhanced by increasing the 

actuation energy [208]. Goeders et al. [237] presented a most general case of the change in resonant 

frequency due to adsorbed mass (Δm), to increased stiffness Δk due to a change in chickness, and to 

surface stress (Δσ) as: 

2

, , ads ads
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(52) 

where  
1/4

3 2 31 2 / ( )n n L EI      , 
adsE  and 

adsI  are the elastic modulus and second moment of the 

adsorbed layer, respectively. 
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Figure 17. (a) Optical micrographs of three silicon cantilevers in which bacteria deposited 

near the free end (A), on the middle (B), and near the clamping (C) at three different 

positions; (b) Resonant frequency shift as a function of the longitudinal position of the 

adsorbed bacteria with respect to the clamping. Reused with permission from [90]. 

5.2.4. Fluid Effect 

In particular, micro- and nanomechanical resonators have widely used in gas, air or liquid 

environment, the viscous damping resulting from viscous fluids strongly affects resonant frequency 

responses of resonators and the fluid-structure interaction on the resonant frequency makes it 

challenging to perform measurement in viscous fluids [66,81,238,239]. A more rigorous approach, 

which was first introduced by Sader [66], is widely used to investigate of the frequency response of 

immersed cantilevers under the hydrodynamic forces due to the surrounding fluid. The fluid flow 

around the microcantilever can be governed by the incompressible Navier-Stokes equations as: 

2( )f fp
t

 


     


v
v v v

 
(53) 

where v is velocity field, p is the pressure, 
f  and 

f  are the density and viscosity of the fluid, 

respectively. The inviscid model can be applied to accurately predict the resonant frequency in fluids. 

The deviation from the inviscid model can be addressed using the Reynolds number Re  arguments [66]. 

The Reynolds number Re  for a cantilever beam vibrating in a viscous fluid neglecting the nonlinear 

inertial terms of the Navier-Stokes equation is given by: 

2

4

f

f

b
Re

 




 
(54) 

where 
f  is the density of the fluid, ω is the angular frequency, and 

f  is the viscosity of the fluid.  

For the practical cases 1Re , the inviscid fluid model is applicable. However, when the cantilever 

width is reduced, the Reynolds number Re  decreases and the dimensionless hydrodynamic function 

can be used to account for the viscous effect. 

It is worth mentioning that Sader [66] presented an accurate theoretical model to predict the 

hydrodynamic effects on the resonant behaviors of cantilever beam immersed in the viscous fluid. 
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Afterwards, some analytical and theoretical models [238–242], experimental measurements [243–245] 

and modeling and simulations [240,246,247] have been reported on the hydrodynamic effects. The 

equation of motion for the Sader’s model with hydrodynamic effect can be written as [66]: 

4 2

4 2

( , ) ( , )
( , ) ( , )hydro drive

w x t w x t
EI A f x t f x t

x t


 
  

   
(55) 

where ( , )hydrof x t  is the hydrodynamic force due to the motion of the fluid around the beam, and 

( , )drivef x t  is the driving force that excites the beam. According to the vibration mode and on the 

cantilever surface [240], the total hydrodynamic force includes both the effects of the pressure (normal 

to the surface) and shear stress (tangential to the surface) exerted by the fluid, as shown in Figure 18. 

The surrounding fluid acts on the cantilever when the additional mass is attached to the cantilever [248]. 

The nth order resonant frequency in the fluid with small dissipative effects can be given by [66,81]: 

1/2
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(56) 

where 
,( )r n ff  and 

,( )t n ff  are the real part of the appropriate hydrodynamic functions for the given 

geometry, and are calculated and compared for flexural and torsional modes by Van Eysden and  

Sader [81]. Many researchers had presented theoretical models and experimental measurements  

to predict the hydrodynamic functions. In the work of Sader [66], hydrodynamic function was 

described by the complex Bessel functions which have not provided a direct insight into the 

relationship between the cantilever vibration and the viscous fluids. Green and Sader [249] derived an 

elegant semi-analytical model to predict the hydrodynamic functions for microcantilevers in viscous 

fluids. However, Maali et al. [250] experimentally verified the model [249] suffers from the same 

limitations as in [66] showing that the errors in estimation of the damping and added mass coefficients. 

In addition, an analytical approximation was developed to analyze the hydrodynamic function for the 

range of Re  between 1 and 1000. In the Maali’s expression, 
r  can be written as 

1 2 / 2r a a Re   , in 

which 
1 1.0553a   and 

2 2.6868a  1 1.0553a   and 
2 3.7997a   are empirical parameters determined by 

fitting the experimental data [245] to the exact hydrodynamic function on Sader [66]. The relative 

resonant frequency can be obtained as  
1/2

2

, 1 2 ,1 / (4 ) / ( )n f n f f n f ff f b h a a f b   


   
  

 [245]. An 

overview of the relevant hydrodynamic force equations for three different modes of vibration 

(transverse bending, lateral bending and elon-gation) was reported in [240]. Basak et al. [251] 

developed a fully three-dimensional finite element-based fluid structure interaction model to predict 

the hydrodynamic loading of microcantilevers in viscous fluids. The hydrodynamic force acting on the 

beam can also be evaluated by accounting for both the shear force and the pressure force [242]. To 

facilitate computation for arbitrary κ, Eysden and Sader [81] presented an accurate formulas for the 

hydrodynamic functions that may be used in place of the exact analytical solutions, and the maximum 

error is 0.6% from the accuracy of approximant representation. The corresponding formulas for the 

flexural and torsional modes become [81]: 
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Figure 18. Schematic of the hydrodynamic force acting on the microcantilever cross 

section in the cases of four modes. (a) Transverse (out-of-plane) bending mode; (b) Lateral 

(in-plane) bending mode; (c) Elongation (in-plane) mode; (d) Torsional (out-of-plane) mode. 

It is important to note that the normalized mode number  , which differs from the actual mode 

number n, affects the hydrodynamic function due to the fluid effect [81]. The Reynolds number Re  of 

nano- and micro- cantilevers are very low, in the range of 10−2~102. A few reports have experimentally 

characterized the Reynolds number Re  to interpret fluid effects on the resonant frequency [25].  

Cranch et al. [252] presented the rigorous experimental validation of the theoretical model [253] for 

the displacements of both planar and cylindrical cantilevers in highly viscous fluids over a broad range 

of Reynolds number covering 34 10 2000Re    at frequencies up to 1 kHz. One promising approach 

to reduce the viscous damping for resonators immersed in a fluid is the use of vibration modes which 

are less affected by the fluid like in-plane flexural bending modes [254,255]. Linden et al. [256] 

observed the resonant frequency shift of 44 kHz caused solely by the adhesion of the latex bead with a 

mass (550 pg) for the plate-microresonator operated in liquids. The resonant frequency of the 

cantilever beam immersed in a viscous fluid is critically dependent on the fluid viscosity. The resonant 

frequency of a microcantilever operating in a fluid is roughly proportional to the inverse of its length 

squared, and it increases by ~23% with decreasing the length by 10% [242]. Sawano et al. [26] 

achieved mass measurement of biological molecules in viscous fluids using carbon nanotube 

resonators subject to temperature changes in the environment. The resonant frequency of the nanotube 

resonators in water decreases with lowering the water temperature. The resonant frequency shift induced 

by molecular interactions attributes to not only the mass of molecules involved in molecular interactions 

but also the hydrodynamic effect arising from the hydrophilicity change during the interactions. In addition, 

temperature dependence of the resonant frequency of resonators in vacuum or in gaseous environments 

have also been extensively investigated theoretically as well as experimentally [77,138]. 

Nevertheless, nonlinearities occur at very low amplitudes may greatly reduce the dynamic range of 

micro- and nanomechanical resonators and hence the device performances. To make a breakthrough of 

this limitation and overcome frequency stability issues in MEMS and NEMS resonators, some 

improvements had been performed concerning the part dealing with nonlinear dynamics [111], frequency 

stability [257] and how to overcome these limitations using nonlinearities cancellation [258,259], 

superharmonic resonance [260] and simultaneous resonances [261,262]. A theoretical model presented 

by Kacem et al. [258] was a quick and powerful tool for optimizing frequency and nonlinearity tuning 
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as well as to give the possibility to drive the resonator beyond its critical amplitude and enhance the 

performance of NEMS-based sensor. The real specificities come from the complex nonlinear dynamics 

including geometric and inertial nonlinearities. Then, Kacem and Hentz [257] reported the experimental 

observation of a four-bifurcation-point behavior of electrostatically actuated micromechanical 

resonators. The bifurcation topology tuning can be helpful for any application requiring adjustable 

stable branches, frequency, bandwidth, or dynamic range. Moreover, Kacem et al. [259] investigated 

the dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive 

NEMS gas/mass sensor applications. Both geometric nonlinearities and nonlinear electrostatic terms 

up to the fifth order were modeled to enable the capture of very specific mixed behavior. It provides a 

novel strategy for NEMS designers that can be used for the enhancement of resonant sensors 

performances based on the compensation of nonlinearities. In order to compensate for the loss of 

performance when scaling resonant sensors down to NEMS, it is a challenge to achieve large-amplitude 

motion of nanomechanical resonators without deteriorating their frequency stability [32,260]. The 

simultaneous resonances (primary and superharmonic) was used to overcome this limitation, by 

stabilizing the dynamic behavior of the resonator, which displays reduced dynamic ranges or signal to 

noise ratio [261]. Uranga et al. [263] presented the study and characterization of the non-linear regime of 

two CMOS-NEMS flexural resonators electrically transduced for mechanical memory applications. 

More recently, Kacem et al. [262] reported experimentally how the combination of the nonlinearity 

cancellation and simultaneous resonances can be used to stabilize and linearly drive a nanomechanical 

resonator up to very large amplitudes compared to pull-in limit. This technique may provide one new 

way towards resonators with high frequency stability for high-performance sensing or time reference. 

6. Active Frequency Tuning Method 

Although substantial development and progress in the transduction techniques [264], an efficient, 

integrated, and customizable strategy for frequency tuning of micro- and nanomechanical resonators 

has remained elusive [42]. In order to achieve resonance in the mechanical structure of a 

MEMS/NEMS resonator, the device must be actuated by an actuator and set to resonate by varying the 

excitation frequency. Efficient actuation is crucial to obtaining optimal performance. A variety of 

tuning techniques, including the electrothermal, electrostatic, and magnetic, piezoelectric, optothermal 

and dielectric excitation methods, have been developed for actuating resonance. The general excitation 

mechanisms can be divided into local on-chip schemes [51] and approaches depending on external 

excitations [34]. The former arises from the voltage-induced forces through different types of sources 

such as electrothermal [265], capacitive, magnetomotive [41], internal piezoelectrical [42,43], or static 

dipole-based dielectric [44]. The latter implement external excitation such as photothermal [45] or 

inertia-based piezo-actuated schemes [42]. 

Table 7 provides the comparison of several actuation mechanisms which are widely used for frequency 

tuning of resonators [115]. We review these different active mechanisms as well as nonlinear mode 

coupling that have been developed for frequency tuning of the micro- and nanomechanical resonators. 
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Table 7. Comparison of several actuation mechanisms applied for micro- and nanomechanical resonators. 

Actuation Type Fabrication Process Power Consumption Applied Voltage Current Nonlinear Effect 

Electrothermal Simple High Low High Medium 

Electrostatic Simple Low High Low High 

Piezoelectric Complex Low Medium Low High 

Magnetomotive Simple Medium Low Medium High 

Dielectric Medium High High - High 

Photothermal Complex Medium - - High 

6.1. Electrothermal Tuning Mechanism 

The resonant frequency of a resonator can be shifted by inducing an expansion or contraction of the 

structure electro-thermally [85]. The advantages of electro-thermal actuation include simplified fabrication 

and relatively low operating voltages [266]. Several electrothermal tuning techniques were developed 

for frequency tuning of microresonators such as resistive heating to introduce thermal strains [19] and 

localized thermal induced stressing [14]. However, these techniques generally suffer from high  

power dissipation. 

When the electrical current is applied to the resonator, it causes resistive heating and the  

electro-thermal model can be given by [267]: 

0( ) ( ) 0T t TA T T T P         (58) 

where T  is the thermal conductivity, T  denotes the net heat loss rate to the substrate per unit length, 

tA  is the cross-sectional area, 0T  is the room temperature, and 2 /CP I R L   refers to the Joule heating 

rate per unit length, in which I  is the electrical current, and CR  is the resistance. 

Both on the relationship of stress and strain, the thermal stress T  for the resonators under Joule 

heating can be expressed as: 

/2

0
2 ( )

L

T ET x dx      (59) 

where   is thermal expansion coefficients (TEC) and ( )T x  is the derivative of temperature.  

For the case of nanotube resonators, Pop et al. [267] deduced the temperature  

profiles 0( ) / [1 cosh( / ) / cosh( / 2 )]T H HT x T P x L L L   , where /H T t TL A   is the characteristic  

thermal healing length. Mei and Li [18] recently presented the temperature profile as

0( ) / ( )[1 cosh( / ) / cosh( / 2 )]T H HT x T P P x L L L      , where / ( )H T t TL A P     . If the material has a 

uniform change T , the change in length L  yields L L T   , where L  is the initial length of the 

material. When the expansion of the material is affected by the interaction to another material, the 

thermal stress T  can be simplified as T E T     [85]. Under the effect of thermal stress, the 

resonant frequency can be given by [16]: 

2

0 2
1

3.4

L
f f

Eb



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(60) 

where   is the tensile stress, and it is the sum of the initial tensile stress i  from the film deposition 

process and the thermal stress T  from heating of the structure. Jun et al. [16] provided a single 

expression for the thermal tuning of a beam as follows: 
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where 
if  is the initial measured frequency under the initial tensile stress and 2 2

0 1 / (3.4 )i if f L Eb  ,  

e , eK  and eP  are the effective thermal expansion coefficient, thermal conductivity, and electrical heat 

production, respectively. 

As shown in Figure 19, Jun et al. [268,269] used this effective electrothermal tuning method, which 

was widely applied to tune frequency of MEMS devices [14,19], for composite nanomechanical 

resonators with ultrathin 3C-SiC films and 30–195 nm of aluminium [1,27]. A DC tuning voltage up to 

100 mV was applied in parallel with the RF drive for the electrothermal tuning [270]. The direct current 

heats the beam, and thus changes the stress and decreases the resonant frequency, which was tuned by 

10% with Joule heating of DC current [268]. Upon heating, the quality factor decreases by up to ~8% [16]. 

The resonant frequency shifts about 6.5% at 31 kHz using electro-thermal stiffness change [19]. A 

tuning range of up to 1.1% from the frequency of 39.2 kHz with 54 mW power was reported in [271]. 

The SNR level decreases almost linearly with the increase of tuning power [269]. In addition, the effect 

of frequency tuning by magnetic field was controlled by interplay between stress- and shape-induced 

anisotropy energies [272]. 

  

Figure 19. (a) SEM of a completed nano-mechanical resonator [16]. The nanobeams with 

two AC driving and DC tuning ports and a detection port; (b) Close-up view of the 

suspended structure. Reused with permission from [16], Copyright 2006, IOP Publishing. 

The resonant frequency of the resonator with the thermal axial load 
fT  can be expressed as [270,273]: 

2 2
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2
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fTEI L
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 

    
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       
(62) 

The tension 
fT  in the resonator beam after the dc heating changes from 

0hT  to: 

2

0f h h dcT T k EAV   (63) 

where 2( / ) / ( )h pk L mC R , in which 
pC  is the specific heat conductivity, m  is the mass of the 

resonator, and R  is the resistance. It notes that electrothermal heating is one of radio frequency tuning 

method in nanomechanical resonators with magnetomotive transduction and can modify the dynamic 

range of the resonators [273–276]. 

(a)

(b)
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As illustrated in Figure 20, tuning power and surface roughness have a significant role on the 

frequency tuning properties. On one hand, when the tuning power was supplied, the resonant 

frequency of the resonator was tuned downward due to the Joule heating [275]. On the other hand, the 

surface roughness is an important parameter influencing the resonant frequency and tuning 

performance. The surface roughness makes the loss of resonating performance more complicated to 

predict. It demonstrated that the dissipation prevails more on a rougher surface due to the effects of 

electron scattering, energy loss, and unequal or non-uniform electrothermal heating [270,275]. 

 

Figure 20. Frequency tuning performance as a function of surface roughness of the 

nanobeam resonator [275]. The average roughness of the samples (a) R#1: 11.2nm,  

(b) R#2: 28.8 nm, (c) R#3: 0.9nm, and (d) R#4: 2.4nm, observed in AFM image of surface 

morphology. Reused with permission from [275]. 

Localized heating [277,278] was demonstrated to be one effective method for frequency tuning of 

micromechanical resonators. The possibility of programming multiple eigenfrequency states of the 

microresonator with localized Joule effect was also reported [279]. More recently, frequency self-tuning 

of CNT resonator using joule heating mechanism was demonstrated to improve the mass detection 

sensitivity from 1.783 MHz/zg to 5.013 MHz/zg [18]. 

6.2. Electrostatic Tuning Mechanism 

6.2.1. General Tuning Model: Electrode Geometry 

Electrostatic actuation remains an attractive method for frequency tuning due to virtually 

nonexistent current loss, high energy density, and large force at micro-scale [280]. Since the 

pioneering experiments with charged soap-bubbles reported by Taylor [281] and the invention of the 

first microresonators [282], electrode geometries and support configurations in resonators have developed 

significantly [283]. Electrode geometry has changed from being planar (graphene electrodes [148]), to 
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cylindrical (carbon nanotubes (CNT) [214,284] and nanowires [17,32]), to an array of cylinders 

(nanowire arrays [285], nanotube arrays [286]), and to fractal [283,287]. 

The resonant frequency can be tuned by the applied voltage and its dependence is well understood 

within the continuum mechanics framework [286]. Palit et al. [283] and Jain and Alam [288] presented 

a general framework to analyze electromechanical actuators having arbitrary electrode geometries and 

support configurations and reported the universal scaling relationships for resonant frequency 

depending on the scaling parameters. Figure 21a–c show the schematic of various movable electrodes 

1M  is suspended above a fixed bottom electrode 
2M . The governing equation for the deflection y  of 

1M  

with Young’s modulus E , Poisson’s ratio  , thickness H , and subjected to an externally applied 

voltage V  is given by [283]: 

3
4 2

2

1 ( , )

212(1 )
r

EH dC r y
y V

dz
  

  
(64) 

where r  is a vector in the plane of 
1M  and ( , )C r y  is the capacitance per unit area between 

1M  and 
2M  at 

position r  and given by 2 1

0( , ) / ( )n n

e dC r y L y T     , in which n  is the electrostatic dimension  

parameter that defines the electrostatics of the system, 
dT  is the effective dielectric thickness 

normalized by the dielectric constant, 
e  is a constant that depends exclusively on the geometrical 

configuration of the electrodes. 

 

Figure 21. General electrode geometries for micro- and nano-mechanical resonators 

reported by Jain and Alam [288]. (a) Classical planar electrode; (b) Cylindrical electrode; 

(c) array of cylinders; (d) Resonant frequency as a function of (V/Q) with scaling effect. 

Reused with permission from [288]. 
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With the increase of applied voltage V , separation between the two electrodes ( y ) is dictated by 

the balance of restoring spring and electrostatic forces. The application of potential   (V  or Q ) not only 

changes the separation, but also modifies the effective stiffness ( / )( )eff S elecK d dy F F   . The tuning of 

the resonant frequency with scaling effect can be given by [288]: 

1/2

1 0

0 0

1 1

( )
p

p p

n

p

k y
f f y y p n n

k y






  
     

  


 
(65) 

where 
0y  is the initial air-gap 

1k  is the linear spring stiffness, 
pk  is the spring constant associated 

with the nonlinearity of order p . Figure 21d illustrates the scaling relationship between the resonant 

frequency and applied potential V  (or Q ) for various electrode geometries (planar and cylindrical 

electrodes). The expression Equation (65) reduces to  
1/2

0 03 (2 )nf f y y    for a well-known resonant 

gate transistors [282] with linear spring ( 2n   and 0pk  ) [288]. Therefore, the resonant frequency of 

the resonators can electrically be tuned by applying a voltage between the electrodes. 

6.2.2. Single-Electron Tuning 

With the fields of electronics and mechanics making impressive progress toward quantum 

mechanical devices [289], the combination of electronic transport with mechanics has become one of 

the exciting new areas during the past several years [290]. The resonant frequency can be tuned by 

using an external electric means, which is convenient for practical applications [291,292]. 

Single-electron charge fluctuations can create periodic modulations of the resonant frequency of 

mechanical resonators [293]. Steele et al. [293] and Lassagne et al. [291] have found that the resonant 

frequency and dissipation in the nanotube mechanical resonators are both highly sensitive to the charge 

state with single electrons. As shown in Figure 22, as the voltage is applied to the gate, the electrostatic 

force acting on the nanotube can be expressed as [294]: 

2 2 2 2

, , , ,

1 1 1 1
( ) 2 cos(2 ) cos(4 )

2 2 2 2
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   
(66) 

where 
gC  is the capacitance between the nanotube and the gate, x  is the displacement of the 

fundamental model of the nanotube, and 
gV  and 

,g ACV  (with frequency 
e ) are the applied voltages on 

the gate and the nanotube, respectively. The resonant frequencies increase with gate voltage owing to 

the tensioning of the resonator [31] and is tuned by more than a factor of 2 with the gate voltage [293]. 

In the limiting cases, the fundamental resonant frequency can be given by [295]: 

2 2

1 2
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(67) 

where the variable /T EI  . The resonant frequency dependence 2

n L   is associated with a loose 

string, while 1

n L   represents that the string is tied. 
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Figure 22. Single-electron tuning mechanism developed by Steele et al. [293]. (a) 

Nanotube mechanical resonator; (b) Device geometry for single-electron tuning;  

(c) Single-electron Coulomb blockade oscillations; (d) Tuning the resonant frequency with 

gate voltage. Reused with permission from [293], Copyright 2009 American Association 

for the Advancement of Science. 

When a single electron is added to the suspended CNT, the resonant frequency of the resonator dips 

dramatically due to the coupling between electronic and mechanical motion, which causes a softening 

of the spring constant. However, the resonant frequency changes non-smoothly and shows discrete 

jumps (Figure 22d) due to the Coulomb blockade [289]. This is the first experimental observation the 

electromechanical coupling of an electron in the quantum mechanical regime via CNT-based NEMS 

device. Solanki et al. [103] observed the nonmonotonic dispersion of the resonant frequency with dc 

gate voltage in nanowire resonators. More recently, Benyamini et al. [296] explored a new generation 

of suspended carbon nanotube mechanical resonators with wide-ranging local control. The key 

parameter in these experiments is the possibility of tuning the resonant frequencies by external gate 

electrodes [214,289–291,293]. These gate electrodes can not only cause the microtubes to vibrate at 

their resonance modes, bust also introduce an axial strain which modifies the resonant frequencies 

significantly [295,297]. 
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6.2.3. Capacitive Softening Effect 

Resonant frequency of parallel-plate capacitive resonators can be tuned by changing the DC voltage 

applied across the sense and drive capacitive gaps. The principle is based on electrostatic force acting 

on the mass [298], as shown in Figure 23. The resonator structure contains an extra electrode system 

for resonant frequency tuning by applying a DC voltage and the tuning voltage 
tunV . The total stiffness 

totalk  of the tuned resonator can be calculated as: 

2
2

0 2

1 ( )

2
total tun

d C x
k k V

dx
 

 
(68) 

where 
0k  is the mechanical stiffness and ( )C x  is the total capacitance between the two electrodes. The 

forces lead to a softening of the resonator system and result in decreasing the resonant frequency.  

A maximum tuning voltage of 35 V is required for continuous resonant frequency tuning from 1 to  

10 kHz and a maximum resonance frequency shift of 0.7% [298]. With sub-100 nm self-aligned 

vertical capacitive gaps designed for the first time, the resonant frequency can be tuned from 505 kHz 

to 450 kHz for the in-plane resonators by changing the DC voltage and providing a large electrostatic 

tuning range about 10% [299]. The resonant frequency can be tuned down to −75% of its maximum 

value using electrostatic softening effect [300]. Several measurements on the suspended metallized SiC 

beam, clamped-clamped InAs nanowire resonators [15,103], and CNT mechanical resonators [155] have 

also displayed the decrease of resonant frequency due to the electrostatic softening of the vibration.  

 

Figure 23. Resonant frequency tuning by capacitive softening effect. 

Recently, Eriksson et al. [301] discussed the coupled effects of deflection-induced tension and 

electrostatic softening on the resonant frequency tuning of circular nanomechanical graphene resonators. 

6.2.4. Combination of Hardening and Softening Effects 

Micro- and nano-resonators actuated by electrostatic force can offer in situ frequency tuning over 

wide frequency range [31,108,184]. The frequency tuning is known to be governed by two distinct 

mechanisms: the elastic hardening effect, which arises in the presence of large elastic deformations 

and increases the resonance frequencies, and the capacitive softening effect, which is inherent to the 



Sensors 2015, 15 26519 

 

 

electrostatic actuation force and decreases the resonance frequencies [15,302,303]. The resonant 

frequency has been observed to tune either upward [31] or downward [10], and both states [15,215]. 

As one of the most representative electrostatic tuning methods, Kozinsky et al. [15] demonstrated 

an ability to tune the resonant frequency of resonators both upward and downward. Figure 24 

illustrates the electrostatic tuning setup and measurement, and shows the results obtained by varying 

the DC bias applied to the gate electrode. Both softening and hardening types of frequency tuning in 

the resonator were observed. As shown in Figure 24a,b, the resonant frequency of the beam with gate 

voltage increases when the out-of-plane mode of vibration occurs. As the applied DC gate voltage 

increases, the resonant frequency increases. For the in-plane mode, it can be observed from Figure 24c,d 

that the decrease in the resonant frequency. The clamped-clamped beam is electrostatically attracted to 

the gate and results in the spring constant becoming smaller. Under the combination effect of 

electrostatic force and elastic restoring force, the governing equation can be given by [15]: 

4 2 2

04 2 2

( , ) ( , ) ( , ) ( , )
( , )ext

w x t w x t w x t w x t
EI A T T F x t

xx t x


      
     

      
(69) 

where T is the residual tension, ( ( , ) / )T w x t x   is the bending-induced tension and 

2

0
( ( , ) / ) ( / 2 ) ( ( , ) / )

L

T w x t x EA L w x t x dx     , the electrostatic force 2( , ) [ ( , )] / 2ext zF x t c z x t V , in which [ ( , )]c z x t  

is the capacitance per unit length and ( , )z x t  is a time-varying AC displacement. Electrostatic force on 

the nanotube leads to a deflection towards the gate and results in the increased mechanical  

tension [31,294]. The resonant frequency can be obtained as [15]: 
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(70) 

where 
CK  is the capacitance expansion coefficient, 

dcA  is static deflection amplitude. The different 

frequency tuning behaviors can also explained by Equation (70). The frequency increases in the  

out-of-plane mode due to increasing the gate voltage, which only stretches the beam. For the in-plane 

vibration mode, both stretching and electrostatic attraction occurs. Electrostatic attraction to the gate 

has the softening effect on the resonator for lower gate voltage before the hardening due to the 

stretching effect [15]. The theoretical expression for resonant frequency Equation (70) agrees well with 

the experimental data as shown in Figure 24d. The limitation of frequency tuning using electrostatic 

spring softening effect is that only one directional tuning is available. 

On one hand, when a DC bias voltage 
dcV  is applied to the gate and a potential difference is created, 

the resulting electrostatic force attracts the resonator toward the gate and results in induced-tension in 

the resonator. The elastic hardening effect increases the resonant frequency which can be given  

by [215,302]: 

1/2
2 2

2 2

0 044
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n e dc
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f f f A V

L





 
    
   

(71) 

where 
dcZ  is the static displacement of the center of the beam and 

2 4 31

2
/ (32 / )dc dc wZ C LV Ed L    , in which 

C  is the first derivative of capacitance, 
wd  is the diameter of the cylindrical wire. 

On the other hand, when the DC voltage 
dcV  is applied to side gate, the electrostatic force is in the 

direction of the resonator and the bias not only creates tension but also results in the capacitive 
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softening effects [302]. The capacitive coupling between the electrodes allows electrostatic control of 

both the mean position of the resonator and its resonance frequency. The frequency dependence of the 

capacitive softening effect can be expressed as [15,215,302]: 

 
1/2

2
1/2

2 2 2

0 028

dc

n c dc

m

C V
f f f B V

L 
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    
 

 (72) 

where C  is the second derivative of capacitance. 

 

Figure 24. Electrostatic tuning setup and measurement reported by Kozinsky et al. [15]. 

(a) The beam’s vibration out-of-plane with the gate; (b) Elastic tuning of resonant 

frequency upward; (c) The beam’s vibration in-plane of the gate; (d) Capacitive tuning of 

resonant frequency downward. Reused with permission from [15], Copyright 2006, 

American Institute of Physics. 

SWNT resonators are known to have multiple vibrational states, including out-of-plane, in-plane, 

and the higher order modes [31,215]. Wu and Zhong [215] first investigated the frequency tuning using 

bottom-gate electrode, and reported the observation of the dual-gate nanotube resonators (Figure 25a) can 

realize frequency tuning through both elastic hardening and capacitive softening mechanisms, as 

illustrated in Figure 25b. The coupling of bottom-gate (BG) and end-gate (EG) effects on the 

capacitive softening was taken into account. The capacitive softening equation can be modified by 

including the effect of elastic hardening and an offset voltage 
0V  as: 

   
1/2

2 2
2

0 0n e bg c egf f AV B V V    
  

 (73) 

where 
eA  and 

cB  are the elastic hardening tuning and capacitive softening coefficients, respectively. 

Figure 25c shows a two-dimensional plot of resonant frequency as a function of 
egV  and 

bgV . The 

resonant frequencies illustrate symmetric tuning around gate voltages corresponding to the charge 

neutral point. 



Sensors 2015, 15 26521 

 

 

 

Figure 25. Device geometry and dual-gate frequency tuning of single-walled carbon 

nanotube (SWNT) resonator reported by Wu and Zhong [215]. (a) Dual-gate nanotube 

resonators; (b) Frequency tuning through both elastic hardening and capacitive softening 

mechanisms; (c) Resonant frequency as a function of egV  and bgV . Reused with 

permission from [215], Copyright 2011, American Chemical Society. 

6.2.5. Frequency Tuning for Comb-Drive Microresonators 

To achieve wide frequency tuning range with low power consumption, many researchers have 

focused on various comb finger designs. Various frequency tuning methods have been applied and 

demonstrated for comb-drive microresonators, as listed in Table 8. 

Electrostatic comb structures have been the key design elements for comb-drive micromechanical 

resonators [304–315]. Multiple tuning approaches have been presented to tune the effective spring 

constant of the resonators, including parallel-plate [20], fringing field [304], and variable gap  

comb-drives [305,306]. Lee and Cho [21] applied a control voltage for triangular electrostatic comb 

arrays for 3.3% reduction in the resonant frequency. Adding material deposition to the mass can lead 

to 1.2% resonant frequency reduction [89]. The use of constrained thermal expansion can result in 

50% increase in the resonant frequency under vacuum and 25% frequency reduction at atmospheric 

pressure [19]. These tuning methods provide small change in resonant frequency [21,89] or require 

high power for frequency tuning operations [19]. Furthermore, under the applied external electrical 

potential and Joule heating effects, the resonant frequencies of the comb drive resonators change from 

22.2 kHz to 16.2 kHz, resulting in the 27% reduction in the resonant frequency [307]. 

.
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Table 8. Various frequency tuning methods for the comb-drive microresonators [19,21,89,298,305,310,311,313–315]. 

Reference Tuning Mechanism/Method 
Geometry 

Configuration 
Active/Passive Method 

Resonant 

Frequency 
Tuning Range 

Lee and Cho [21] 

The DC-biased electrostatic tuning comb structures arranged in the 

triangular shape to adjust the resonant frequency using the linear 

electrostatic force. 

Triangular comb arrays Active method 2.42 kHz 
−3.3% (measurement);  

−5.3% (estimation) 

Syms [19] 
The use of constrained thermal expansion to tune the resonant frequency. 

The tensile strains may be set up in the suspension using a folded geometry. 
Folded geometry Active method 1.56 kHz 

−25% (at atmospheric pressure); 

50% (at 10 mTorr) 

Lee et al. [313] 
A closed-form design approach for comb finger profiles to achieve 

constant electrostatic stiffness or linear electrostatic force. 
Curved comb finger Active method 19 kHz 

−55% (measurement);  

−45.4% (theoretical result); 

−42.7% (simulation) 

Jensen et al. [305] 
Shaped fingers allow the design of resonators operating at a wide range of 

spring stiffness and tuning resonant frequency over a large range. 

weakening fingers 
Active method 4.3 kHz 

165 Hz (downward) 

stiffening fingers 5.3 kHz (upward) 

Xu and Tsai [310] 

The basic idea is to synthesize the design of the supported springs and the 

releasing holes in the proof mass. Then the process-induced effective 

spring constant variation can be balanced by effective mass variation. 

DRIE-induced variation Active method 3.28 kHz 2.1% 

Zine-El-Abidine 

and Yang [311] 

The suspension configuration can be mechanically altered to  

change its spring constant. 
Curved electrode Active method 10.8 kHz 

17.6 kHz (two actuators); 21.4 

kHz (four actuators) 

Scheibner et al. 

[298] 

The principle is based on electrostatically generated, amplitude-dependent 

forces acting on the seismic mass, and the structures implement 

electrostatic softening effect. 

Capacitive surfaces Active method 2.89 kHz 901 Hz 

Morgan and 

Ghodssi [314] 

The vertically-shaped comb-fingers were designed as electrostatic springs 

without increasing the device area. 
Shaped fingers Active method 1.6 kHz 17% (bidirectional) 

Joachim and  

Lin [315] 

The selective deposition of polysilicon by silane decomposition on 

electrically heated, released microstructures. 

Selectively deposited 

polysilicon 
Passive method 86.6 kHz 1.96% 

Chiao and Lin [89] 

Post-packaging tuning process for microresonators by pulsed laser 

deposition (PLD). The advantages include precise process control, 

versatility and easy implementation. 

donor film structure Passive method 12.37 kHz −1.2% 
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Various comb finger configurations had been designed to achieve wide frequency tuning with low 

power consumption [316]. The shaped comb design was previously made to maximize the electrostatic 

force by a segmented comb with different widths [306]. Adams et al. [39] presented four electrostatic 

actuators to change the stiffness and tune the resonant frequency upwards to 146% and downwards to 

7.7% of the original values. The planar shaped combs for delivering electrostatic force with specific 

nonlinearity and the resonant frequency can be tuned either downwards or upwards [305]. A specific 

varying-gap comb-finger design for a large-stroke parametric resonator was recently reported in [308]. 

A new truss electrode presented by Khirallah [309] can produce time-varying electrostatic axial force 

on the resonator and consequently modulate its effective spring constant. Xu and Tsai [310] presented 

an interesting method to seek the proper parameter sets to balance the variations of process-induced 

spring constant and mass. The resonant frequencies are in the range of 32 102 ± 25 Hz and obey 

basically the normal distribution. The stiffening or the weakening of the comb allows the resonant 

frequency to be swept between the multiple frequencies of the comb achieving a very wide tuning 

range [311]. Zhong et al. [312] demonstrated an interesting result of the inclination effect on the 

frequency tuning of comb-driven resonators. Although these methods obtained tunability, small 

variation of the resonant frequency can be tuned for the micromechanical resonators. 

In addition, the ultimate limit to electrostatic tuning in micro- and nano-resonators depends on the 

pull-in effect when the beam structure gets close enough to the gate [15]. The major drawback of this 

scheme is that the response is nonlinear. On the contrary, electrostatic pull-in can also be used for  

micro- and nanomechanical resonators [316]. Kafumbe et al. [40] explored a new method of actively 

tuning the resonant frequency of microresonators using electrostatic pull-in to adjust the length of the 

resonating structure and guarantees frequency tuning throughout the lifetime of the device. Ke [317] 

presented the theoretical investigation of double-sided excitation scheme for resonant frequency tuning 

of nanotube resonators with table range reaching up to 90% of the gap between the actuation 

electrodes, which exceeds the resonant pull-in limit. Pull-in has also been proposed for sensing 

adsorbate stiffness in nanomechanical resonators [318]. 

6.2.6. Photothermal Tuning Mechanism 

Optical techniques have the advantages of requiring no electrical connections, possessing the  

highest resolution, and can be implemented for measurements of the resonators in vacuum, gas, and 

liquids [23,319]. The resonant properties of micro- and nano-mechanical resonators driven by the 

photothermal approach contain rich information about mechanical and thermal properties of the 

resonating system [320,321]. The resonant frequencies of nanocantilevers can be influenced by the 

optical pressure and photothermal force generated by the laser beam probe [94,322,323]. 

The photothermal effect can be used to tune the frequency of micro- and nano-resonators [45,324–326]. 

Kim et al. [325] demonstrated the pressure-sensing scheme based on the photothermal effect in the 

miniaturized beam resonator, and observed the considerable decrease in the resonant frequency due to 

the photothermally induced compressive stress. Incident optical power results in the temperature rise in 

the composite beam and the shift in the resonance frequency due to thermal stress [324]. Photothermal 

actuation was also used for the self-excitation and for measuring the resonant frequency of nanomechanical 
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resonators in liquids [94,327]. The immense resonant frequency tunability available by this technique 

may be of importance for numerous NEMS applications [45]. 

To understand the effect of the laser power on the dynamic response of the resonators, the resonance 

spectra at multiple harmonic modes were taken at various power levels [324]. Kim et al. [324] 

determined the amount of incident power 
laserP  on the beam by considering the Gaussian distribution as: 
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where 
rR  is the reflectivity, 

mI  is the maximum intensity from the total optical power measurement,  

or  is the experimental optical spot size. The corresponding temperature distribution ( , )T x t  caused by the 

laser power can be calculated from the heat conduction model with Gaussian thermal source as: 
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(75) 

where 
tc , 

p  and 
pc  are the weighted average of thermal conductivity, mass density and heat capacity, 

respectively, 
td  is the total thickness, 

0T  is the ambient temperature, and 
hc  is the heat transfer 

coefficient. The observed resonant frequency decreases with the optical power due to the heating of the 

resonator, generating the photothermal stress. Under the axial stress, the resonant frequency of a 

clamped-clamped beam at n th mode can be given by [324]: 
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where the axial stress   is a sum of the intrinsic stress 
i  due to the SiN layer deposition and 

fabrication processes, and the temperature-dependent thermal stress 
th . The effect of the photothermal 

stress on the dynamics of the beam resonator can be more easily found in the square of the resonant 

frequency 2

nf . It can be clearly observed that the linear dependence of 2

nf  on T  at several modes, 

which is expected from Equation (76). The inset shows the average temperature rise T  as a function 

of incident optical power 
laserP  calculated from the heat conduction model with a Gaussian thermal source. 

Notably, Pini et al. [319] indicated that the light back-action effect is very significant in ultrathin 

bimetallic cantilevers and demonstrated that the laser beam used for probing the mechanical state of 

nanomechanical resonators can extraordinarily shift the resonant frequencies. Figure 26a illustrated the 

schematic of the optical detection and the cantilever structure (Figure 26b). A typical frequency spectrum 

of the thermomechanical noise of the fabricated cantilevers was shown in Figure 26c. Figure 26d,e 

plotted the first four resonant frequencies and frequency shift of the cantilever as a function of the laser 

power. It can be found that the laser power increase gives rise to a decrease of the resonant frequency 

of about 30%. Interestingly, the resonant frequency shifts follow a nonlinear behavior with the laser 

power. The tunable optical gradient force can also cause the frequency shift in resonators [328]. In 

addition, the frequency shift due to the laser back-action effect follows a nonlinear behavior, which 

reveals a new mechanism of resonance frequency shift due to in-plane stress. 
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(a)

(b)
(c)

(e)

(d)

 

Figure 26. Laser-induced resonant frequency shift reported by Pini et al. [319].  

(a) Schematic diagram of the structure and dimensions of the laser beam deflection 

technique; (b) SEM of the fabricated bimetallic cantilever; (c) Frequency spectrum of the 

thermomechanical fluctuations; (d) First four resonant frequencies of the cantilever as a 

function of the laser power intensity; (e) The relative frequency shifts. Reused with 

permission from [319], Copyright 2011, American Chemical Society. 

6.2.7. Piezoelectric Tuning Mechanism 

As one of the earliest and most straightforward actuation methods, piezoelectric transduction 

technique provides a means of directly converting an electric field into mechanical strain [42]. The 

piezoelectric transduction technique and actuation scheme also enables the resonant frequency of the 

mechanical oscillator to be tuned [329,330]. The ability to control the effective spring constant using the 

piezoelectric effect enables excitation of the fundamental mode through parametric resonance [43,331]. 

Using a p-type/intrinsic/n-type diode structure, Masmanidis et al. [42] investigated the use of 

piezoelectric semiconductors as active structural materials for nanomechanical resonators. The 

remarkable feature due to the piezoelectric effect is voltage-induced resonant frequency control, as 

shown in Figure 27. Resonant frequency shifts are clearly observed upon the DC-biasing of the  

clamped-clamped beam resonator (Figure 27b). In the case of small perturbations, frequency shift 

 piezof  can be quantitatively expressed as: 

3 3

2 
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j p

piezo

p

d V E
f

t
 (77) 

where 
3 jd  is the anisotropic piezoelectric coefficient, 

pE  is the elastic Young’s modulus and   is the 

density,
pt  is the total device thickness, V  is the DC bias voltage. It can be found that this expression 

implies linear frequency-voltage dependence. 
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Figure 27. Piezoelectric resonant frequency control and tuning [42]. (a) Clamped-clamped 

beam which used to gauge the efficiency of piezoelectric excitation; (b) Frequency 

response near the fundamental out-of-plane resonant mode; (c) Measurements of resonant 

frequency shift as a function of DC bias voltage. Reused with permission from [42], 

Copyright 2007 American Association for the Advancement of Science. 

Due to the anisotropic nature of the piezoelectric coefficient, the slop of f  can be controlled and 

tuned by fabricating the beam along a prescribed direction [42], as illustrated in Figure 27c. The equal 

and opposite tuning slope of devices aligned along the (110) and (–110) directions is characterized by 

the opposite sign of 
3 jd  along these directions. In addition, the potential application of voltage-dependent 

frequency tuning for piezoelectric nanomechanical charge sensing was also demonstrated. However, 

the bandwidth of a piezoelectric actuator depends upon the relaxation time of the deformations after 

the electric field is removed [264]. Utilizing the actuation of mechanical resonance with the same 

phenomenon demonstrated in [42], Mahboob and Yamaguchi [43] designed a device excited by the 

piezoelectric effect by applying an AC voltage. In the clamped beam, the application of a DC voltage 

leads to strain along the beam via the piezoelectric effect enabling the resonant frequency to be tuned. 

The resonant frequency shift by controlling of the effective spring constant permits the implementation 

of parametric resonance as well as on-chip electromechanical charge sensing [43]. Piezoelectricity 

encountered in some materials is one of the unexplored phenomena with potential in nano-scale [264]. 

6.3. Dielectric Tuning Mechanism 

Actuation techniques based on dielectric gradient forces, which are becoming more and more 

powerful tool to tune and control MEMS/NEMS devices [34,332,333]. If the dielectric beam is placed 
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in between two vertically offset electrodes, its vibration can lead to the periodic modulation of their 

mutual capacitance [334]. Efficient integrated actuation and read-out schemes have been developed to 

detect the motion of resonators [264]. For example, the resonant frequency can be tuned by capacitive 

coupling of the nanomechanical element to a side electrode [15]. However, the required metalization 

of the resonant structure reduces the quality factor significantly via Ohmic losses [335]. For this  

Faust et al. [334] developed an efficient, room-temperature microwave mixing scheme for readout as 

well as a dielectric drive mechanism to actuate mechanics regardless of the material makeup [34]. 

Any polarizable body placed in an inhomogeneous electric field implements a dielectric force, 

Unterreithmeier et al. [34] demonstrated the design of a set of on-chip electrodes to create an electric 

field gradient and polarize a dielectric resonator and subject it to an attractive force than can be 

modulated at high frequencies. The mechanism relies mainly on dielectric interaction, in which the 

polarizable element is a clamped-clamped silicon nitride beam (Figure 28a). The scheme enables 

simple voltage tuning of the mechanical resonance over a wide frequency range due the dielectric force 

depending strongly on the resonator-electrode separation. The dielectric force exhibits a maximum at a 

distance that is comparable, as shown in Figure 28b. The modulation of the resonant frequency can be 

used to demonstrate parametric actuation [43]. Unterreithmeier et al. [34] and Rieger et al. [333] found 

that the force gradient to be proportional to the square of the voltage. 

(a) (b)

(c)

 

Figure 28. (a) SEM of a nanomechanical resonator reported by Unterreithmeier et al. [34]; 

(b) The dielectric force acting on the resonator; (c) Frequency tuning of the resonator. 

Reused with permission from [34], Copyright 2009, Nature Publishing Group. 
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A quadratic dependence of the resonator resonance frequency on the applied dc voltage can be 

derived from the energy of the induced dipolar moment of the dielectric resonator in an external 

electric field [333]. The resulting shift in resonant frequency can be expressed as [34]: 
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where 
uc  is a constant and relative to the field gradient. The resonance frequency decreases quadratically 

with bias voltage, as illustrated in Figure 28c. The resonant frequency lies between 5 and 9 MHz and 

the frequency tuning range of more than 100 kHz, while the quality factor ranges from 100,000 to 

150,000 [34]. Rieger et al. [333] presented an integrated scheme for dielectric drive and read-out of 

high-Q nanomechanical resonators that enable tuning of both the resonance frequency and quality 

factor with an applied DC voltage. The resonance frequencies lie around 6.5 MHz and can be tuned 

over 5% [333], and the highest quality factor is 340 000 for the out-of-plane mode in the elevated design. 

Unterreithmeier et al. [336] successfully modeled the damping of nanoresonators by postulating a 

frequency-independent mechanism caused by local strain variation. The large frequency tuning range 

can be used for in-situ tuning of several mechanical elements into resonance [337] or coupling to 

external elements [338]. In addition, altering the DC voltage does not only shift the resonant 

frequency, but also influences the dielectrically induced damping which varies quadratically with 

increasing voltage [15,333]. 

6.4. Magnetomotive Tuning Mechanism 

The magnetomotive transduction technique [41,123,339] has played a very important role in the 

micro- and nanomechanical resonators [1,111], and allows for all-electrical actuation and sensing of 

the mechanical motion. Although magnetomotive actuation technique is broadband, even in the 

presence of parasitic capacitances [123], it requires strong magnetic fields, which are usually generated 

by using superconducting coils [1], and the eddy current damping force caused by this transduction 

scheme should be examined [10]. 

The magnetomotive coupling scheme is based on the electrodynamic forces that act on moving 

charges in a magnetic field [107], and it can be used for SiC and AlN resonator structures. The scheme 

is shown in Figure 29 in a doubly clamped beam. An external voltage is applied between both contact 

areas on either side of the freestanding structure. Due to the applied magnetic field B , an alternating 

Lorentz force is generated in the out-of-plane direction. The Lorentz force 
magF  depending on the 

alternating current I  can be expressed as: 

mag mF IBL  (79) 

where 
mL  is the length of the beam. The induced electromotive force developed along the beam owes 

to its resulting motion through the magnetic field [41]. A combination of capacitive and 

magnetomotive excitation for the tunable coupled nanomechanical resonators was reported in [340]. 
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Figure 29. Schematic of magnetomotive actuation for the doubly clamped beam resonator. 

6.5. Mode Coupling Tuning Mechanism 

As an effective tuning mechanism, the mode coupling of nanomechanical resonators has been 

intensively investigated during the past several years. Mode coupling can be generally divided into 

intermodal coupling and the mode coupling between mechanical modes and the other types of modes. 

The former category mainly includes tension-induced modal coupling [341–344], the coupling in the 

single-electron tunneling regime [47,289,293], the coupling in quantum regime [345]. Parametric 

mode fixing [346] and the mode coupling between different resonators [347,348] belong to the latter. 

The mode-coupling also provides a dissipation channel for the fundamental mode dynamics in 

resonators [349]. In addition, according to the coupling strength, mode coupling can be classified into 

linear coupling [341,342,350] and nonlinear coupling [46,343,344]. 

In order to clearly understand the coupling between the flexural modes of the resonators, several 

analytical models were introduced [46,47]. The equation for describing the motion of mode i  with 

considering the modal interactions can be expressed as [47]: 

2

, , ,

, ,

cos( )i i i i i i j k l j k l i i

j k l

u u u u u u f t        
(80) 

where 
i , 

i  and 
if  are the damping, resonant frequency and driving force of mode i , respectively, and 

the indices , ,j k l  represents the number of modes considered. It can be simplified to be the Duffing 

equation of a nonlinear resonator for a single mode at 1i j k l    . The parameter   is strongly 

influenced by the single-electron tunneling processes in the suspended carbon nanotube [293], and the 

displacement-induced tension in the micromechanical resonators [46]. 

Castellanos-Gomez et al. [47] reported that the resonant frequency can be tuned by the modal 

interactions between the two vibration modes of the carbon nanotube. As shown in Figure 30a–c, three 

different situations were presented the mechanism, (a) mode softening: the modal interaction reduces 

the resonant frequency of another mode; (b) mode stiffening: the modal interaction increases the 

resonance frequency of another mode; and (c) modal interaction suppression: the effect of the modal 

interaction can be negligible. The modal interaction dominated by single-electron-tunneling  

processes [293] was verified qualitatively when adjusting the gate voltage, and the frequency tuning by 

the modal interactions as a function of the gate voltage can be seen in Figure 30d,e. The maximum 

change in the resonant frequency due to the modal interaction illustrates that a continuous transition 

from stiffening to softening effects, and the sign of the modal interaction is directly related to that of 

the nonlinear spring of the carbon nanotube. In addition, the modal interaction strength can 

continuously by tuned from 263 8 kHz/nm  (stiffening) to 255 4 kHz/nm   (softening), which is about 6 
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orders of magnitude larger than that in micromechanical resonators [46]. The nonlinear intrinsic 

coupling between the flexural–flexural, torsional–torsional and flexural–torsional modes of a 

microcantilever was experimentally reported in [351]. The direct bending-induced nonlinearities can 

be identified to facilitate the precise tuning of nanomechanical resonators [352]. 

 

Figure 30. Resonant frequency tuning using the modal interactions reported by  

Castellanos-Gomez et al. [47]. (a) Mode softening; (b) mode stiffening; (c) modal 

interaction suppression; (d) and (e) Frequency tuning by the modal interactions as a 

function of the gate voltage. Reused with permission from [47], Copyright 2012, American 

Physical Society. 

6.6. Tension-Based Tuning Mechanism 

6.6.1. Altering the Effective Length 

Frequency tuning of nanomechanical resonators have been previously implemented by altering  

the effective length of the resonators [353–356]. Length change is an irreversible process for  

cantilever beam resonators and is possible only with special geometries for doubly clamped resonators. 

Jensen et al [356] developed a tunable resonator by effectively changing the length of the multiwalled 

carbon nanotube (MWNT) to tune its resonant frequency. The tunable range is more than 100 MHz. 

Tension in these devices is applied by the van der Waals attraction between the core nanotube and its 

shell, and the resonant frequency is approximately calculated by 2 2

0 22.4 / (2 ) ( 0.024 ) /f L EI TL A   . 

Jensen et al. [353] also introduced a nanotube radio that consisted of an antenna and tuner by using a 

single walled CNT. However, nanoelectromechanical resonators based on these methods have also 

significant drawbacks because the nanotube was continuously shortened by the trimming process [97,357]. 

Although the model CNT tuner is difficult to implement by simple processes, it has the advantage  
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that the frequency tuning can be easily obtained via controlling applied voltage without complex  

nano-positioning platform [357]. 

6.6.2. Tensile Stress Effect 

The resonance frequency is dominated by the large tensile stress [200,358]. By varying the beam 

stress [359], the resonant frequency of the nanoresonator can be tuned with coving a frequency range 

from 7 to 206 MHz. The use of axial pre-stress method may allow tuning of the torsional stiffness and 

resonant frequency of CNTs [360]. The torsional stiffness can increase to approximately 23%. The fact 

is that the torsional stiffness can be tuning by the axial pre-stress, which indicates nonlinear effects due 

to mechanical coupling between torsional shear stress and axial pre-stress [361]. However, tensioning 

methods typically need high DC bias voltages, and the range of frequency tuning is inherently by the 

bearable tension of the resonant systems [97]. 

Verbridge et al. [125,200] demonstrated that the tensile stress can be used as a parameter for 

achieving increased resonant frequency as well as increased quality factor. The direct stretching 

technique [125] was developed to provide the ability to dramatically tune both frequency and quality 

factor of nanomechanical resonators. Figure 31 illustrates the effects of stretching on silicon nitride 

resonators with two different inherent stress values, and the resonant frequency and quality factor can 

be controlled over a wide range. For the case of 5 μm long device, the resonant frequency and quality 

factor change from initial values of 14.6 MHz and 1200 to 35.5 MHz and 6700 at the highest stress 

value, respectively. The tension of this resonator can also be tuned in both directions. It can enable 

future mechanical resonators to be used as variable frequency references as well as variable band-pass 

filters. In addition, the composite buckled beam resonator was designed to provide a very high 

sensitivity platform for sensing [362,363] and the compressive pre-stress buckles the beam resonator 

leading to a strong amplitude–frequency relationship [364]. 

 

Figure 31. Stress tuning of resonant frequency of the doubly clamped beam resonator 

reported by Verbridge et al. [125]. (a) Doubly clamped beam resonator; (b) Schematic 

digram of the added tensile stress to the resonator; (c) Experimental results of added stress 

to tune both resonant frequency and quality factor. Reused with permission from [125], 

Copyright 2007, American Chemical Society. 
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For the case of various boundary conditions, the concept of a local drive force and constraint can 

allow the cantilever resonator to be tuned over a 300% frequency range [365], but this technique would 

be difficult to achieve higher-frequency tuability. The shear-strain-induced tension can also become an 

alternative method for tuning the CNT resonators [366,367]. 

6.7. Active Electrical Tuning Mechanism 

Electrical tuning alters the resonant frequency by adjusting the electrical load [60,368].  

Circuit-level techniques such as enhanced series tuning have been successfully applied to thin-film 

piezoelectric-on-silicon resonators [369] and obtaining up to 1500 ppm of tuning [370]. For effective 

series tuning the resonant frequency of resonators, the parasitic pad capacitances of the resonators were 

counteracted with negative capacitors [371]. Although electrical tuning is easy to implement and 

suitable for in situ tuning, it has low tuning efficiency. 

More recently, Norouzpour-Shirazi et al. [371] reported an active electrical tuning technique for 

dynamic tuning of MEMS resonators. The basic tuning mechanism is to generate an electrical 

displacement signal from the resonator output current, and modify the spring constant linearly in either 

positive or negative directions. This tuning method has been applied to a piezoelectric AIN-on-Si 

square resonator (Figure 32a). As shown in Figure 32, a tuning feedback loop was used to tune the 

open-loop resonator frequency response. The resonator was tuned in both positive and negative 

directions with a linear tuning slope of 830 ppm/V with an overall tuning range of 22 kHz, equivalent 

to 1550 ppm was measured from active tuning of the closed-loop oscillator. 

 

Figure 32. An active feedback-based frequency tuning technique for MEMS resonators 

reported by Norouzpour-Shirazi et al. [371]. (a) SEM of the 4-port AlN-on-Si square 

resonator; (b) a feedback loop is used to tune the frequency of the resonator; (c) the 

measured tuning and theoretical values using the active tuning method. Reused with 

permission from [371], Copyright 2015, IEEE. 

  

(a)

(b)

(c)
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7. Passive Frequency Tuning Methods 

In contrast to active frequency tuning methods, passive ones are not able to perform real time 

frequency tuning throughout the life time of the resonators. However, passive methods require no 

further energy once the frequency tuning has been employed. Zero on-chip energy consumption makes 

passive tuning methods attractive for low power applications, such as mechanical filters and  

oscillators [36]. During the past two decades, some researchers have demonstrated passive methods 

using tools including selective polysilicon deposition (SPD) [315], focused ion beam (FIB) sputtering 

or platinum (Pt) deposition [372], electron beam irradiation [373]. Joachim and Lin [315] applied the 

selective polysilicon deposition (SPD) process to the frequency tuning of comb-drive resonators. The 

resonant frequency shifts about 1.96% at around 86.6 kHz. The mechanism for changing resonant 

frequency by the SPD process includes increasing mass and stiffness and altering residual stress. 

Jaroenapibal et al. [373] reported the irreversible frequency tuning scheme of single-walled carbon 

nanotube (SWNT) bundle resonators via cross-link formations upon electron beam irradiation. 

7.1. Post-Fabrication Tuning Process 

Post-fabrication tuning is implemented to compensate or control for local process variations, as well 

as defects and errors occurring during manufacturing, which leads to resonant frequency shift. The tuning 

scheme can also compensate for environmental factors, including ageing [374], contamination [375], 

and thermal mismatch [298]. 

Among various passive methods, focused ion beam (FIB) technique has become a powerful tool for 

the post-fabrication tuning process. FIB can sputter and deposit material in micro- and nano-scales  

and perform tuning over a wide frequency range without using on-chip power or causing device  

failure [36,315,372]. Syms and Moore [372] demonstrated an iterative frequency tuning scheme by 

alternating the stiffness of laterally electrostatic comb-drive microresonators using FIB machining. The 

resonant frequency shifts about 5% at around 650 Hz. Campanella et al. [376] presented a FIB-assisted 

procedure with the aim of frequency tuning thin-film bulk acoustic resonators. Moore et al. [377] 

monolithically fabricated the MEMS cantilever array in a split ring resonator (SRR) to enable 

electrostatic tuning of the resonant frequency. The SRR with the FIB cuts on the outer ring has a 

frequency shift from 14 GHz to around 12.5 GHz. Vick et al. [378] presented the introduction of 

notching into a bulk FIB device strongly tuning the predicted resonant frequency. Adding the notches 

can reduce the effective stiffness of the resonator and result in reduction of the resonant frequency. 

Enderling et al. [36] reported a novel post-fabrication frequency tuning method for micromechanical 

cantilever resonators by platinum (Pt) deposition, as illustrated in Figure 33. The FIB Pt deposition on 

flexural vibrating cantilever beam resonators causes a change in equivalent mass, and can be modeled 

as spring-mass systems. The change in resonant frequency of cantilevers can be calculated by 

considering the change in equivalent mass, and the tuning frequency Ptf  can be written as [36]: 

1

2

eff

Pt

eff Pt

k
f

m m



 (81) 

where Ptm  is the added Pt mass to the resonator. It can be found that Pt deposits located at the free end 

of the resonator increase the equivalent mass and decrease the resonant frequency. Although FIB 
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deposition enables the resonant frequency to increase and decrease, Pt mass deposition is often 

required for resonators with high tensile residual stress [211], which can lead to large increases in 

resonant frequency and need to be reduced for communication applications [36]. In addition, it 

requires unceasing power supply to maintain the frequency tuning status [379]. 

 

Figure 33. Frequency tuning of resonators by FIB Pt deposition reported by  

Enderling et al. [36]. Reused with permission from IOP Publishing. 

Focused-ion-beam chemical-vapor-deposition (FIB-CVD) has advantages and potential in the 

fabrication of three-dimensional (3D) nanostructures [380]. Chang et al. [379] recently demonstrated 

the synthesis and bidirectional frequency tuning of cantilever-based nanoresonators using FIB-CVD. 

Single and multi-step frequency tuning processes and schemes were successfully developed for both 

directions of increasing and decreasing. Figure 34b illustrates the overall scheme of the synthesis and 

bidirectional frequency tuning of carbon- and tungsten-based nanoresonators under resonance and a 

stationary stator (Figure 34a). The resonant frequency can be passively adjusted either by adding 

material to extend the total length of the resonator using the FIB deposition process (Figure 34c) or by 

removing materials to reduce the entire length using the FIB sputtering process (Figure 34d). On one hand, 

as shown in Figure 34c, three successive material add-on processes of similar lengths of 500 nm-long 

carbon and tungsten were conducted on a tungsten nanoresonator with length 8.4 μm and diameter  

150 nm to further illustrate the capability of the frequency tuning process. On the other hand, the 

frequency tuning process to increase the resonant frequency was performed in both coarse and fine 

tunings as recorded in Figure 34d. More recently, Henze et al. [381] demonstrated a post-production 

hydrofluoric acid etching process for fine-tuning microresonators to reach an arbitrary frequency, and a 

controllable resonant frequency 10 GHz was observed using this effective approach. 
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Figure 34. Synthesis and bidirectional frequency tuning of cantilever-shape 

nanoresonators using FIB-CVD reported by Chang et al. [379]. (a) Carbon- and tungsten-

based nanoresonators under resonance and a stationary stator; (b) Scheme of the synthesis 

and bidirectional frequency tuning mechanism; (c) Resonant frequency adjusted by adding 

material; (d) Resonant frequency adjusted by removing materials. Reused with permission 

from American Chemical Society, Copyright 2013. 

More recently, Liu et al. [382] presented a new method to tune the resonant frequency of 

microfabricated film bulk acoustic resonator (FBAR) using molecular layer-by-layer (LbL) self-assembly 

approach for wireless broadband communication, as shown in Figure 35. The maximum resonant 

frequency shift of FBAR reaches more than 20 MHz, meaning 1.4% tunability at least. After 10 bilayers 

deposition, the pass band shifts down by 8 MHz at −20 dB while the performance in pass band and 

stop band maintain the same. The frequency tuning method using molecular LbL coating has great 

advantages because it is a maskless process and the LbL polymer coating offers a direct way to 

functionalize the resonator surface for receptor based chemical sensing applications. 



Sensors 2015, 15 26536 

 

 

 

Figure 35. Frequency tuning of microresonator using molecular LbL self-assembly 

approach reported by Liu et al. [382]. Optical microscope images of the FBAR filter  

(a) before and (b) after LbL assembly. Electrical performance of (c) wide band and (d) pass 

band (red) before and (blue) after LbL assembly. Reused with permission from [382], 

Copyright 2015, American Chemical Society. 

7.2. Post-Packaging Tuning Process 

Post-fabricating tuning is often needed to obtain uniform properties in the microresonators. Chiao 

and Lin [89] presented a novel post-packaging tuning of microresonators using pulsed laser  

deposition (PLD) process, which has the advantages of precise process control, versatility and can be 

easily implemented into the post-packaging process. The schematic diagram of the post-packaging 

PLD frequency tuning process is shown in Figure 36a. Since PLD tuning always adds mass to the 

target surface, the microresonators can be designed to have a higher frequency that can be tuned down 

to meet the specification. To obtain a well-controlled PLD process, it is necessary to characterize the 

minimum laser fluence vE , which can be expressed as [89]: 

( )

1 1
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r r

c T T hH h
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
  

 
 (82) 

where sE  is the laser fluence, lH  is the latent heat of the film, 
plc  is the specific heat of the molten 

film, rR  is the reflectivity of the metal film, vT  and mT  are the film boiling and melting  

temperatures, respectively. 

Figure 36b illustrates the microresonator surface after post-packaging PLD tuning process. The 

PLD gold beads can be identified on the resonator surface as the result of two laser shots at two 

different locations. From the measured spectrum shown in Figure 36c, it can be observed that the 

change in resonant frequency of the resonator between before and after the PLD tuning process. Table 

9 summarizes and compares some frequency tuning mechanisms and techniques for nanomechanical 

resonators reported in the literature. 
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Figure 36. Post-packaging frequency tuning process using PLD [89]. (a) Schematic 

diagram of the PLD tuning process; (b) Microresonator surface after PLD tuning process;  

(c) Spectrum measurement of a resonator before and after the PLD frequency tuning 

process. Reused with permission from IOP Publishing. 

Table 9. Comparison of some frequency tuning mechanisms and techniques for 

nanomechanical resonators. (Note: negative value denotes tuning downward). 

Authors Type Tuning Mechanism 
Tuning 

Method 

Resonant 

Frequency 

Quality 

Factor 

Tuning 

Range 

Jun et al. [268] 
bilayer beam 

resonator 

Electrothermal tuning  

(Joule heating) 
Active 10.12 MHz ~2000 10% 

Jensen et al. [356] 
Nanotube 

resonator 
Changing the length Active ~300 MHz >1000 >100 MHz 

Chen et al. [147] 
Graphene 

resonator 
Electrostatic tuning Active 52.19 MHz ~55 ~14% 

Fardindoost et al. 

[383] 

Nanofiber 

resonator 

Electrostatic  

spring-softening effect 
Active 580 kHz 2511 −3 kHz 

Kwon et al. [384] 
Nanowire 

resonator 

electrostatic  

spring-softening effect 
Active 1.564 MHz N/A 2.23% 

Chang et al. [379] 

Carbon-based 

nanoresonator 
FIB-CVD machining Passive 

2.467 MHz 300 −307.7 kHz 

Tungsten-based 

nanoresonator 

1.352 MHz 
100 

−111.2 kHz 

853.2 kHz 240.4 kHz 

Vick et al. [378] 
Cantilever 

nanoresonator 
Bulk FIB machining Passive 8.234 MHz ~1623 −7.5% 

Rieger et al. [333] 
Silicon nitride 

resonator 
Dielectric actuation Active 6.5 MHz 340,000 ~5% 
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Table 9. Cont. 

Authors Type Tuning Mechanism 
Tuning 

Method 

Resonant 

Frequency 

Quality 

Factor 

Tuning 

Range 

Fung et al [302] 
Nanowire 

resonator 
Electrostatic tuning Active 59.0 MHz 2200 5 kHz 

Ning. et al. [212] 
Nanotube 

resonator 
Residual tension effect Active 9.44 MHz ~64.3 11.6 MHz 

Verbridge  

et al. [125] 

Nanostring 

resonator 
Tensile stress effect Active 9.3 MHz 105,000 15% 

Stiller et al. [300] CNTs resonator Electrostatic softening effect Active 358.5 MHz 11,800 −75% 

8. Concluding Remarks 

Micro- and nanomechanical resonators have emerged as robust and ubiquitous devices and  

serve as important components in advanced technologies ranging from mass sensing and physical, 

chemical, and biological detections to promise of new materials and observation of quantum 

phenomena through the change in resonant frequency [385–394]. The implementations of tunable 

resonators with desirable frequencies are widely required and provide more opportunities for both 

scientific and technological applications. 

The resonant frequency of a mechanical resonating structure in general scales as 1/ L , where L  is 

the scale parameter of the resonator. At microscale, mechanical resonators have their most prominent 

applications of accurate detection of masses and forces [395]. When the size of mechanical resonators 

reduces to the nanoscale, high resonant frequencies can be achieved, but the quality factors are also 

reduced, which makes the arbitrary reduction of the resonator size challenging. In addition, the size 

reduction can cause the onset of nonlinearity, decrease the dynamic range and make gigahertz-range 

transduction more complicated [148]. Since the micro- and nanomechanical resonators are 

characterized by a large surface-to-volume ratio, it is demonstrated that the surface effect has an 

important role on the resonance behaviors as well as the sensing and detection mechanisms, which are 

very active and on-going research fields. For example, the investigation of the diffusion of adsorbed 

atoms over the mechanical resonator surface becomes an increasing interest topic [396,397]. Rarefied 

gas flows in the transition regime ubiquitously generated by the nanomechanical resonators causes a 

significant challenge to the fundamental theoretical analysis and physical explanation of the fluid 

effect and fluid-structure interactions. The intrinsic stress/strain effect on the micro- and 

nanomechanical resonators should be considered to determine their mechanical performances and 

resonant frequencies [398]. The shifts in resonant frequency are not only caused by the vibration 

behavior, but also affected by a variety of physical and chemical factors such as the effects of 

temperature change, surrounding fluid, humidity and adsorption. It is expected that theoretical and 

experimental approaches for tuning the resonant frequencies can provide a useful tool for optimizing 

design of micro- and nanomechanical resonators. 

For micro- and nanomechanical resonators, control of vibrational energy dissipation is highly 

desirable. Energy dissipation in mechanical resonators via several mechanisms, including air  

damping [399], clamping loss [400], thermoelastic dissipation (TED) [401,402], phonon-tunneling 

dissipation [403] and Akhiezer effect [404], has been widely and deeply studied. For instance, the 
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clamping losses are a widely damping mechanism in nanomechanical resonators and limit the 

performance of these resonating devices, and the air damping in micromechanical resonators remains  

an active area of research. Energy dissipation not only has an important impact on the dynamic 

behavior of mechanical resonators, but also affects the performance of resonator-based devices. As 

more and more micro- and nanomechanical resonators operate in the nonlinear regime, nonlinear 

dissipation leads to a limit to the efficiency of dissipation evading methods and techniques [62,405]. 

Recently, strong nonlinear dissipation has been observed in CNT and graphene resonators under 

tensile strain [155], in which the nonlinear dissipation is responsible for destroying the hysteresis. 

Further systematic investigations should focus on the origins and mechanisms of the nonlinear 

dissipation and predicting the dominant contribution to dissipation in these resonating devices. 

Moreover, the dissipative processes and nonlinear dissipations contributing to the resonator 

performance become the active topic of research. In particular, better dynamic response can be 

obtained by high frequency and low energy dissipation in the resonators and there have tradeoffs 

between the resonant frequency and quality factor (dissipation) [274]. Therefore, clearly understanding 

the energy dissipation mechanisms, further controlling the dissipation, and thus improving the 

performances of the mechanical resonators, are substantial for implementing their potential applications. 

As the geometric dimensions reduce to the microscale and nanoscale, the nonlinearities in most 

mechanical resonators obviously decrease their frequency stability. And the short-term stability of the 

resonator is limited by certain noise processes. Although the current frequency stabilization 

mechanisms provide new strategies for further optimization of micro- and nanomechanical resonators 

in the nonlinear regime [406], future investigations should focus on the applications of stabilization 

methods for high frequency nanomechanical resonators. In addition, nonlinearities such as synchronization 

and chaotic behavior are very important in micro- and nanomechanical resonators [15,24,58,407]. It is 

necessary to have a fundamental insight into the nonlinear vibration behavior, which may be due  

to the surface effect. Detecting and exciting the vibration and extending the travel range of the 

resonators [174,408] should be also paid more attention. The limit of the dynamic range of the  

micro- and nanomechanical resonators may come from the thermomechanical fluctuations, quantum 

noise, adsorption and desorption noises, and extrinsic vibrational and noise sources [15,181,409]. The 

present linear dynamic range of such resonating devices is useful but severely limited, and even 

operating in the nonlinear regime. Dynamic control of resonant frequencies and widening the dynamic 

range of mechanical resonators are the significant and challenging tasks for emerging applications in 

MEMS/NEMS. 

As the first experimental realization of a mechanical resonator in the coupled quantum system was 

reported by O’Connell et al. [410], the mechanical resonators have attracted more and more attentions [64] 

due to their the advantages such as superposition and coherent control of the quantum states. The 

occurrence of nonplanar motions in nanotube and nanowire resonators can be used to broaden 

interesting applications [411]. Graphene mechanical resonators can provide the required frequency 

tunability. The development of suspended micro- and nanochannel resonators will make the 

measurement with a resolution on the 10 ag scale possible. More significantly, the self-assembled 

molecular structure reported in [35] provides a novel way to characterize the mechanical resonators, 

and will cause challenges to extensively explore a variety of potential applications [412]. Except for 

the experimental researches, more theoretical explanations and new computational models should be 
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developed to focus on the underlying mechanisms and make clear understanding of the complex 

coupling effects on the resonance behavior and performance of the mechanical resonators. 

Recent advances of tunable resonators make the fundamental understanding of the frequency tuning 

mechanisms is important for the future design and optimization of VHF and UHF micro- and 

nanomechanical resonators. The methodologies of resonant frequency tuning for micro- and 

nanomechanical resonators contain active and passive methods. One one hand, although previous 

active tuning approaches such as electrothermal, electrostatic, piezoelectrical, dielectric and 

magnetomotive techniques are able to tune the resonant frequency of the resonators very precisely, 

they suffer from either higher power consumption and lower power efficiency or poor nanoscale 

control over electromechanical coupling effect. Alternative actuation schemes may play an important 

role in future works as well. On the other hand, the passive methods are preferable in low power 

consumption applications. Previous passive tuning methods have disadvantageous challenges such as 

needing expensive equipment and time consuming processes. It is expected that the new passive tuning 

methods not only have enabled to fabricate micro- and nanomechanical resonators, but also have the 

capability of conducting efficient and precise frequency tuning, and have not limited to one-direction. 

In this review, we have presented an overview of theoretical and experimental approaches which 

have been used to get insights into the underlying frequency tuning mechanisms of micro- and 

nanomechanical resonators as well as their wide range of applications. We have briefly described the 

resonance behavior and frequency tuning principle depending on the change either the stiffness or the 

mass of the mechanical resonators, and reviewed some tuning structures and latest research progress 

on the mechanical resonators. We have also discussed some major influencing factors on the 

implementations of resonators. The efforts to predict, control and apply the resonant frequency shift in 

the micro- and nanomechanical resonators have been demonstrated. A comprehensive review of 

research progress on the active and passive frequency tuning methods and techniques for the micro- and 

nanomechanical resonators has been detailedly addressed. We have additionally provided extensive 

discussion of the challenges and potential research directions to the tunable micro- and nanomechanical 

resonators. We hope this review would be helpful for better understanding the importance of frequency 

tuning in developing the next generation of micro- and nanomechanical resonators. 
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Abbreviations 

BG bottom-gate Pt platinum 

CNT carbon nanotube RF radio frequency 

EMF electromotive force RTA rapid thermal anneal 

EG end-gate SPD selective polysilicon deposition 

FBAR film bulk acoustic resonator  SWNT single-walled carbon nanotube 

FIB Focused-ion-beam SRR split ring resonator 

FIB-CVD FIB chemical- vapor- deposition SEM Scanning Electron Microscopy 

LbL layer-by-layer TEC thermal expansion coefficients 

MEMS micro-electro-mechanical systems TED thermoelastic dissipation 

NEMS nano-electro-mechanical systems 3D three-dimensional 

MWNT multiwalled carbon nanotube VHF very-high frequency 

PLD pulsed laser deposition UHF ultra-high frequency 

Nomenclature 

dcA  static deflection amplitude fK  spring constant 

eA  elastic hardening tuning coefficient CK  capacitance expansion coefficient 

tA  cross-sectional area 1k  is the linear spring stiffness 

B
 

applied magnetic field pk  spring constant  

cB  capacitive softening coefficient eK  effective thermal conductivity 

hc  heat transfer coefficient tK  torsional spring constant 

pc  weighted average of heat capacity bL  equivalent length of the bar 

plc  specific heat of the molten film mL  length of the beam 

tc  weighted average of thermal conductivity effm  effective mass 

uc  field gradient constant fm  resonator mass 

C  capacitance per unit area Ptm  added Pt mass 

fC  damping n  electrostatic dimension parameter 

gC  capacitance p  nonlinearity of order 

pC  specific heat conductivity eP  effective electrical heat production 

C ,

C  
first and second derivative of capacitances laserP  incident optical power 

3 jd  anisotropic piezoelectric coefficient P  Joule heating rate  

td  total thickness r  vector in the plane  

wd  diameter of the cylindrical wire or  experimental optical spot size 

E  Young’s modulus CR  resistance 

sE  laser fluence rR  reflectivity 

vE  minimum laser fluence pt  total device thickness 

0f  fundamental resonant frequency 0T  ambient temperature 

if  initial measured frequency dT  effective dielectric thickness  

eF  external force fT  thermal axial load 
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magF  Lorentz force mT  film melting temperature 

f  average frequency vT  film boiling temperature 

sG  modulus of elasticity in shear T   derivative of temperature 

H  thickness V  applied voltage 

lH  latent heat  dcV  dc voltage  

I  electrical current gV  applied voltages on the gate 

mI  maximum intensity tunV  tuning voltage 

pI  polar moment of inertia of the area x  displacement  

tI  inertial of the paddle y  deflection 

0k  mechanical stiffness 0y  initial air-gap 

effk  effective stiffness dcZ  static displacement 

totalk  total stiffness    

Greek Symbols 


 thermal expansion coefficient 

 density 

e  effective thermal expansion coefficient p  weighted average of mass density 

e  geometrical constant L  change in length 

T  net heat loss rate   potential 

  experimental power coefficient   Poisson’s ratio 

T  thermal conductivity e  frequency 

  tensile stress   variable 

i  initial tensile stress f  frequency change 

a  axial stress k  stiffness offset coefficient 

th  temperature-dependent thermal stress m
 mass offset coefficient 

T  thermal stress T
 

uniform change 
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