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Simple Summary: In this study, six male beagle dogs underwent 12 weeks of interval exercise
following the Frequency, Intensity, Time/duration, Type, Volume, and Progression (FITT-VP) training
principle. The heart rate (HR) response was measured during the entire exercise period, and changes
in bone mineral density (BMD), muscle volume (MV), and hematology and serum biomarkers were
evaluated at the pre-exercise training period and post-exercise training period. We showed that
exercise training increased BMD in the femur and serum total alkaline phosphatase (TALP), aspartate
aminotransferase, and creatine kinase levels. In addition, our data suggest a positive correlation
between BMD and TALP, demonstrating that increased TALP might be an important contributing
factor for enhancing BMD with physical training in dogs.

Abstract: Exercise has been suggested as a powerful intervention for health care and fitness manage-
ment in humans; however, few studies have demonstrated the benefits of exercise training in dogs.
The purpose of this study was to examine the effects of exercise training on heart rate (HR), bone
mineral density (BMD), muscle volume (MV), and hematological and serum biomarkers in dogs.
Six healthy beagles completed the interval treadmill exercise, developed on the basis of the FITT
principle, two times a week for 12 weeks. To evaluate the physiological parameters, the HR values
were analyzed using the Polar H10 system during the entire exercise period. At pre-and post-exercise,
quantitative computed tomography and hematological and serum biochemical parameters were
analyzed. The interval exercise resulted in a normal HR response and no adverse behavioral or
physiological effects on the dogs. We showed that exercise improved BMD in the femur (541.6 ± 16.7
vs. 610.2 ± 27.8 HA, p < 0.01) and increased serum total alkaline phosphatase (TALP; 68.6 ± 9.2 vs.
81.3 ± 17.2, p < 0.01), aspartate aminotransferase (23.5 ± 1.0 vs. 33.5 ± 1.6, p < 0.01), and creatine
kinase (114.8 ± 5.3 vs. 214.0 ± 20.8, p < 0.01) levels. There was a positive relationship between BMD
and TALP (femur: r = 0.760, p = 0.004; vertebrae: r = 0.637; p = 0.025). Our findings suggest that
interval exercise training is beneficial to increase BMD in the femur, and an increased TALP level
would be a concomitant mechanism for enhancing BMD with exercise in dogs.

Keywords: interval exercise; exercise physiology; bone mineral density; immune function

1. Introduction

Dogs, a common companion animal, have coexisted with humans since the Neolithic
Age and are recognized as family members in many modern societies [1]. Studies have
reported that over 70% of dog owners feel affection for their canine companions akin to
raising a baby [2]. Additionally, many different types of working or service dogs were bred
to help people accomplish day-to-day tasks [3]. As the bonds between dogs and humans
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grow more substantial, there is greater demand for better canine health care and fitness
management [1]. Exercise has been recognized as an essential component for attaining
optimal health and fitness levels [2,4]. Many human studies have robustly established that
exercise training improves health-related fitness [5,6], but research exploring the benefits
of the exercise training system in dogs is limited.

Studies have shown that physiological and biochemical parameters are fundamental
to investigate the effects of exercise on health, fitness, and function [7–10]. Heart rate
(HR) [10] is a primary physiological indicator for diagnosing cardiac function and aerobic
performance. Exercise-induced adaptation in HR (i.e., reduction in resting HR) is related to
improved cardiovascular fitness [9]. HR response during competitive exercise and recovery
can also be used to assess heart-rhythm disorders, such as arrhythmia, in dogs [9]. HR
levels influence cardiac output and VO2max during exercise [10]. In addition, HR responses,
which are known to reflect the complex interactions between the autonomic nervous system
and the cardiovascular system, provide significant prognostic information. Inadequate HR
response to exercise is strongly associated with sudden cardiac death, and HR recovery
on a standard exercise test has been shown to predict mortality [11]. Hematological
and serum biochemical analyses can reveal systemic and metabolic functions. Treadmill
exercise studies showed significant improvements in rectal temperature, glucose and lactate
concentrations, red blood cell counts, hematocrit, and HR in dogs [12,13]. Although each
parameter has its benefits, studies carrying out comprehensive examinations required for
a thorough screening of a dog’s health are limited, and the effects of long-term exercise-
induced adaptation in those parameters are still elusive.

Bone mineral density (BMD) and muscle volume (MV) are valuable measurements
to assess overall health status and bone-muscle interactions in post-exercise dogs. Some
human studies have found that low BMD and MV are associated with several disorders,
including inflammatory diseases, osteogenesis imperfecta, degenerative arthritis, and
endocrine diseases [14,15]. Furthermore, exercise (e.g., sprinting, jogging, weightlifting,
swimming) can be a powerful intervention for the prevention and treatment of these
conditions in humans [16–18]. In several other studies, participants of different ages and
genders showed positive changes in BMD, MV, and bone turnover serum biomarkers
(e.g., bone-specific alkaline phosphatase, deoxypyridinoline, and calcium) after exercise
designed according to the Frequency, Intensity, Time/duration, Type, Volume, and Pro-
gression (FITT-VP) principle [19–23]. To date, however, there has been little scientific
examination of the effect of exercise on bone and muscle health in dogs. One reason for this
lack of knowledge is the ethical issue of studying bone and muscle tissues, which requires
invasive procedures.

Non-invasive quantitative computed tomography (QCT) is a three-dimensional non-
projection technique to evaluate BMD and MV. In human studies, QCT has been used
to investigate muscle-bone interactions [24,25]. In veterinary medicine, however, QCT is
mainly used to diagnose skeletal changes in aging, osteoporosis, and other metabolic bone
diseases [26–31]. For example, Sutherland-Smith and colleagues [30] exhibited age-induced
epaxial muscle atrophy by using CT scanning in dogs. Gordon-Evans et al. [31] showed
positive effects of physical rehabilitation on body fat and muscle mass using DEXA in
dachshunds with thoracolumbar intervertebral disk disease. To date, there have been no
studies using QCT to assess changes in BMD and MV after exercise in dogs, nor have there
been studies that examined the relationship between biomarker levels and bone-muscle
properties. We postulated that it would be possible to use QCT to assess subtle changes in
BMD and MV after treadmill exercise training. Therefore, this study aimed to investigate
the alterations in HR, blood, serum, BMD, and MV after performing an interval exercise
protocol in dogs. We hypothesized that the 12-week interval exercise training would result
in positive changes in HR, hematology, and serum biochemistry parameters and increase
BMD and MV in healthy dogs.
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2. Materials and Methods
2.1. Animals

Six healthy male beagles who had never experienced exercise training were included
in the study and participated in the whole experiment. Information on these dogs is
provided in Table 1. All dogs were cared for following the recommendations described in
The Guide for the Care and Use of Laboratory Animals.

Table 1. Characteristics of study dogs.

Parameters (Unit) Dogs

No. of Dogs 6
Sex Male 1

Age (months) 29.1 ± 6.7 2

Weight (kg) 10.9 ± 0.5

Age and weight data are represented as mean ± SD. 1 All dogs were intact. 2 Dog ages ranged from a minimum
of 21.5 months to a maximum of 35.5 months.

The study was approved by the Institutional Animal Care and Use Committee of
Hanyang University and Seoul National University (HYU-2020-0073A, SNU-180731-2). All
methods and protocols were carried out in accordance with the relevant guidelines and
regulations. Moreover, all beagles were subject to the same dietary and resting conditions.
The dogs were housed in an environment with 12 h (07:00–19:00) of bright light and 12 h
(19:00–07:00) of dark. The temperature of the breeding room was 22–23 ◦C, with 50–60%
humidity. The dogs were kept in separate cages (775 × 960 × 900 cm) with soft rubber
flooring that was cleaned daily. Meals (Eco 1 LAMB, Natural core, Gyeonggi-do, Korea)
were served twice a day (09:00, 17:00), and freshwater was provided freely. The diet was
kept the same throughout the study period. The dogs were not provided with food for 4 h
prior to exercise testing to prevent exercise-induced gastrointestinal distress, heartburn,
and acid reflux.

2.2. Treadmill Adaptation for Dog Safety

All dogs underwent 2 weeks of adaptive training to be acquainted with the researcher,
laboratory environment, and exercise regimen in advance (Supplementary Table S1). The
exercise training equipment included a treadmill (EGOJIN XG-V6E, Gyeonggi-do, Korea)
and a safety belt, which was applied to each dog’s chest. Rectal temperature was taken from
each dog with a digital thermometer before and after exercise. Throughout the experiment,
the researcher and veterinarian screened the dogs’ behavior and reactions (i.e., limp, a
strong rejection of exercise, pupil abnormalities, and very rapid and irregular heart rhythms
during exercise) to confirm the safety and determine any unexpected discontinuation
of exercise.

2.3. Interval Exercise Program

In this study, we modified the 12-week interval exercise protocol developed in our
previous study [7]. As a warm-up, the dogs performed a walking exercise for 5 min at
2–3 km/h prior to interval exercise. The exercise training program consisted of 12 treadmill
protocols, which are detailed in Figure 1. Each protocol was repeated twice per week for
the numerically corresponding study week. The protocol consisted of a workout stage
(W) and an incomplete resting stage (R). Exercise intensity was gradually increased by
changing treadmill grade and speed.
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Figure 1. A 12-week interval exercise program consisting of 12 protocols. The 12 protocols include a
gradual increase in grade (%) and speed (km/h) as the sessions proceed.

2.4. Heart Rate Measurement

A Polar H10 HR measuring device and monitor (Polar Electro Oy, Kempele, Finland)
were used to evaluate HR response during interval exercise. The dogs wore HR measuring
devices on their chests, and HR data were collected every second. The mean HR value was
analyzed to estimate exercise intensity for each stage in all protocols using the Polar Flow
Software program (Polar Electro Oy, Kempele, Finland).

2.5. Quantitative Computed Tomography (Bone Mineral Density and Muscle Volume)

QCT was used to measure BMD and MV. All dogs were fasted for at least 6 h prior
to QCT scan. The dogs were intravenously premedicated with glycopyrrolate (Mobinul;
Myungmoon Pharm., Seoul, Korea) at 0.01 mg/kg and then anesthetized with 6 mg/kg of
propofol (Provive; Myungmoon Pharm., Seoul, Korea). They were kept sedated with 1.5%
isoflurane (Foran solution; Choongwae Pharm., Seoul, Korea) and received 100% oxygen
via endotracheal tube intubation. Percentage of oxygen saturation, end-tidal CO2, and
HR were routinely monitored. QCT was performed using a 16-channel multidetecting CT
scanner (Brivo 385; GE Medical System, Milwaukee, WI, USA). The lumbar vertebrae and
femur were scanned with the dogs in dorsal recumbency. A calibrated QCT phantom (QRM-
BDC/3; QRM GmbH, Moehrendorf, Germany) was placed under each dog. The scanning
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parameters were set as follows: 100 kV, 100 mAs, and 1.25-mm slice thickness, pitch 1.5:1,
rotation time 0.6 s, and scanning speed 7.5 mm/rotation. The phantom and femur were
positioned such that their axes were perpendicular to each other and reconstructed in the
transverse plane. The phantom and lumbar vertebrae were positioned parallel to each
other. All QCT images were scanned with the bone and beam placed close to vertical
without tilting of the gantry using the bone algorithm. CT scan was performed before
and after exercise (Figure 2). All CT images were analyzed using commercially available
software (RadiAnt DICOM viewer; Medixant, Poznan, Poland; Osirix DICOM viewer;
Pixmeo, Geneva, Switzerland). The region of interest (ROI) for QCT included only the
vertebral body in the 3rd lumbar vertebra and was measured using an image at the origin
of the transverse process as previously described [32,33]. The cortical and trabecular bone
at all measurement sites were included in the ROI. Femoral BMD was measured in the
middle of the femoral neck, including one-third of the proximal diaphysis and one-third
of the distal diaphysis. BMD was calculated from the CT image in Hounsfield units. MV
was measured at the correct position using multi-planar reconstruction at 50% of the femur
length, and a cross-section perpendicular to the bone was obtained. Each variable was
measured three times, and the mean value for each was obtained.
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Figure 2. Schematic design of experimental procedures. Dogs underwent interval exercise comprising five resting stages
and four workout stages over 12 weeks. Blood biochemical parameters (pre-exercise, post-exercise), heart rate (overall
interval exercise), and QCT (pre-exercise, post-exercise) were measured for each dog.

2.6. Hematology and Serum Biochemistry Parameter Analysis

Blood samples for hematological and serum biochemical parameter analyses were
collected the day before protocol 1 initiation and 1 day after protocol 12 completion
(Figure 2). Blood samples were kept in tubes coated with lithium heparin and stored at
4 ◦C. After blood withdrawal and plasma harvest, heparinized blood samples were allowed
to clot and were then centrifuged to obtain serum. All analyses were performed within
the first 6 h after blood extraction. Hematological parameters were measured from EDTA-
blood samples using ADVIA 2120i (NYN Tarrytown, Tarrytown, NY, USA). Biochemistry
parameters were measured from heparinized plasma using the Hitachi 7180 Auto analyzer
(Hitachi, Tokyo, Japan) with reagents specifically designed for the instrument.
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2.7. Statistical Analyses

All analyses were performed with GraphPad Prism 5.0 (GraphPad Inc., La Jolla, CA,
USA). A one-way repeated analysis of variance was used to determine the mean difference
in HR, followed by a Bonferroni post-hoc test. During all processes of interval exercise, the
HR data were collected on a per-second basis and sent from the Polar Beat app monitor
(v:3.5.0) to the Polar Flow software (Polar Flow online: https://flow.polar.com/ (accessed
on 16 August 2021)). The transmitted HR information was analyzed separately for the
resting HR 1 min before exercise, the mean HR in each stage of exercise, and the recovery
HR 1 min after exercise and until returning to the resting HR. The mean difference in
BMD, MV, and serum biochemistry parameters between pre-exercise and post-exercise was
assessed using a two-tailed Student’s t-test. To determine the relationship between total
alkaline phosphatase (TALP) and BMD and MV, we performed Spearman’s correlation and
linear regression analyses. Values are expressed as means ± SEMs, and a p-value < 0.05
was considered statistically significant.

3. Results
3.1. Heart Rate

Figure 3A shows the HR response during interval exercise, which included a series
of workout (W) stages and incomplete resting (R) stages. The mean HR during the W
stage was significantly higher than that during the R stage (p < 0.01). To evaluate if the
exercise intensity protocol was progressively overloaded, we compared the mean HR of
the W stage in every two protocol intervals. The mean HR during protocols 7–12 was
significantly higher than for protocols 1–6 (Figure 3B). The recovery HR at 1 min after
exercise (Figure 3C) and the recovery HR time to reach the resting HR (Figure 3D) were not
different between protocols, respectively. Additionally, the mean resting HR measured over
the entire experiment was 83.8 ± 6.3 bpm, and the resting HR was not different between
protocols (data not shown).
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Figure 3. Analysis of the mean heart rate (HR) during exercise and the recovery HR after exercise.
(A) The mean HR values for all dogs during incomplete resting stage (R1–R5), workout stage (W1–
W4), and recovery. (B) Changes in the mean HR during the W stage according to treadmill exercise
protocol (1–6 vs. 7–12). (C) The recovery HR at 1 min after exercise (D) The recovery HR time to
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the average heart rate of each stage or protocol (p < 0.05). NS indicates no significant difference.
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3.2. Bone Mineral Density and Muscle Volume

BMD in the femur and vertebrae was measured using QCT before and after exercise.
Post-exercise femoral BMD (610.2 ± 27.8 HA) increased significantly by 12.6% (p < 0.01)
compared with pre-exercise BMD (541.6 ± 16.7 HA). In contrast, there was no difference in
vertebral BMD, although exercise (317.2 ± 6.6 HA; 291.4 ± 5.4 HA) increased BMD by 8.8%.
Moreover, MV values before and after exercise were not significantly different (Table 2).

Table 2. Analysis of bone mineral density and muscle volume before and after exercise in dogs.

Parameters (Unit) Pre-Exercise Post-Exercise Rate of Increase (%) 1

Femur (HA) 541.6 ± 16.7 610.2 ± 27.8 * 12.6
Vertebra (HA) 291.4 ± 5.4 317.2 ± 6.6 8.8

Muscle volume (mm2) 5384.0 ± 890.7 5434.0 ± 740.3 0.9
Bone mineral density and muscle volume data are represented as mean ± SEM. * Significant difference between
pre-exercise and post-exercise (p < 0.05). 1 The rate of increase in parameters was calculated as (post-exercise
mean—pre-exercise mean) ÷ post-exercise mean × 100.

3.3. Hematological and Serum Biochemistry Parameters

Table 3 shows the differences in hematological and serum biochemistry parame-
ters between pre-exercise and post-exercise. The white blood cell and mean corpuscular
hemoglobin concentration (MCHC) levels were significantly lower in post-exercise than in
pre-exercise. The levels of mean corpuscular volume (MCV), a marker of the average red
blood cell size and volume, were significantly increased in post-exercise. TALP, a serum
bone marker, showed a significant increase in post-exercise compared with pre-exercise
(p < 0.01), but calcium and phosphorus levels were not different. Both aspartate transami-
nase and creatine kinase levels increased significantly in post-exercise. All hematological
and serum biochemistry parameters in pre-exercise and post-exercise dogs were within the
reference range.

Table 3. Analysis of hematological and serum biochemistry in dogs.

Parameters (Unit) Pre-Exercise Post-Exercise Reference Range

White blood cell (K/µL) 1 10,110.0 ± 903.4 7138.0 ± 568.8 * 6000–12,000
Red blood cell (M/µL) 1 660.8 ± 10.14 698.8 ± 21.61 570–880

Hemoglobin (g/dL) 1 15.5 ± 0.3 16.3 ± 0.6 12.9–18.4
MCV (fL) 1 65.7 ± 0.6 67.4 ± 0.6 * 58.8–71.2
MCH (pg) 1 23.4 ± 0.1 23.3 ± 0.1 20.5–24.2

MCHC (g/dL) 1 35.7 ± 0.3 34.5 ± 0.2 * 31–36.2
Calcium (mg/L) 2 9.5 ± 0.2 9.0 ± 0.0 9.0–11.9

Phosphorus (mg/L) 2 3.9 ± 0.2 4.0 ± 0.2 1.3–6.3
TALP (U/L) 2 68.6 ± 9.2 81.3 ± 17.2 * 0–97.9
ALT (U/L) 2 36.3 ± 3.7 41.0 ± 5.0 5.8–83.3
AST (U/L) 2 23.5 ± 1.0 33.5 ± 1.6 * 11.7–42.5

BUN (mmol/L) 2 14.3 ± 9.3 12.3 ± 0.7 9.6–31.4
Creatinine (mg/L) 2 0.7 ± 0.0 0.7 ± 0.0 0.4–1.3
Glucose (mmol/L) 2 94.8 ± 3.2 96.3 ± 5.4 74.5–120

Albumin (g/dL) 2 3.8 ± 0.1 3.8 ± 0.0 2.6–4.4
Total protein (g/dL) 2 6.8 ± 0.2 6.7 ± 0.2 5.7–7.5
Cholesterol (mg/L) 2 218.5 ± 23.0 208.0 ± 25.3 112–312

Triglycerides (mmol/L) 2 59.8 ± 9.8 63.6 ± 12.8 21–133
Creatine kinase (U/L) 2 114.8 ± 5.3 214.0 ± 20.8 * 8–216

MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin
concentration; ALT: alanine transaminase; AST: aspartate transaminase; BUN: blood urea nitrogen. 1 means
hematological parameters. 2 means serum biochemistry parameters. Serum biochemistry data are represented as
mean ± SEM. * Significant difference between pre-and post-exercise measures (p < 0.05).
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3.4. Correlations between Bone Mineral Density, Muscle Volume, and Serum
Biochemistry Parameters

Figure 4 illustrates the relationship between TALP and BMD in the femur and verte-
brae and MV in the thigh. We found a significant correlation between TALP and BMD in
the femur (r = 0.760; p = 0.004) and vertebrae (r = 0.637; p = 0.025). We also found a positive
relationship between TALP and MV (r = 0.595; p = 0.041). Those results provide evidence
that exercise-induced increases in TALP are associated with increases in BMD and MV.
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4. Discussion

The main objective of this study was to examine the effects of long-term interval
exercise training on HR, BMD, MV, and serum biochemistry parameters in dogs. A pri-
mary finding was that the HR response to interval treadmill exercise in different stages
and protocols was normal and affirmative. A secondary finding of our study was that
interval exercise enhanced BMD in the femur and induced an increment in TALP, aspartate
aminotransferase, and creatine kinase biomarkers. To the best of our knowledge, these are
the first findings indicating that long-term interval exercise training is feasible for dogs
and can improve BMD in the femur. We suggest that increased TALP levels may be an
associated mechanism of increasing BMD with exercise in dogs.

Ferasin et al. [34] showed that dogs frequently refuse to exercise on the treadmill
and are easily distracted in a laboratory environment. Due to those tendencies, adequate
acclimatization is needed before initiating the exercise program. In this study, the beagles
did not show any rejection or maladaptive behaviors. In addition, the treadmill interval
exercises did not cause any side effects or adverse reactions in healthy dogs. All dogs were
able to complete the exercise program and were in good physical condition. Our results are
consistent with our previous findings of normal physiological and behavioral responses to
treadmill exercise [35]. This may be because the dogs had a sufficient adaptive period on
the treadmill, a well-designed exercise program was used, and the study veterinarians and
researchers provided adequate animal care. Under these stringent experimental conditions,
we aimed to explore the potential effect of long-term interval exercise on HR, BMD, MV,
and serum biochemistry parameters in beagles.

The mean HRs of all dogs who performed interval exercise for 12 weeks had changed
according to protocol intensity and progress (1–6 week < 7–12 week; p < 0.05). In addition,
following the FITT-VP principle, we were able to identify a regular mean HR change by
organizing a suitable exercise program for dogs. Unlike other dog studies that found irreg-
ular HR patterns that were not proportional to the activity and external stimulus [36,37],
our results showed a normal HR response, which was gradually increased in response to
exercise intensity. The reason for such a result seems to be because we created an optimal
research environment by providing proper controls to anticipate the dogs’ sensitivities



Animals 2021, 11, 2528 9 of 13

to sounds and odors. Additionally, other studies demonstrated that the abnormal HR
responses to exercise, termed chronotropic incompetence, have been shown to be predictive
of all-cause mortality and cardiovascular disease in humans [11,38]. Therefore, the interval
exercise protocol developed in this study may be applicable for promoting or maintaining
cardiovascular health in dogs.

Next, we explored BMD and MV to evaluate whether an adaptive HR response to
the exercise training protocol was beneficial to bone and muscle health. Our findings
corroborate previous evidence that an interval exercise program that applies the FITT
principle and is developed based on former studies can increase BMD [16–23,39,40]. The
12.6% increase in BMD that we observed is consistent with human studies that found an
association between BMD and injury [41] or disease [42]. In humans, BMD is a key measure
for diagnosing osteoporosis [42], and a 3–5% increase in BMD has been shown to reduce
fracture risk by 20–30% [42]. There are few studies examining the effect of exercise on BMD
in dogs, and those studies found that aerobic exercise training in dogs resulted in either
decreased or unchanged BMD [39,40]. Those different results might be associated with
age, sex, and exercise methodology. Puustjarvi et al. [39] suggested that treadmill running
exercise would no longer positively affect BMD as a female dog’s growth plates close at
70 weeks of age. In contrast, several human studies confirmed an increase in post-exercise
BMD, regardless of age and sex [22]. The cause of this discrepancy is not clear, but the
inclusion of intensity as a FITT component might be important because intensity induces
a BMD increase and, thus, is a primary influence on the extent of the training effect [43].
Currently, the optimal intensity level for interval exercise to enhance BMD in dogs is not
known [39], but in humans, the proper endurance exercise intensity has been estimated
to be 55–75% of HRmax [44]. In this study, the mean HR during the workout stage was
158.2 bpm, and the dogs continued to exercise for 36 min for 12 weeks. A previous study
reported 230 bpm for HRmax in their study dogs [10]; thus, the intensity of interval exercise
imposed on each dog in this study was approximately 68% of HRmax. Furthermore, the
combination of FITT components with progressive and overloading workouts may be
associated with the BMD improvements observed in our study dogs.

The benefits of regular exercise on BMD may be primarily linked to mechanical
loading mechanisms [45]. Evidence for the Mechanostat Theory of mechanical loading
has been confirmed in several animal studies [46,47]. Rats are tetrapodal animals that are
known to have higher tibia stress because the tibia is subjected to greater weight-bearing
during treadmill exercise compared to the vertebrae [48]. In a previous study of rats,
treadmill exercise increased tibial BMD but not vertebral BMD [49]. Dogs, like rats, are
tetrapodal animals, and their femurs are more likely to receive mechanical loads [50]
and to be more weight-bearing than the vertebrae when running on treadmills [49]. Our
findings are consistent with the results of other animal studies and support the concept
that weight-bearing activity has a positive influence on bone health [51].

Many studies have suggested that treadmill exercise improves BMD, but the precise
underlying mechanism remains elusive [45]. Here, we examined the effects of treadmill
exercise on serum bone markers such as calcium, phosphorus, and TALP to identify biolog-
ical mechanisms. We found that exercise-induced increases in TALP are associated with
increases in BMD. TALP is a critical biomarker to assess BMD accurately and efficiently
in the absence of liver disease [52]. Several isoenzymes of TALP exist in various organs
besides bone (e.g., liver, kidney), and serum TALP, derived mostly from bones, reflects
the sum of those isoenzymes [53]. Particularly in young dogs, changes in TALP result
from a bone-specific isoenzyme [54] because 96% of TALP consists of this bone-specific
isoenzyme [55]. The bone-specific isoenzyme exists on the plasma membrane of osteoblasts
and is carried through systemic circulation during the bone mineralization process [56].
TALP plays a role in the hydrolysis of inorganic pyrophosphate and then generates inor-
ganic phosphate to maintain the appropriate ratio of inorganic pyrophosphate to inorganic
phosphate, which is essential for the mineralization process [57]. Therefore, the upregula-
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tion of TALP in the two-year-old dogs from this study is considered a positive biomarker
associated with increased BMD.

Some human studies suggested potential increases in MV with aerobic exercise
and interval exercise [58–60]. For example, Harber and his colleagues [58] proved an
aerobic exercise-induced increase in MV determined via MRI in young and older men.
Malia et al. [61] showed that short-term (3 weeks) high-intensity interval training improved
muscle size in vastus lateralis in overweight and obese adults. It has been reported that the
increment in MV with high intensity interval training is associated with the activation of
the proliferator activated receptor gamma coactivator 1 (PGC-1γ) molecules [62,63]. The
activation of these key molecules, which promote mitochondrial biogenesis, substrate trans-
fer, and oxidation capability of skeletal muscles, occurs at high-intensity levels when many
fast-twitch muscles are recruited, ultimately causing muscle hypertrophy [60,62,64–67]. In
the present study, we found no significant change in MV with long-term interval exercise.
The reasons for the discrepancy between the findings of this study and other human studies
are not clear, but the spontaneity and intensity of exercise might be involved. It seems that
the dog’s less spontaneous habit of exercising with greater force and the moderate inten-
sity of exercise used in the present study might not be sufficient to increase the MV [68].
Meanwhile, correlation analysis revealed a positive association between TALP and MV in
exercised dogs. To our knowledge, this is the first report to identify a significant correlation
between TALP and MV in exercised dogs. However, the cause of these consequences is
unknown, exercise-induced crosstalk between muscles and bones may be involved, and
further research is needed. This study has several limitations. Due to the characteristics of
dogs, which are heavy animals, it was difficult to secure the population, so the number
of samples was small. Our research has been conducted on only male beagle breeds, so
dogs of different sexes and breeds need to be tested. In addition, it was challenging to
understand the precise mechanisms for dogs, exercise, and BMD from this study because
there was no control group, and no gene or protein analysis related to BMD was performed.

5. Conclusions

We demonstrated that interval exercise has a positive impact on BMD in dogs, and
exercise-induced enhancement of BMD is associated with increased TALP levels. In addi-
tion, this study confirmed that QCT could be used as a measure to assess subtle changes in
MV and BMD after a machine-running exercise intervention. Further investigations are
needed to determine the impact of exercise on cardiovascular fitness-, bone-, and muscle-
related genes in dogs. Such research would improve our understanding of bone-exercise
mechanisms and bone-muscle-interaction mechanisms, which would yield fundamental
insights into key challenges in exercise science research and the clinical field.
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