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Transcriptome profiling reveals 
insertional mutagenesis suppressed 
the expression of candidate 
pathogenicity genes in honeybee 
fungal pathogen, Ascosphaera apis
Awraris Getachew1,2,3, Tessema Aynalem Abejew   1,2,3, Jiangli Wu1, Jin Xu1, Huimin Yu1, 
Jing Tan1, Pengjie Wu1, Yangyang Tu1, Weipeng Kang1, Zheng Wang1 & Shufa Xu1 ✉

Chalkbrood disease is caused by Ascosphaera apis which severely affects honeybee brood. Spore 
inoculation experiments shown pathogenicity varies among different strains and mutants, however, 
the molecular mechanism of pathogenicity is unclear. We sequenced, assembled and annotated 
the transcriptomes of wild type (SPE1) and three mutants (SPE2, SPE3 and SPE4) with reduced 
pathogenicity that were constructed in our previous study. Illumina sequencing generated a total of 
394,910,604 clean reads and de novo Trinity-based assembled into 12,989 unigenes, among these, 
9,598 genes were successfully annotated to known proteins in UniProt database. A total of 172, 3,996, 
and 650 genes were up-regulated and 4,403, 2,845, and 3,016 genes were down-regulated between 
SPE2-SPE1, SPE3-SPE1, and SPE4-SPE1, respectively. Overall, several genes with a potential role in 
fungal pathogenicity were detected down-regulated in mutants including 100 hydrolytic enzymes, 
117 transcriptional factors, and 47 cell wall related genes. KEGG pathway enrichment analysis reveals 
216 genes involved in nine pathways were down-regulated in mutants compared to wild type. The 
down-regulation of more pathways involved in pathogenicity in SPE2 and SPE4 than SPE3 supports 
their lower pathogenicity during in-vitro bioassay experiment. Expression of 12 down-regulated genes 
in mutants was validated by quantitative real time PCR. This study provides valuable information on 
transcriptome variation caused by mutation for further functional validation of candidate pathogenicity 
genes in A. apis.

Honeybees face serious challenges from pathogens, among these, Ascosphaera apis is an entomopathogenic 
filamentous fungus that causes chalkbrood disease in honeybees which exclusively affects honeybee brood1,2. 
Subsequently, chalkbrood disease reported to reduce 5–37% of honey production and to cause 12–92% brood 
death3–5. Several pathogenicity experiments have been carried out using artificial methods, such as spore inoc-
ulation and in vitro larval rearing techniques6 which reported to vary between different strains5, and between 
wild-type and mutants7,8. Random mutant library construction is a useful method to identify genes of unknown 
functions in microorganisms9. In previous study, we constructed mutants from the wild-type strain of A. apis 
using Restriction Enzyme-Mediated Integration (REMI) technique and we obtained less pathogenic and non-
pathogenic mutants in comparison to the wild type8. However, the result of pathogenicity assay could not clearly 
justify what happened to less pathogenic mutants at molecular level.

All the cells of an organism share similar genetic code and the proper regulation of gene expression is among 
the key processes that confers cell identity by activating a specific subset of genes in a given cell type. Therefore, 
understanding gene regulation is vital in unravelling the effect of genetic variation on both normal develop-
ment and mutations. The best approach to uncover the process which enables a fungus to be pathogenic and 
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colonizes a honeybee larva is identifying the genes and understanding the molecular mechanism that contribute 
to pathogenicity.

Transcriptome analysis primarily focuses on individual gene expression changes in affected versus unaffected 
individuals but also allows to understand the coordinated function of multiple genes by looking at co-expression 
networks10. The reason behind is that co-expression expected to reflect genes that belong to common regula-
tory pathways11. Currently, RNA-seq technology has emerged as a cost-effective approach in high-throughput 
sequence determination for the discovery of functional genes faster. In this study, we sequenced mRNA from 
hyphae and spore of A. apis using Illumina sequencing. Furthermore, orthologous transcripts have been iden-
tified and compared to confirm those differentially or uniquely expressed in wild-type (SPE1) and the three 
mutants (SPE2, SPE3, and SPE4). Several genes associated with fungal pathogenesis, the KEGG pathway and 
transcription factors were differentially expressed among mutants and wild type strains of A. apis.

However, analyzing the experiments of gene expression classically produces abundant differentially expressed 
genes (DEGs), without considering for possible sophisticated mechanisms of interactions12,13. The results of such 
DEGs are better interpreted by analysis of biological pathways rather than analysis of those interacted genes indi-
vidually14. Pathway enrichment analysis reported to be the primary research for understanding insight into the 
innate mechanism of DEGs15, to distinguish the related pathways that significantly enriched between two experi-
mental conditions16. Furthermore, confirmation of protein-protein interactions (PPIs) is important for research-
ing molecular activity involved in living cell by learning how proteins work together in a harmonized manner to 
perform cellular functions. However, to the best of our knowledge, pathways changed due to insertional mutagen-
esis and PPIs of A. apis have not yet been investigated. We aimed to identify the pathogenic genes and screen the 
potential pathways changed and associated protein-protein interaction networks in A. apis mutants in compari-
son to wild type.

Results
Sequencing and transcriptome de novo assembly.  Sample RNA was prepared from hyphae and 
spore of three mutants and their original wild-type. Illumina mRNA sequencing was performed for three bio-
logical replicates of each sample: wild-type SPE1 (SPE1–1, SPE1–2 and SPE1–3), mutant SPE2 (SPE2–1, SPE2–2 
and SPE2–3), mutant SPE3 (SPE3–1, SPE3–2 and SPE3–3) and mutant SPE4 (SPE4–1, SPE4–2 and SPE4–3). 
Sequencing data of the RNA-seq samples are shown in Table 1. For SPE1, about 33 million clean reads comprising 
6 billion nucleotides were produced (Table 1). For each of the mutant of SPE2, SPE3 and SPE4 approximately 
29, 36 and 32 million clean reads, containing a total of 5.2, 6.8 and 5.8 billion nucleotides, respectively, were 
obtained (Table 1). Sequence data totaling 37.8 Gbases has been deposited in the NCBI with accession number 
SRR9021798–9021809.

All transcriptome reads (394,910,604) pooled from the 12 samples were employed in the de novo assembly 
(Table 2). A total of 284,718 transcripts have been assembled with an N50 length of 2,334 bp, an average transcript 
length of 1,207.469275 bp and a maximum transcript length of 17,892 bp by the trinity method (Table 2). A total 
of 12,989 unigenes were predicted accordingly and the length of a unigenes was raged from201 to 5077 bp with 
an average size of 758.9073832 bp (Table 2). BUSCO analysis showed that 100% of the transcripts were complete 
(C:100.0% [S: 7.9%, D: 92.1%], F: 0.0%, M: 0.0%, n: 290). Furthermore, PCA analysis revealed the mutant sam-
ples clearly separated from wild-type, indicating a visible variation among the different samples (Supplementary 
information, Fig. S1).

Functional annotation.  Identification of the putative functions of A. apis unigenes was performed using a 
BLASTx search (version 2.8.0 + ). Of the 12,989 unigenes, 73.89% (9,598) were successfully identified as known 
proteins in UniProt database. In the other five databases (InterPro, Pfam, GO, KEGG, eggnog), 7,807 (60.10%), 
6,561 (50.51%), 6,583 (50.68%), 2503 (19.27%), and 230 (1.77%) unigenes have been confirmed as annotated pro-
teins, respectively. While, the remaining 26.11% (3,391 unigenes), without significant identity to any sequences.

Sample Raw reads Clean reads
Mapped 
reads

Percentage of 
total reads

Clean bases 
(Gb) Q20 (%) Q30 (%) GC (%)

SPE1–1 48349304 37105430 26438255 54.68 7.25 99.95 99.6 40.5

SPE1–2 41845696 30077548 21464648 51.29 6.28 99.95 99.55 40.5

SPE1–3 40884398 31540444 22643882 55.39 6.13 99.95 99.65 40.5

SPE2–1 35598878 28872174 20453258 57.45 5.34 99.95 99.7 39.5

SPE2–2 35768122 29357398 20893501 58.41 5.37 99.95 99.7 39.5

SPE2–3 34363944 28938056 20503537 59.67 5.15 99.95 99.7 39.5

SPE3–1 47172926 38797772 27184234 57.63 7.08 99.9 99.55 40.5

SPE3–2 46434824 37086102 26465041 56.99 6.97 99.95 99.8 40.5

SPE3–3 42874686 34390720 24481896 57.10 6.43 99.95 99.7 40

SPE4–1 41120690 34729034 24769384 60.24 6.17 99.95 99.7 42

SPE4–2 38580564 32795348 23255301 60.28 5.79 99.95 99.75 42

SPE4–3 37590610 31220578 22272348 59.25 5.64 99.95 99.7 42

Summary 490584642 394910604 73.6

Table 1.  Summary of sequences analysis.
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Gene Ontology analysis was further employed for unigenes of A. apis. To compare the molecular character-
izations among mutants and to describe their associated biological processes, cellular locations and molecular 
functions in a mutant17. The category of molecular function consisted of a total of 945 GO terms, which included 
12,131 unigenes while the biological process category consisted of 1,182 GO terms (8,686 unigenes) and the 
cellular location category had 394 GO terms (7,190 unigenes). Among the categories membrane, integral com-
ponent of membrane, oxidation-reduction process, nucleus and ATP binding were the largest five subcategories 
(total 60 subcategories). Under the Biological Process classification, oxidation-reduction process (748 unigenes), 
transmembrane transport (478 unigenes), metabolic process (410 unigenes), and regulation of transcription (383 
unigenes) were most significantly enriched, which showed that the related unigenes play key role in metabolism 
in A. apis. Within the Cellular Component categories, the unigenes were mainly represented to membrane (1,919 
unigenes), integral component of membrane (1,853 unigenes), nucleus (726 unigenes), and cytoplasm (314 uni-
genes). While involved in Molecular Function classification, the main unigenes were confirmed to ATP binding 
(615 unigenes), hydrolase activity (592 unigenes), metal ion binding (587 unigenes), and transferase activity (560 
unigenes) prominently. Out of the 12,989 unigenes, 230 (1.77%) were classified and identified in 23 functional 
categories (Supplementary information, Fig. S2). The “general function prediction only” category (36, 15.65%) 
was the most important group. The category of posttranslational modification, protein turnover, chaperones (20, 
8.70%), translation, ribosomal structure and biogenesis (19, 8.26%), signal transduction mechanisms (17, 7.39%), 
and intracellular trafficking, secretion, and vesicular transport (17, 7.39%), were annotated by COG classifica-
tion. However, only few unigenes were confirmed as extracellular structures (2, 0.87%), coenzyme transport and 
metabolism (2, 0.87%), and nuclear structures (1, 0.43%).

KEGG pathway analysis.  Based on KEGG pathway analysis 2,503 (19.27%) unigenes were primarily clas-
sified with Enzyme Commission (EC) numbers, and further classified into six branches of Metabolism, Cellular 
Processes, Genetic Information Processing, Environmental Information Processing, Organismal Systems and 
Human diseases, and they might be further clustered into 314 KEGG pathways (Fig. 1). It was noteworthy that 
910 (36.36%) unigenes were grouped into the metabolism, 411 (16.42%) unigenes were involved in Genetic 
Information Processing, 408 (16.30%) unigenes were involved in human diseases, 301 (12.03%) unigenes were 
involved in Organismal systems, 248 (9.91%) unigenes were involved in Cellular Processes, and 225 (8.99%) uni-
genes were involved in the Environmental Information Processing. In addition, the most predominant 90 path-
way of A. apis were presented in Fig. 1. Inside them, the most important and representative pathways were protein 

Variable Trinity Corset

Number 284718 12989

Size of data (bp) 343788237 9857448

Minimum length (bp) 201 201

Maximum length (bp) 17892 5077

Mean length (bp) 1207.469 758.9074

N50 length (bp) 2334 853

GC content 43.24 55.58

Table 2.  Statistics of transcriptome assembly and predicted unigenes.

Figure 1.  KEGG categories mapped from the annotated proteins. The vertical axis lists the names of pathways 
in the KEGG database, and the horizontal axis shows the proportion of annotated genes in each pathway.
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processing in endoplasmic reticulum (49 unigenes) biosynthesis of amino acids (43 unigenes), spliceosome (40 
unigenes), and RNA transport (39 unigenes).

Transcription factor analysis.  Putative transcription factor (TFs) genes are often classified to different 
sub-classification based on their DNA-binding domains. In the present data study, a total of 651 unigenes were 
annotated successfully, among these TF unigenes, particularly, functional annotation revealed that 356 transcrip-
tional factor (TF) genes typically found in fungi (3.71% of the 9598 protein-coding genes in A. apis in this study). 
According to InterPro classification18, a total of 356 A. apis TF genes were clustered into 32 families. Among 
them four families were dominating: Zn2Cys6 Zn_cluster (209 genes; 58.7%), basic-leucine zipper (BZIP) TF 
(23 genes; 6.5%), zinc finger CCCH-type (21 genes; 5.9%), and Helix-loop-helix DNA-binding (13 genes; 3.7%) 
(Supplementary information, Fig. S3). Furthermore, six genes involved in more than one DNA-binding domains.

Comparative transcriptome analysis.  In the present study, comparative transcriptome analysis were 
carried out at the gene expression changes over absolute value of two-fold change (log2|FC > 1|). A total of 2,677 
genes were commonly expressed lower in all three mutants compared to their original type of A. apis. However, 
382 genes were commonly up-regulated both in SPE3 and SPE4 compared to the wild type (Fig. 2a,b). Overall, 
we detected 172, 3,996, and 650 up-regulated DEGs and 4,403, 2,845, and 3,016 down-regulated DEGs between 
each of the mutants and wild-type libraries (SPE2-SPE1, SPE3-SPE1, and SPE4-SPE1) (Fig. 2c–e), respectively. In 
addition, we detected 6,923, and 188 up-regulated DEGs and; 307 and 4,835 down-regulated DEGs between the 
SPE3- SPE2 libraries and the SPE4-SPE3 libraries, respectively (Fig. 2f,g, Supplementary information, Fig. S4). 
Top ten down- and up-regulated genes in each mutant compared to SPE1 are presented in Tables 3, 4, 5.

Virulence and pathogenesis related genes.  One hundred genes encoding hydrolytic enzymes were 
found to be down-regulated in the mutants compared to the wild-type, including three chitinases, 32 proteases, 
39 esterases, 7 lipases, 17 amidases and 2 cellulases, degrading enzymes that have implicated to be involved in vir-
ulence through host invasion and escape process (Supplementary information, Table S1). Furthermore, genome 
annotation reveals that a number of genes encoding homologs with a well-known toxin were down-regulated in 
mutants such as 34 polyketide synthase dehydratase (PksA) genes, mycotoxin biosynthesis protein UstYa-like 
(cluster-7579) and Zeta toxin (cluster-9806), some of them involved in the aflatoxin biosynthesis pathway 
(cluster-6333.0, cluster-8356.2, cluster-6835.0, cluster-9644.0, cluster-6655.0, cluster-8356.0, cluster-8356.1). In 
addition, the transcriptome analysis shows that there are several genes down-regulated in mutants: five pathogen 
genes, six virulence genes, five effector genes, four genes involved in sporulation, five melanogenesis genes and six 
genes encoding secreted proteins (Supplementary information, Table S1).

Furthermore, 122 genes encoding hydrolytic enzymes were found to be up-regulated in the mutants compared 
to the wild-type, including 30 proteases, 43 esterases, 26 amidases, seven lipases, seven chitinases, five cutinases 
and two cellulases, two lysozyme genes, degrading enzymes that have implicated to be involved in virulence 
through host invasion and escape process. Moreover, genome annotation reveals that a number of genes encod-
ing homologs with a well-known toxin were up-regulated in mutants such as 28 polyketide synthase dehydratase 

Figure 2.  Differentially expressed genes (DEGs): (a) Venn-diagram of down regulated, (b) Venn-diagram of 
up-regulated genes, (c) DEGs between SPE2-SPE1, (d) DEGs between SPE3-SPE1, (e) DEGs between SPE4-
SPE1, (f) DEGs between SPE3-SPE2, and (g) DEGs between SPE4-SPE3.
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(PksA) genes, mycotoxin biosynthesis protein UstYa-like, killer toxin, toxin, and alpha/beta hydrolase fold-1. In 
addition, the transcriptome analysis shows that there are several genes up-regulated in mutants: five pathogen 
genes, five virulence genes, five effector genes, four genes involved in sporulation, one melanogenesis gene, two 
immune genes, four secreted proteins.

Regulation and signaling.  Twelve regulatory proteins were down-regulated in mutants compared to 
wild-type. Among these, 11 regulatory proteins (cluster-5069.0, cluster-7921.0, cluster-7977.1, cluster-7977.1, 
cluster-7977.1, cluster-6267.0, cluster-7043.0, cluster-8228.0, cluster-9644.0, cluster-9691.0 and cluster-8246.0), 
six regulatory proteins (cluster-6267.0, cluster-7043.0, cluster-8228.0, cluster-9644.0, cluster-9691.0 and 
cluster-9907.0) and seven regulatory proteins (cluster-6267.0, cluster-7043.0, cluster-8228.0, cluster-9644.0, 
cluster-9691.0, cluster-8246.0 and cluster-9907.0) were down-regulated in SPE2, SPE3 and SPE4, respec-
tively. Overall, thirteen regulatory proteins were found to be up-regulated in mutants compared to wild-type. 
Of these, 3, 10, and 1 regulatory protein were up-regulated in SPE2, SPE3 and SPE4, respectively. Five genes 
encoding HMG-box were found to be down regulated in mutants compared to wild type. Of these, four genes 
(cluster-6670.0, cluster-7777.0, cluster-8445.0 and cluster-9704.0) were down-regulated commonly in all mutants 
and one gene (cluster-8772.0) was down regulated in SPE3 only. On the other hand, 1, 6, and 1 genes were 
up-regulated in SPE2, SPE3, and SPE4, respectively. A total of 117 TF genes were found to be down-regulated in 
mutants compared to wild-type. Among the total TF genes, 112, 59 and 63 genes were down-regulated in SPE2, 
SPE3 and SPE4, respectively. Furthermore, a total of 117 TF genes were found to be up-regulated in mutants com-
pared to wild-type. Among these, 4, 108 and 24 TF genes were up-regulated in SPE2, SPE3 and SPE4, respectively.

Morphogenesis and development.  Three DEGs cluster-192 (Ascus development protein which serves 
as sugar and other transporter), cluster-8834.1(SH3 domain containing protein which involved in cell morpho-
genesis) in SPE2 and cluster-8127.1 (interferon-related developmental regulator) in all the three mutants were 
down-regulated compared to wild type. Furthermore, one DEG Cluster-10371 (Fork head domain which involves 
in the transcription factor of Fork head/HNF3 family) was down-regulated and one DEG cluster-186 (Hsp 70 
family chaperone, Cell shape determining protein MreB which involves in cell morphogenesis) was up-regulated 
in SPE4 compared to wild type. Furthermore, 95 genes involved in DNA repairing processes were identified. 
Among these, 66 genes were differentially expressed compared to wild type. In particular, 38, 18 and 18 genes 
were found to be down-regulated in SPE2, SPE3 and SPE4, respectively. Besides, 28 and three genes were found 
to be up-regulated in SPE3 and SPE4, respectively.

Membrane proteins and transport.  A total of 212 genes encoding transmembrane transporter proteins 
were identified. Among these, 81genes were found to be down-regulated in mutants compared to wild type. 
In particular, 78, 43 and 47 genes were down-regulated in SPE2, SPE3 and SPE4, respectively (Supplementary 
information, Table S1). Furthermore, a total of 79 and 12 transmembrane transporter proteins were found to 
be up-regulated in SPE3 and SPE4, respectively, compared to wild type (Supplementary information, Table S1).

Comparison Gene ID Type Log2 (FC) Description

SPE2-SPE1 Cluster-7978.0 Up 9.00 S9VMK0, Triosephosphate isomerase

SPE2-SPE1 Cluster-10688.0 Up 8.74 A0A167PS18, Glycerol 2-dehydrogenase

SPE2-SPE1 Cluster-10311.1 Up 8.61 A0A167T893,60 S ribosomal protein

SPE2-SPE1 Cluster-10513.0 Up 8.61 A0A167VQB3,60 S ribosomal protein L36

SPE2-SPE1 Cluster-10697.0 Up 8.01 A0A161ZCJ3, Uncharacterized protein

SPE2-SPE1 Cluster-10577.0 Up 7.91 A0A167SPY0, Acetyltransferase component of pyruvate 
dehydrogenase complex

SPE2-SPE1 Cluster-10542.0 Up 7.89 A0A167VG04, Putative redox protein

SPE2-SPE1 Cluster-10419.0 Up 7.78 A0A167YBY5, High mobility group protein

SPE2-SPE1 Cluster-10672.0 Up 7.65 A0A117NLB1, Uncharacterized protein

SPE2-SPE1 Cluster-10559.0 Up 7.50 A0A1V6NC47, Uncharacterized protein

SPE2-SPE1 Cluster-5822.1 Down −11.19 A0A179HTK0, Transmembrane GTPase Fzo1

SPE2-SPE1 Cluster-6486.1 Down −10.76 A0A179GBQ6, C2HC5 finger protein

SPE2-SPE1 Cluster-6028.0 Down −10.49 A0A2C5YSX2, Uncharacterized protein

SPE2-SPE1 Cluster-7741.0 Down −10.47 A0A179GJ91, Vacuolar sorting protein 1

SPE2-SPE1 Cluster-9111.0 Down −10.33 A0A179GE34, Trehalase

SPE2-SPE1 Cluster-7335.0 Down −10.30 A0A179GI75, Methylenetetrahydrofolate Reductase

SPE2-SPE1 Cluster-6407.0 Down −10.28 A0A179HFX0, T-complex protein 1 subunit

SPE2-SPE1 Cluster-5298.0 Down −10.21 A0A179GJM7, Las1-like domain-containing
Protein, A0A179H6R8, Las1-like protein

SPE2-SPE1 Cluster-8155.0 Down −10.21 A0A179GP36, Phospholipid:diacylglycerol Acyltransferase

SPE2-SPE1 Cluster-8518.0 Down −10.19 A0A179HHE4, Conserved membrane protein

Table 3.  The 10 most up- and down-regulated genes in A. apis genes (SPE2-SPE1).
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Cell wall related and detoxification genes expression.  Twelve genes encoding glucanases were 
found to be down-regulated in mutants compared to wild type. Of these, twelve, six and seven genes were 
down-regulated in SPE2, SPE3 and SPE4 mutants, respectively. On the other hands, twelve genes encoding glu-
canases were found to be up-regulated in mutants compared to wild type. Of these, twelve and two genes were 
found to be up-regulated in SPE3 and SPE4 mutants, respectively. Sixteen genes encoding glucan were found to 
be down-regulated in mutants compared to wild type. Of these, sixteen, eight and nine genes were found to be 
down-regulated in SPE2, SPE3 and SPE4 mutants, respectively. Furthermore, a total of 22 genes encoding glucan 
were found to be up-regulated in mutants compared to wild type. Among these, two, eighteen and four genes 
were up-regulated in SPE2, SPE3 and SPE4 mutants, respectively. A total of 19 genes encoding GPI anchored 
proteins were down-regulated in mutants compared to wild type. Among these, nineteen, eight and eight genes 
were found to be down-regulated in SPE2, SPE3 and SPE4 mutants, respectively. On the other hands, a total of 14 
genes encoding GPI anchored proteins were up-regulated in mutants compared to wild type. Of these, eleven and 
three genes were up-regulated in SPE3 and SPE4, respectively. In this study, of the total 23 detoxification genes 
identified, ten genes were found to be down-regulated in mutants compared to wild type. Of these, ten, six, and 
seven genes were down-regulated in SPE2, SPE3 and SPE4, respectively (Supplementary information, Table S1). 
In addition, six detoxification genes were up-regulated in mutant SPE3 only.

Oxidation-reduction processes.  A total of 106 genes encoding a cytochrome P450, heme-containing 
monooxygenases were identified. Among these, 70 genes were differentially expressed compared to wild type. In 
particular, 38, 20 and 22 genes were down-regulated in SPE2, SPE3 and SPE4, respectively. Besides, 37 and nine 
genes were up-regulated in SPE3 and SPE4, respectively.

Gene ontology enrichment.  The predominant functions of up- and down-regulated genes with the three 
GO categories (biological processes, cellular component, and molecular function) were assessed for each mutant 
in comparison to wild type. GO-term analyses showed that 395, 404, and 363 GO terms were down-regulated 
in SPE2, SPE3, and SPE4 mutants, respectively, in comparison to wild type (Fig. 3a). On the other hand, 416, 
287, and 297 Go terms were up-regulated in SPE2, SPE3, and SPE4 mutants, respectively (Fig. 3b). The top 10 
DEGs GO terms in each mutant compared to wild type are listed in supplementary information, Table S2–S7. 
The down-regulated gene ontology terms of molecular function category were concentrated in “tubulin binding 
(50 genes, representing 1.1% of all down-regulated genes” and “transferase activity, transferring alkyl...(48 genes, 
representing 1.1%” in SPE2, “ubiquitin-protein transferase activity (37 genes, representing 1.3%)” and “amino 
acid transmembrane transporter act...(23 genes, representing 0.8%)” in SPE3, and “structural molecular activity 
(109 genes, representing 3.6%” and “molecular function regulator (85 genes, representing 2.8%)” in SPE4 in com-
parison to wild type. The highest percentage of GO terms under cellular component category were “cell (3,106 
genes, representing 70.5% of all down-regulated genes)” and “cell part (3,098 genes, representing 70.4%)” in 
SPE2, “cell part (2,004 genes, representing 70.4%)” and “cytoplasm (1,479 genes, representing 52%)” in SPE3, and 
“membrane-bounded organelle (1,416 genes, representing 46.9%)” and “organelle part (987 genes, representing 
32.7%)” in SPE4 in comparison to wild type. In this study, GO terms were mainly categorized in to “biological 

Comparison Gene ID Type Log2 (FC) Description

SPE3-SPE1 Cluster-4091.0 Up 12.75 T0KQB0, AhpC/TSA family protein

SPE3-SPE1 Cluster-851.0 Up 11.17

SPE3-SPE1 Cluster-4506.0 Up 10.44 A0A0F2MHU1, C6 zinc finger domain containing protein, R8BH37, 
Putative fungal specific transcription factor domain-containing protein

SPE3-SPE1 Cluster-10511.0 Up 10.43 R8BGV6, Putative integral membrane protein

SPE3-SPE1 Cluster-9946.0 Up 10.40 A0A1Q8RX65, Uncharacterized protein

SPE3-SPE1 Cluster-3385.0 Up 10.38 R8BMG1, Putative hsp20-like protein

SPE3-SPE1 Cluster-2451.0 Up 10.32 R8BTA4, Uncharacterized protein

SPE3-SPE1 Cluster-2925.0 Up 10.32 A0A167N866, Mannan endo-1,6-alpha-mannosidase

SPE3-SPE1 Cluster-3992.1 Up 10.31 R8BKG6, Cystathionine beta-synthase

SPE3-SPE1 Cluster-961.0 Up 10.24 R8BQU1, Putative bleomycin hydrolase protein

SPE3-SPE1 Cluster-8267.0 Down −9.60 B8NCK6, Sensor histidine kinase/response regulator TcsB/Sln1, putative

SPE3-SPE1 Cluster-7392.0 Down −9.49 I7ZXW6, Uncharacterized protein

SPE3-SPE1 Cluster-6719.0 Down −9.15 I8IMJ4, Cell cycle control protein

SPE3-SPE1 Cluster-10038.0 Down −9.10 Q5VDD7, OmtA
A0A0D9MSH1, O-methyltransferase

SPE3-SPE1 Cluster-9472.0 Down −8.96 A0A0D9MV28, Uncharacterized protein

SPE3-SPE1 Cluster-5863.0 Down −8.87 A0A0D9MRT4, Uncharacterized protein

SPE3-SPE1 Cluster-5703.0 Down −8.76 A0A0D9N9B4, Uncharacterized protein

SPE3-SPE1 Cluster-8855.0 Down −8.74 B8ND83, Uncharacterized protein

SPE3-SPE1 Cluster-9835.0 Down −8.72 A0A0D9MUG0, Uncharacterized protein

SPE3-SPE1 Cluster-9583.0 Down −8.66 A0A0D9N055, Domain found in IF2BIF5

Table 4.  The 10 most up- and down-regulated genes in A. apis genes (SPE3-SPE1).
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process”, with wide distributions and extensive assignments than other categories. The most prevalent “biological 
processes” assignment were: “cellular macromolecule metabolic process (1,516 genes, representing 34.4% of all 
down-regulated genes)” and “cellular component organization or bioge... (953 genes, representing 21.6%)” in 
SPE2, “single-organism biosynthetic process (463 genes, representing 16.3%)” and “establishment of localization 
(462 genes, representing 16.2%)” in SPE3, and “single-organism biosynthetic process (487 genes, representing 
16.1%)” and “establishment of localization (486 genes, representing 16.1%)” in SPE4, respectively, were highly 
enriched in comparison to wild type. This suggests that the biological processes of A. apis mutants were widely 
changed after REMI mutation.

KEGG pathway.  For better understanding of the biological function and correlation of DEGs (P 
value ≤ 0.05), we performed an enrichment analysis using KEGG pathway database, which assigned a total of 276 
DEGs to 16 pathways (Table 6). The enriched pathway maps of DEGs are generated by mapping elementary data-
sets (genes, proteins and or small molecules) to KEGG pathway maps. All metabolism and genetic information 
processing pathways presented in this thesis are downloaded from open KEGG pathway database and analysis 

Comparison Gene ID Type Log2 (FC) Description

SPE4-SPE1 Cluster-3360.0 Up 9.21 A0A0F7ZQT7, Uncharacterized protein

SPE4-SPE1 Cluster-3261.0 Up 8.92 A0A179HFS8, Uncharacterized protein

SPE4-SPE1 Cluster-4329.0 Up 8.76 A0A179HVY6, Phosphatidylinositol 3

SPE4-SPE1 Cluster-1247.0 Up 8.39 A0A179FQD2, Allantoate permease

SPE4-SPE1 Cluster-9153.1 Up 8.20 A0A179H215, SWIM zinc finger protein

SPE4-SPE1 Cluster-2784.0 Up 8.19

SPE4-SPE1 Cluster-802.1 Up 8.13

SPE4-SPE1 Cluster-1720.1 Up 8.03

SPE4-SPE1 Cluster-1071.0 Up 7.82

SPE4-SPE1 Cluster-1025.0 Up 7.64 A0A179GDN0, Proteinase aspergillopepsin II

SPE4-SPE1 Cluster-8390.0 Down −11.89 B8NCX4, Fasciclin domain family protein

SPE4-SPE1 Cluster-9725.0 Down −11.49 Q2U575, Uncharacterized protein

SPE4-SPE1 Cluster-10301.0 Down −10.65 B8MYB6, Uncharacterized protein

SPE4-SPE1 Cluster-9556.0 Down −10.61

SPE4-SPE1 Cluster-7766.0 Down −10.37

SPE4-SPE1 Cluster-10318.0 Down −10.32 B8NDW9, Cell cycle checkpoint protein

SPE4-SPE1 Cluster-10251.0 Down −10.20 I8U1U4, Uncharacterized protein
A0A1S9DAJ4, Uncharacterized protein

SPE4-SPE1 Cluster-6556.0 Down −10.19 I8IPA8, Uncharacterized protein
A0A1Z5T6S4, Uncharacterized protein

SPE4-SPE1 Cluster-10407.0 Down −10.16 A0A0D9N8T6, Amino acid permease

SPE4-SPE1 Cluster-9672.0 Down −10.15 B8NRN8, Uncharacterized protein
B8NRN8, Uncharacterized protein

Table 5.  The 10 most up- and down-regulated genes in A. apis genes (SPE4-SPE1).

Figure 3.  Venn diagram of DEGs for GO terms: (a) down regulated GO terms & (b) up-regulated GO terms.
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of DEGs is performed. In this study, Fisher testing and χ2 testing were used for pathway analysis to obtain the 
targeted significant pathway of the DEGs. Based on this analysis, five pathways were found to be involved in the 
up-regulated genes and 13 pathways were involved in the down-regulated genes. Most of these pathways are 
containing genes known to be associated with virulence. The up-regulated pathways including Oxidative phos-
phorylation (six genes), Ribosome biogenesis in eukaryotes (54 genes), Glycine, serine and threonine metab-
olism (33 genes), Terpenoid backbone biosynthesis (four genes), and Pentose phosphate pathway (two genes). 
The down-regulated pathways including Proteasome (28 genes), Glycine, serine and threonine metabolism (28 
genes), Aminoacyl-tRNA biosynthesis (31 genes), Basal transcription factors(21 genes), SNARE interactions in 
vesicular transport (11 genes), Sulfur metabolism (10 genes), Fatty acid metabolism (17 genes), Fructose and 
mannose metabolism (16 genes), Spliceosome (12 genes), Oxidative phosphorylation (six genes), Valine, leu-
cine and isoleucine biosynthesis (three genes), Pantothenate and CoA biosynthesis (three genes), and Butanoate 
metabolism (three genes). In the KEGG graph, the red highlighted boxes stand for the DEGs changed in each 
pathway. The pathway enrichment analysis map or KEGG graph is shown for the top nine most significant path-
ways19 (Fig. 4–6, Supplementary information, Fig. S5–S8).

Furthermore, we have detected DEGs encoding signal transduction pathways in mutants: Mitogen-Activated 
protein kinase (MAPK) pathway which involved in fungal pathogenicity and stress responses in pathogenic fungi, 
and cAMP-dependent protein kinase pathway (PKA) which are important in the process of signal transduction. 
In this study, 29 genes were differentially expressed in MAPK pathway. Of these, 15 genes in SPE2, five genes in 
SPE3, and seven genes in SPE4 were found to be down-regulated compared to wild type. Furthermore, 14 genes 
in SPE3 and two genes in SPE4 were found to be up-regulated compared to wild type. Three genes were differ-
entially expressed in PKA pathway, of these, two genes in SPE2 (cluster-7739.0 and cluster-8028.0), one gene 
in SPE3 (cluster-8028.0) and one gene in SPE4 (cluster-8028.0) were down-regulated, and two genes in SPE3 
(cluster-3555.0 and cluster-7730.0) and one gene in SPE4 (cluster-7739.0) were up-regulated compared to wild 
type.

Protein-protein interaction.  The PPI networks analysis was conducted using the database (String data-
base: https://string-db.org/cgi/input.pl, version 11.0) to protein families associated with metabolism and genetic 
information processing of A. apis mutants. The result revealed that, a total of 32 protein families that involved in 
nine pathways were detected in PPI analysis (Fig. 7, Supplementary information, Table S8). Of these, nine protein 
families were implicated in aminoacyl-tRNA biosynthesis: PF03950 (COG0008), PF00579 (COG0180), PF09334 
(COG0143), PF03129 (COG0124), PF01409 (COG0016), PF00152 (COG0017), PF01425 (COG0154), PF01406 
(COG0215), and PF00133 (COG0495). Eight protein families were involved in glycine, serine and threonine 
metabolism: PF00291 (COG0031), PF01053 (COG0626), PF03447 (COG0460), PF00696 (COG0527), PF00155 
(COG0079), PF01221 (COG0436), PF02826 (COG0111), and PF01066 (COG0558). Four protein families in pro-
teasome: PF00004 (COG0464), PF00225 (COG0638), PF01399 (COG5071), and PF13519 (COG1239). Four pro-
tein families involved in sulfur metabolism: PF01507 (COG0175), PF00581 (COG0425), PF00459 (COG0483), 

Comparison Pathway Pathway ID DEGs-Size Size RF P value

SPE2-SPE1-Dw Proteasome tve03050 28 33 1.55 0.014

SPE2-SPE1-Dw Glycine, serine and threonine metabolism tve00260 28 36 1.42 0.028

SPE2-SPE1-Dw Aminoacyl-tRNA biosynthesis tve00970 31 43 1.31 0.040

SPE2-SPE1-Up Oxidative phosphorylation tve00190 6 53 5.28 0.004

SPE3-SPE1-Dw Proteasome tve03050 28 33 2.39 0.000

SPE3-SPE1-Dw SNARE interactions in vesicular transport tve04130 10 13 2.17 0.045

SPE3-SPE1-Dw Sulfur metabolism tve00920 10 13 2.17 0.045

SPE4-SPE1-Dw Proteasome tve03050 28 33 2.26 0.001

SPE4-SPE1-Dw SNARE interactions in vesicular transport tve04130 11 13 2.25 0.035

SPE4-SPE1-Dw Fatty acid metabolism tve01212 17 25 1.81 0.038

SPE4-SPE1-Dw Fructose and mannose metabolism tve00051 16 24 1.77 0.048

SPE4-SPE1-Up Terpenoid backbone biosynthesis tve00900 4 21 2.35 0.032

SPE4-SPE1-Up Glycine, serine and threonine metabolism tve00260 5 36 1.72 0.049

SPE3-SPE2-Dw Spliceosome tve03040 12 72 4.36 0.000

SPE3-SPE2-Dw Oxidative phosphorylation tve00190 6 53 2.96 0.028

SPE3-SPE2-Dw Pantothenate and CoA biosynthesis tve00770 3 16 4.9 0.037

SPE3-SPE2-Dw Valine, leucine and isoleucine biosynthesis tve00290 3 16 4.9 0.037

SPE3-SPE2-Dw Butanoate metabolism tve00650 3 17 4.61 0.042

SPE3-SPE2-Up Ribosome biogenesis in eukaryotes tve03008 54 66 0.95 0.039

SPE3-SPE2-Up Glycine, serine and threonine metabolism tve00260 33 36 1.06 0.039

SPE4-SPE3-Dw Basal transcription factors tve03022 21 28 1.25 0.049

SPE4-SPE3-Up Pentose phosphate pathway tve00030 2 25 3.42 0.025

Table 6.  KEGG pathway enrichment of DEGs. Up refers to up-regulated pathway and Dw to down-regulated 
pathway. DEGs-Size, number of differentially expressed genes that contribute to the enrichment of the term. 
Size, number of expressed genes associated with the term. RF, rich factor.
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and PF01053 (COG0626). Three protein families were involved in fatty acid metabolism: PF00501 (COG0110), 
PF00108 (COG0183), and PF00107 (COG0451). Two protein families involved in fructose and mannose metab-
olism: PF00121 (COG0149) and PF01238 (COG1482). One protein family involved in basal transcription factor 
PF00069 (COG2815), one in ribosome biogenesis in eukaryotes PF01479 (COG0522), and one spliceosome pro-
tein family was involved in RNA recognition motif domain PF00076 (COG0652) that may play a crucial role in 
binding single-stranded RNAs.

Quantitative Real Time PCR validation.  In this study, a total of 12 virulence related candidate genes 
found to be commonly down-regulated in SPE2, SPE3, and SPE4 were selected for validation to understand their 
expression level in in comparison to wild type strain. Quantitative Real Time PCR analysis reveals, all the 12 
evaluated virulence related candidate genes were significantly down-regulated in all the three mutants compared 
to wild type (P < 0.05; Fig. 8).

Discussion
The genomics of A. apis has been of great interest recently due to the increasing prevalence of chalkbrood dis-
ease. The de novo transcriptome assembly was performed based on a normalized composite sample compris-
ing 12 samples to maximize the chance of gene detection. Normally, the normalization of treatment helps to 
reduce the redundancy of the cDNA library, improve the sequencing efficiency, and increase the discovery of rare 
genes accordingly. The present work seeks to publicize the availability of the annotated transcriptome of A. apis 
and assembled using the Trinity pipeline, and subsequently annotated using Trinotate. A reference-free func-
tional annotation was achieved for A. apis using a homology search in the protein database. In total, 394,910,604 
sequencing reads were produced and 12,989 unigenes were assembled. Among them, 9,598 (73.89%) uni-
genes were matching to UniProt Knowledgebase (UniProtKB), which is higher than previously reported 6,992 
protein-coding genes in A. apis20. In this study annotation obtained predominantly from the UniProtKB which is 
a collection of accurate and consistent functional annotation of proteins21. The mean length of 758.9074 bp (with 
N50 length of 853 bp) are comparable to the results of de novo transcriptome assemblies in other entomopath-
ogenic fungi species. This would help a great deal in identifying pathogenicity associated genes while infecting 
honeybee larvae.

Although several unigenes have not been annotated with functions, the present work provides about 9,598 
annotated protein-coding genes similar to those of the average protein-coding genes in other entomopathogenic 
fungi22, to be directly further studied in A. apis. The major unannotated unigenes may be due to the current lack 
of a reference genome of A. apis, in addition, the data set might include a part of new A. apis-specific unigenes, 
since normalization of the fungal samples for de novo assembly should enhance gene detection and discovery. The 
complete transcriptome of the wild-type and the three mutants were constructed and annotated. Comparative 
analysis among orthologous transcripts revealed 172, 3,996 and 650 genes were up-regulated and 4,403, 2,845, and 
3,016 genes were down- regulated between each of the mutants and wild-type libraries (SPE2-SPE1, SPE3-SPE1, 
and SPE4-SPE1), respectively. Furthermore, we detected 6,923 and 188 up-regulated DEGs and; 307 and 4,835 

Figure 4.  (a) enriched Glycine, serine and threonine metabolism and (b) enriched Aminoacyl-tRNA 
biosynthesis pathways with EC numbers found down-regulated in A. apis mutant SPE2 compared SPE1 shown 
in red color. EC numbers sown in green color are present in Trichophyton verrucosum KEGG database, but not 
identified in A. apis transcriptome19.
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down-regulated DEGs between the SPE3-SPE2 libraries and the SPE4-SPE3 libraries, respectively (FC > 2, and 
FDR < 0.05).

The pathogenicity of entomopathogenic fungi is determined by the ability of its hydrolytic enzymes such as 
lipases, proteases, esterases, chitinases that degrade the insect’s integument23. The expression of a various hydro-
lytic enzymes and other factors endorse germination rate and growth performance of the fungus across the sur-
face of the host, and the subsequent penetration of cuticular layers24,25. For instance, the expression of esterase 
gene (Mest1) is vital for virulence against caterpillars which allows to mobilize endogenous lipid reserves, pro-
motes germination rate as well as infection structure formation26. Furthermore, pathogenic fungi use secreted 
molecules, termed as effectors proteins, that enable interaction of microbes with their hosts and influences the 
outcome of the interaction27. The present study revealed that 100 genes encoding hydrolytic enzymes were found 
to be down-regulated in the mutants compared to the wild-type (Supplementary information, Table S1) including 
3 chitinase, 32 proteases, 39 esterases, 7 lipases, 17 amidases and 2 cellulases, degrading enzymes that have impli-
cated to be involved in virulence through host invasion and escape process20.

Figure 5.  Enriched fatty acid metabolism pathway found down-regulated in A. apis mutant SPE4 compared to 
wild type (SPE1) shown in red color19.
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Effective incidence of fungal pathogen is determined by its capability to thrive in stressful host niche coloni-
zation sites, to tolerate host immune system-induced stress and to resist antifungal drugs28. The overexpression of 
membrane transporter genes are reported to be involved in Trichophyton rubrum29 and in Corynebacterium pseu-
dotuberculosis pathogenicity30. Multidrug resistance (MDR) transporters which belonging to the ATP-binding 
cassette (ABC) and the major facilitator superfamilies (MFS), known to play a key role in facilitating fungal resist-
ance to pathogenesis-related stresses which likely to be linked to the general function of cellular detoxification 28.  
Our transcriptome analysis reveals that 81 genes involved in membrane transporter were down-regulated in 
mutants compared to wild type. In particular, 78, 43 and 47 membrane transporter genes were down-regulated in 
SPE2, SPE3 and SPE4, respectively.

Fungal transcription factors (TFs) play key roles in coordination of gene expression. The TF cohort describes 
the regulatory ability of an organism and the evolutionary history of TF families reflecting the history of the 
cognate regulatory mechanisms31. Successful fungal pathogenesis involves a well-orchestrated multiple cellular 
regulation and developmental processes in response to numerous stimuli from the host and the environment 
which is mainly regulated by TFs32. Therefore, TFs are recognized as critical proteins for fungal pathogenicity, as 
many of them are known to play vital roles in the transcriptional regulation of pathways implicated in virulence33. 
In this study, a total of 356 TF genes (3.7% of the 9,598 protein-coding genes) typically found in fungi are iden-
tified in A. apis, which is in line with previous research that reported TF genes represent 3–6% of the predicted 
genes in eukaryotic genomes34. Of the total 356 fungal type TF genes, 229 TF genes were found to be differentially 
expressed, 117 genes were down- and 117 genes up-regulated compared to wild type. Particularly, 112, 59, 63 
genes down-regulated and 4, 108, 24 genes were up-regulated in SPE2, SPE3, and SPE4, respectively, compared to 
wild type. Furthermore, the trace element zinc contributes a key role for proper functioning of a large number of 
proteins, including various enzymes35.

Comparative analysis in this study revealed that numerous cell wall related genes were down-regulated in 
mutants compared to wild type (Supplementary information, Table S1). Innate immunity development in mul-
ticellular organisms is determined by the evolution of cell surface receptors that could detect molecules whose 
chemical pattern is conserved within numerous classes of foreign organisms but is absent in “self ” molecules36. 
These “non-self ” factors are named as Microbe/Pathogen-Associated Molecular Patterns (MAMPs/PAMPs). 
Members of large family of pattern recognition receptors (PRRs) recognized the presence of MAMPs or PAMPs 
in the host, which then activate signaling related pathways to persuade downstream defense responses36. The 
cell wall of fungi with a dynamic structures which composed of polysaccharides acts as a vital role to determine 
cell shape and shielding the host cells away from stresses. Fungal cell walls are responsible for the pathogenicity 
initiation process when infecting animals or plants37. This is because, fungal cell walls are complex and dynamic 
structures and crucial for its viability, morphogenesis and its pathogenesis. Normally, the turgor pressure of cell 
wall has been bioassayed to be between 0.2 and 10 MPa which is equivalent to 2 to 20 times atmospheric pressure, 
for instance, the melanized cell walls of the appressoria of some plant pathogens such as Magnaporthe oryzae can 
withhold the internal turgor pressure of up to 20 MPa which generate the force that empowers hyphae to exert 
mechanical force on the substrates they are penetrating38.

Figure 6.  (a) enriched Ribosome biogenesis in eukaryotes pathway found up-regulated in A. apis mutant SPE3 
compared to mutant SPE2 shown in red color and (b) enriched basal transcription factors pathway found down-
regulated in A. apis mutant SPE4 compared to mutant SPE3 shown in red color19.
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Fungal pathogens, in response to host defense, have developed sophisticated mechanisms to shield their chitin 
fibrils in hydrolysis and recognition by deaminases that convert chitin into chitosan and through masking of chi-
tin with α-glucans39. Fungal cell walls which contain β-glucan polysaccharides are major structural component 
of fungal cell walls and known to stimulate immune responses when detected by the host immune cells which 
leaves the pathogen vulnerable40. For instance, β-glucan surface exposure during Aspergillus fumigatus germina-
tion period known to activate an Atg5-dependent autophagy pathway called LC3-associated phagocytosis (LAP), 
which promotes fungal killing41. However, some fungal pathogens have developed protective surface structures to 
evade such immune control mechanisms by reducing recognition of β-glucan by host cells either through mask-
ing of β -glucans beneath α-glucans or by enzymatic exclusion of any exposed β-glucan polysaccharides by the 
secreted glucanase Eng140. In addition, melanin reported to inhibit activation of LAP by eliminating the p22phox 
subunit from the phagosome41. As a result, melanization in A. fumigatus confers bluish grey color to conidia and 
required for pathogenicity which is a renowned virulence factor in mammal models42. The inner walls of many 
fungal spores contain complex amorphous polymerized phenolic compounds termed as melanins, which also add 
protection-particularly from oxidants and some exoenzymes38. In this study, five genes involved in melanogenesis 
found down-regulated in mutants compared to their original wild type strain of A. apis.

Furthermore, fungal pathogens produce numerous secondary metabolites that support them as weapons in 
limited environmental niches to compete against other organisms, carry out antibiotic, immunosuppression, and 
some virulence factors or toxins of pathogenic fungi in the process of host and pathogenic fungal interactions43. 
Several fungal Cytochrome P450, heme-containing monooxygenases, are involved in ergosterol synthesis, vir-
ulence formation and differentiations, as well as several toxic secondary metabolites production. In the present 
study, it has been identified that 70 genes encoding Cytochrome P450 were down-regulated in mutants com-
pared to their original wild type. The repairing ability of DNA in a cell is critically important to the integrity of 
its genome for the normal functionality of an organism. It has been reported that many of the genes that were 
primarily shown to influence life span of an organism have turned out to be involved in the process of regula-
tion of DNA damage repair and protection44. In this study, however, several genes involved in DNA repair were 
down-regulated in mutants.

Pathway enrichment analysis in this study reveals that genes involved in proteasome pathway including 28 
genes were down-regulated in all the three mutants in comparison to wild type. Proteasomes are important to 

Figure 7.  Global protein-protein interaction (PPI) networks for differentially expressed genes that altered by 
REMI mutation involved in nine pathways using STRING database, with COG functions. The nodes represent 
protein families and the lines represent the existence of the different types of evidence used in predicting the 
associations. A red line indicates the presence of fusion evidence, a green line shows neighborhood evidence, a 
blue line for co-occurrence evidence, a purple line indicates experimental evidence, a yellow line for text mining 
evidence, a light blue line stands for database evidence, and a black line for co-expression evidence.
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degrade unwanted or damaged proteins by proteolysis that breaks down peptide bonds. Protein biosynthesis and 
degradation retain a dynamic balance to properly sustain normal cell metabolism in an organism45. Consequently, 
all intracellular proteins and several extracellular proteins are continually being hydrolyzed to their constituent 
amino acids and replaced by the new synthesis46. Several studies reported that F-box proteins are vital in fungal 
pathogenicity47.

Aminoacyl-tRNAs biosynthesis pathway including 31 genes found to be down-regulated in SPE2 only com-
pared to wild type. Aminoacyl-tRNAs are important substrates for translation and vital to determine how the 
genetic code to be interpreted as amino acids, hence, the function of aminoacyl-tRNA synthesis is to precisely 
match amino acids with tRNAs which containing the corresponding anticodon48. In addition to their translations 
functions, aminoacyl-tRNAs synthetases are implicated in various noncanonical functions such as gene tran-
scription, mRNA translation, inflammation and immune response49. Glycine, serine and threonine metabolism is 
reported to be involved in bacterial pathogenesis50. In the present study, this pathway found to be down-regulated 
in SPE2 (28 genes) and up-regulated in SPE4 (5 genes) compared to wild type.

Fungal pathogens have to assimilate the available nutrients within host niches to infect them. To attain this, 
fungi regulate specific nutrient uptaking mechanisms, modulating their metabolism, displaying an impressive 
degree of metabolic flexibility. The metabolic flexibility that enhances the fitness of the fungus, is often as impor-
tant for pathogenicity as virulence factors51. It has been reported that the breakdown of fatty acids is vital in 
the metabolism, development and pathogenicity of many fungi52. In this study, pathway enrichment analysis 
revealed that fatty acid metabolism including 17 genes was found to be down-regulated in SPE4 compared to 
wild type. Furthermore, mutation altered the expression of genes involved in primary metabolic processes in 
fructose and mannose metabolism including 16 genes were down-regulated in SPE4 compared to the wild type. 
It has been reported that sulfur metabolism involved in numerous metabolisms through S-adenosylmethionine 
(SAM), as a source of methyl groups, methylene groups, ribosyl groups, amino groups, aminopropyl groups and 
50-deoxyadenosyl radicals53. Furthermore, sulfur metabolism plays an important role in the response to cad-
mium stress by the intermediary of glutathione54. Our study shows that ten genes involved in sulfur metabolism 
pathway were down-regulated in SPE3 compared to wild type.

A total of 10 and 11 genes involved in SNARE interactions in vesicular transport pathway were down-regulated 
in SPE3 and SPE4, respectively, compared to wild type. Membrane fusion is known to be driven by a coop-
erative action of SNARE proteins, which is a vital process in all living organisms that contributes to varieties 
of biological processes, for instance, cell fertilization and intracellular transport. Particularly, the numerous 
membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across 
membranes properly. Efficient and manageable fusion of biological membranes comprise the central compo-
nents of the eukaryotic fusion machinery that are responsible for fusion of synaptic vesicles with the plasma 
membrane55.

Figure 8.  Relative expression of genes validated by qRT-PCR.
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It has been reported that successful fungal pathogenesis involves a well-orchestrated multiple cellular regu-
lation and developmental processes in response to various stimuli from the host and the environment which is 
mainly regulated by TFs32. Therefore, TFs are recognized as important proteins for fungal pathogenicity, as many 
of them are known to play vital roles in the transcriptional regulation of pathways implicated in virulence33. 
Interestingly, in this study, KEGG enrichment analysis revealed that 21 genes involved in basal transcription 
factors found to be down-regulated in mutant SPE4 compared to mutant SPE3. In addition, 54 genes involved 
in ribosome biogenesis in eukaryotes found to be down-regulated in mutant SPE2 compared to mutant SPE3. 
Inhibition of ribosome biogenesis activity found to be used as effective action to control human pathogenic 
fungi56. Moreover, the gene encoding nucleolar Protein CgrA that functions in ribosome synthesis disrupted 
in Aspergillus fumigatus caused a delay in growth and found to be less virulent in immunosuppressed mice than 
wild type57.

In the present study, the lower DEG fold-change cutoff (log2|FC > 1| and integral analysis based on node 
centrality statistics were important for identifying candidate proteins which probably have remarkable roles in 
fungal pathogenesis. Moreover, in the present study, PPI network analysis revealed a total of 32 protein families 
were involved in metabolism and genetic information processing (basal transcription factors, aminoacyl-tRNA 
biosynthesis, spliceosome, ribosome biogenesis in eukaryotes, and proteasome) pathways. These proteins are 
encoded by a total of 66 genes enriched in altered pathways, thus these genes are predicted to be involved in A. 
apis pathogenicity from PPI network analysis (Table 6).

The present study, for the first time, compared the expression of pathogenic genes between the original 
wild-type strain and its REMI constructed mutants of A. apis with lower pathogenicity than the wild-type using 
transcriptomic methods. However, comparison of genes involved in pathogenicity in gene expression perspective 
and basic understanding of the mechanism of pathogenicity is a preliminary work. Therefore, in depth analysis 
of the pathogenic genes function and their interaction to the host organism should be studied further by gene 
editing technology and bioassay to the level of honeybee colony.

Methods
Samples.  The wild-type (hereafter, SPE1) and the three mutants: mutant-1(hereafter, SPE2), mutant-4 (here-
after, SPE3) and mutant-7 (hereafter, SPE4) of A. apis constructed by Restricted Enzyme-Mediated Integration 
(REMI) technique were obtained from our previous study7, and the insertion of hph gene and its successful 
integration into host chromosomes was confirmed by PCR, Clustal W sequence alignment, and Southern blot 
analyses. In addition, in vitro bioassay confirmed mutants had notable differences in pathogenicity among them-
selves and with the wild-type strain. Accordingly, samples were selected based on their virulence level (SPE2-less 
pathogenic, SPE3- pathogenic, and SPE4- nonpathogenic) for comparative transcriptome analysis. confirmed 
insertion of hph gene and successful integration into host chromosomes. Following the standard techniques1, 
the wild-type and mutants of this fungus were grown for six days at 28 °C on Potato Dextrose Agar (PDA) plates 
supplemented with 1% yeast extract. Furthermore, plate cultures were provided 50 µg/mL hygromycin B as an 
antibiotic to inhibit the growth of bacteria. In addition, single layer growth medium plates were used to enhance 
sexual reproduction and sporulation of the fungal pathogen.

RNA extraction.  Total RNA was extracted from a total of 12 samples (3 replicates per treatment) made up 
by 100 mg of fungal hyphae and spore combined using TRIzol extraction reagent (Invitrogen Life Technologies, 
USA) according to the manufacturer’s protocol. Then, fungal DNA was removed from extractions with DNAseI 
followed by the removal of rRNA using Ambion’s Poly (A) Purist kit. The integrity of the RNA was detected 
by agarose gel electrophoresis and the concentration was determined using Nano Drop 2000 spectrophotom-
eter (Thermo Scientific, Wilmington, DE, USA). The RNA integrity was further evaluated using an Agilent 
Technology 2100 Bioanalyzer (Agilent Technologies, USA).

Library construction and sequencing.  High-throughput sequencing using the Illumina sequencer 
(version 1.9) requires the construction of a sequence library to match it. The main construction process of the 
mRNA-seq library we used in this study was as follows: after the total RNA sample was qualified, 5 g of total 
RNA was taken to carry out the subsequent database building experiment. Enrichment of eukaryotic mRNA by 
magnetic beads with Oligo (dT) (for prokaryotes, enrichment of mRNA by removal of rRNA by a kit), and then 
added fragmentation. Buffer breaks the resulting mRNA into a short clip. Using mRNA as template, one-strand 
cDNA was synthesized with six-base random primers, and then buffer, dNTPs and DNA were added. Polymerase 
I synthesized the second chain cDNA. Eluted purified double-stranded cDNA and then carried out terminal 
repair, base A was added, sequencing connector treatment was added, cDNA 5′ end connection UID connector, 
using magnetic beads to recover the target size fragments and PCR amplification. The constructed library was 
tested by agarose electrophoresis. Take advantage of Qubit 2.0 library was quantified to determine whether the 
library concentration was suitable for computer use. After the library was qualified, the library was sequenced on 
the Illumina sequencer according to the demand of effective concentration and target data.

Transcriptome de novo assembly.  Using short sequence assembly software Trinity to assemble de novo 
assembly, the transcription sequence was obtained by “cocoon-pupa-butterfly” three steps. The longest transcript 
is usually selected as unigene for subsequent annotation, quantification, and differential expression analysis. 
However, studies have shown that unigene is inappropriate as a surrogate for genes. For the longest transcribed 
copy that is spliced will mask the reference sequence meaning of the true shorter transcribed copy (isoform of the 
gene). Here, we use the Corset software [1,2] recommended by Trinity to filter and cluster the spliced transcripts 
to get closer to the real “gene”, breaking through the traditional concept of “unigene”. Trinity software v.2.1.1 
(https://github.com/trinityrnaseq/ trinityrnaseq/wiki) was used for de novo assembly of the transcriptomes using 
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sequencing data from the total of 12 libraries (Table 1). The default assembly parameters of Trinity were used, with 
the addition of the “–jaccard clip” function, because a high gene density with overlapping of UnTranslated Region 
(UTR) was expected58. Transcriptome completeness was assessed using BUSCO v3.0.2 (Benchmarking Universal 
Single-Copy Orthologs; python /home/nan/anaconda3/bin/run_BUSCO.py -i Trinity.fasta -o trinity -l /home/
nan/database/busco/fungi_odb9/ -m transcriptome -c 16). In addition, Principal Component Analysis (PCA) 
of samples was examined to look at replicate clustering and separation of mutant samples from the wild-type.

Functional annotation.  The annotation of putative genes obtained from each assembly was performed 
using Basic Local Alignment Search Tool X (BLASTx) with an expectation value of 10−5 to search the following 
protein databases: Non-Redundant (NR) protein database of National Center for Biotechnology Information 
(NCBI), UniProt, and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, protein information 
and their respective functional annotations were retrieved for genes with the highest sequence similarity with A. 
apis clusters (unigenes). The gene function terms were obtained from Gene Ontology (GO) annotation (http://
www.geneontology.org) database using Blast2GO (http://www.blast2go.com/b2ghome). Functional classification 
of genes was conducted using COG (Clusters of Orthologous Groups of proteins, http://www.ncbi.nlm.nih.gov/
COG/), and pathway annotation was carried out using KEGG (http://www.genome.jp/kegg/).

Identification of transcription factors.  Transcription factors known as sequence specific DNA binding 
factors, are the proteins that bind to a specific DNA sequences, play a vital role in controlling gene transcription 
activity59. Identification of transcription factors as a byproduct in the transcriptome is cost-effective and reliable. 
Therefore, the assembled transcriptome of A. apis was also analyzed for the identification of transcription factors. 
The A. apis transcripts were searched against all the transcription factor protein sequences available at Fungal 
Transcription Factor Database (http://ftfd.snu.ac.kr/).

Comparative transcriptome analysis.  Differentially expressed genes (DEGs) were identified based on 
the negative binomial distribution with the edgeR package60. False discovery rate (FDR) values of the genes was 
primarily calculated by using edgeR, and mapped reads numbers of genes were used for the analysis. The genes 

Gene ID Pathway
SPE2-
SPE1

SPE3-
SPE1

SPE4-
SPE1

Cluster-9247.0 Proteasome −6.5 −6.5 −6.5

Cluster-9532.0 Proteasome −9.1 −9.1 −9.1

Cluster-8451.0 Proteasome −9.2 −9.2 −9.2

Cluster-8912.1 Proteasome −6.3 −6.3 −6.3

Cluster-6390.0 Proteasome −7.4 −7.4 −7.4

Cluster-8037.0 SNARE interactions −8.4 −8.4 −8.4

Cluster-6594.1 SNARE interactions −6.3 −6.3 −6.3

Cluster-5886.0 SNARE interactions −8.2 −8.2 −8.2

Cluster-9231.1 SNARE interactions −5.3 −5.3 −5.3

Cluster-8386.0 Fatty acid metabolism −6.1 −6.1 −6.1

Cluster-8610.0 Fatty acid metabolism −6.1 −6.1 −6.1

Cluster-8189.0 Fatty acid metabolism −7.1 −7.1 −7.1

Table 7.  Genes used for qRT-PCR analyses.

Target gene Forward primer (5′ to 3′) Reverse primer (5′ to 3′)
Product 
size (bp)

Cluster-9247.0 GATCGACAACCCTCTTCCAA TAAAACTGCACCGTGTCTCG 130

Cluster-9532.0 TGAGGGCTGCTTTCTTCAAT CAGTGGCAGCTTGTTGTTGT 114

Cluster-8451.0 CTCTGCCGGTCTAGTTCCAG CAGGGATAGGGCCCTTGTAT 95

Cluster-8912.1 GGCATCTCGAAAGTCACCTC TTTGGAAAGCATCCAACTCC 101

Cluster-6390.0 TTCCATTGGTGGATCTGGTT TCCCCGAACAAAGTTAATGC 100

Cluster-8037.0 AACGCAAGTTCCTATCCACCT AGCGGAGCTCATTGTTGAAT 93

Cluster-6594.1 TTCCAAGGTCCTCGATGAGT CCTGGTACGCCGAGATGTAT 104

Cluster-5886.0 TACAATTGCAGAGGCAGACG TAGCAATGCCCAGTTCCTTC 93

Cluster-9231.1 GTCTCAGTTCAGCGGACACA TGACTTTGAAGGAGGGTGCT 127

Cluster-8386.0 TGGTTTCCCCGAGACTACTG ATCATGCCGGACTTGATAGC 102

Cluster-8610.0 ACCTGATCCTTGCCATTCTG ATCGGGATTCGAGTTCTGTG 111

Cluster-8189.0 GAGGAGGCGAGTCTGAAATG GACGTATTGCTGCGAGTTGA 99

Ascosphaera apis 
Actin CATGATTGGTATGGGTCAG CGTTGAAGGTCTCGAAGAC Actin

Table 8.  Primers used to see the expression of genes in qRT-PCR analysis.
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with FDR < 0.01 were considered as candidates. In addition, fragments per kilobase of gene per million mapped 
reads (FPKM) of these candidates were generated by using RSEM61. Finally, the fold change of FPKM was com-
puted, and genes with the over the absolute value of two-fold change (log2|FC > 1|) were characterized as DEGs. 
Functional enrichment analyses were then performed on identified DEGs by using GO stats16.

Gene ontology categories enrichment analysis.  To determine the functional category, the DEGs 
were mapped to the GO database (www.geneontology.org) by GOEAST tool for each mutant in comparison to 
wild type. The biological process, cellular components and molecular functions that were particularly over- or 
under-represented in DEGs were extracted and visualized through GOEAST (omicslab.genetics.ac.cn/GOEAST/), 
which generally referred to as GO analysis. The Q-value is the corrected P-value with threshold < 0.05.

KEGG pathway enrichment.  For KEGG pathway analysis, hypergeometric test function was used 
(p < 0.001)19. In order to elucidate the significant pathways based on KEGG database, pathway analysis was per-
formed for DEGs detected in the first step. In this study, Fisher’s exact testing and χ2 testing were used for path-
way analysis to obtain the targeted significant pathway of the DEGs that are altered due to REMI mutation. The 
rich factor is calculated as the ratio of the numbers of DEGs enriched in a particular pathway, to the total number 
of annotated genes in the same pathway of interest.

Protein-protein interaction network construction.  In order to interpret the molecular mechanisms 
of the main cellular activities in A. apis mutants constructed with REMI, the online Search Tool for the Retrieval 
of Interacting Genes (STRING) (http://string-db.org/) was used for constructing a protein–protein interaction 
(PPI) network of the DEGs enriched in KEGG pathways. Clusters of Orthologous Groups (COGs) of proteins 
functions were used in constructing the protein-protein interaction networks. Only an interaction networks with 
a high confidence (0.700) were retained. Furthermore, the eukaryotic orthologous groups (KOGs) were consid-
ered prime selection of a single protein spot.

Validation of transcriptome data with quantitative real time PCR.  To validate results of our de 
novo RNA-seq, 12 commonly down-regulated genes in mutants SPE2, SPE3 and SPE4 were selected to qRT-PCR 
analysis. The genes are involved in KEGG pathways: five, four, and three genes were involved in proteasome, 
SNARE interactions in vesicular transport, and fatty acid metabolism, respectively (Table 7). We compared the 
expression level of the selected candidate virulence related genes in mutants against to wild type A. apis strain in 
triplicates. The A. apis actin gene was used as a reference gene for normalizing qRT-PCR validation since it has 
been reported to be among the most stable genes in A. apis62. Gene specific primers were used to generate specific 
PCR fragments in A. apis pathogenicity associated genes (Table 8). Here, all primer pairs were designed using 
PrimerExpress 3 Software (Life Technologies) following the standard procedure. The Relative quantification of 
a gene is defined as the change in expression of the target gene relative to the reference groups such as untreated 
control and/or a sample at time zero in a time-course study63. The relative expression level of each gene was cal-
culated by the formula (2−∆∆CT)63. The mean differences between original and mutant strains in terms of relative 
gene expression were compared using one-way ANOVA and student’s t-test.

Data availability
Data generated in this study have been submitted to the NCBI/GenBank database at Bioproject ID PRJNA541453. 
All raw sequence data have been deposited in the Sequence Read Archive (https://dataview.ncbi.nlm.nih.
gov/?search = SUB5583364) under the accession number SRR9021798–9021809.
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