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Abstract: Fungi represent one of the most diverse and abundant eukaryotes on earth. The interplay
between mold exposure and the host immune system is still not fully elucidated. Literature research
focusing on up-to-date publications is providing a heterogenous picture of evidence and opinions
regarding the role of mold and mycotoxins in the development of immune diseases. While the
induction of allergic immune responses by molds is generally acknowledged, other direct health
effects like the toxic mold syndrome are controversially discussed. However, recent observations
indicate a particular importance of mold/mycotoxin exposure in individuals with pre-existing
dysregulation of the immune system, due to exacerbation of underlying pathophysiology including
allergic and non-allergic chronic inflammatory diseases, autoimmune disorders, and even human
immunodeficiency virus (HIV) disease progression. In this review, we focus on the impact of
mycotoxins regarding their impact on disease progression in pre-existing immune dysregulation.
This is complemented by experimental in vivo and in vitro findings to present cellular and molecular
modes of action. Furthermore, we discuss hypothetical mechanisms of action, where evidence is
missing since much remains to be discovered.

Keywords: molds; mycotoxins; dysfunctional immune system; immune system disorders; im-
mune response

1. Introduction

Humans are exposed to multiple fungi. Many fungi live in harmony with humans,
rarely causing diseases. Possible health effects associated with fungi generally fall into the
category infections (mycosis), allergic reactions, or toxic effects [1]. Fungi causing mycosis
include dermatophytes, yeast, and mold. Fungal infection requires exposure to spores via
inhalation, ingestion of contaminated food, or skin contact [2,3]. Although fungal infection
can occur in healthy individuals, especially individuals with a weakened immune system
are of risk (reviewed by Kohler et al. [4]).

Molds are fungi, which grow in form of multicellular filaments called hyphae and
are found in distinct environments: air, soil, plants, animals, and human hosts [5,6]. It is
present indoors and outdoors and grows in places with a lot of moisture [7]. Mold exposure
is reported for contaminated plant-based foods, carried-over mycotoxin metabolites to
meat and dairy products, air and dust [8], predominantly in countries with lacking imple-
mentation of adequate food safety policies [8]. Mycotoxins are diverse toxic secondary
metabolites that are naturally produced by a wide range of molds [9]. Notably one mold
species can produce several mycotoxins, and vice versa, different mold genie may produce
the same mycotoxin [9,10].

Significant exposure to mycotoxins has also been found in developed countries [11],
even in highly controlled infant food products [12]. Moreover, mycotoxins were detected
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in children’s plasma [13]. Additionally, occupational exposure to carcinogenic aflatoxins
(AF) in agricultural-related workspaces worldwide are a well-known health concern [14].
To date, several hundred mycotoxins have been identified. Various high-performance liq-
uid chromatography techniques like liquid chromatography/mass spectrometry (LC/MS)
are used for identification and detection of mycotoxins. Particularly, LC coupled to tandem
mass spectrometry (LC/MS/MS) has become important for mycotoxin analysis [15]. Addi-
tionally, molecular polymerase chain reaction(PCR) approaches have been developed [15].
Moreover, enzyme-linked immunosorbent assays (ELISA) are on the market to detect
mycotoxins in different matrices including urine samples.

In the past decade, mycotoxins have attracted considerable attention due to their
potential of strong toxicity. Harmful effects caused by mycotoxins include acute poisoning
after consumption of high dosages, which may even result in death [16]. AF, as the most
prominent example, can cause irreversible liver damage [16]. Furthermore, adverse effects
on many internal organs have been reported [16]. The respiratory system is the first point
of contact during inhalation of mold spores and mycotoxins. Mycotoxins like AF have been
shown in vivo to slow down basal and stimulate respiratory ciliary beat frequency, poten-
tially increasing pathogenesis and infection by impairment of clearance [17]. Furthermore,
damaging effects of mycotoxins on the gastrointestinal tract due to ingestion of contami-
nated food have been described, commonly manifested as inflammation, necrotic changes,
damage to intestinal barrier function, impairment of secretory activity and alterations in
enterocyte metabolism (reviewed by Gonkowski et al. [18]). Initial in vivo studies also indi-
cate an influence on the enteric nervous system (ENS) via gastrointestinal tract contact [18].
Previous review articles summarized that exposure to molds, mycotoxins and water dam-
aged buildings might also be associated with neurological and neuropsychiatric symptoms
including pain, movement difficulty, delirium dementia and disorders of balance and
coordination disorders [19]. Currently, the contribution of fungal opportunistic infections
secreting mycotoxins into the nervous system and its neurotoxic effects in amyotrophic
lateral sclerosis (ALS) is under investigation [20]. The combination of inflammation from
the chronic infection and production of neurotoxins might be involved in systemic neuronal
degeneration [20]. Even a connection between mycotoxins and Parkinson’s disease has
been observed [21]. On the other hand, two recent reviews [22,23] critically discussed a
health issue describes as “toxic mold syndrome”. These review articles conclude that there
is currently no evidence for a causative relationship between the occurrence of mold and
the described symptoms [22,23].

The immune system plays a key role in host–pathogen interaction and is essential for
protecting living organisms against pathogens like molds and mycotoxins. Intact barrier
functions, innate, and adaptive immune responses are essential for effective and successful
elimination of infectious pathogens and toxic metabolites. These mechanisms might be
disturbed in response to fungal cell wall antigens, or immunomodulatory and immunotoxic
actions of mycotoxins, and therefore are critical for the development or exacerbation of
immune system-related diseases.

The present review aims to indicate that, next to direct effects of mold and mycotoxin
exposure in immunocompetent individuals, exposure in the presence of pre-existing im-
mune dysregulation is of particular concern. First, we briefly describe how mycotoxins
directly exert immunomodulatory effects. Next, we illustrate how mycotoxins might trig-
ger the onset or exacerbation of chronic inflammatory diseases, autoimmune disorders, and
progression of HIV disease [24–29]. Furthermore, cellular, and molecular key mechanisms
of these exacerbating effects in the progression of the underlying diseases are discussed.

2. Mold-Induced Immunological Effects
2.1. Toxic Mold Syndrome

The toxic mold syndrome is described as a symptom complex including various vague
characteristics like cognitive impairment, emotional disturbance, respiratory complaints but
also symptoms like muscle ache. It is thought to be a direct effect of indoor “black mold” and
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its mycotoxins [23]. Nevertheless, to date, there is a critical debate going on about this issue,
since scientific evidence is lacking [22,23]. According to the critical voices, one would assume
that the “toxic mold syndrome” is a nocebo effect to visible “black mold” and not a real subject
of public health concern. However, molds and their mycotoxins have been shown to induce
direct hypersensitive reactions and have immunomodulatory properties in immunocompetent
individuals. Moreover, there is growing evidence that mycotoxins are of specific concern for
individuals with a pre-existing impairment of the immune system.

2.2. Mold-Induced Hypersensitivity

Mold can cause different hypersensitivity reactions. Hypersensitivity reactions are
exaggerated or inappropriate immunologic responses occurring in response to an aller-
gen [30]. Allergens act as antigens resulting in a strong immune response. The four genera
Alternaria spp., Cladosporium spp., Aspergillus spp. and Penicillium spp. belong to the
phylum Ascomycota for which currently 88 allergens are described (see www.allergen.org;
accessed on 30 August 2021). Allergens include enolase, heat shock proteins, cyclophilins,
proteases, redoxins, and disulphide isomerases [31,32]. According to our current knowl-
edge, there is no evidence that mycotoxins may function as allergens.

Type 1 allergies are characterized by antigen-specific IgE-antibodies, which are pro-
duced shortly after exposure to already sensitized mold antigens. Not all the mold pro-
duced IgE-binding antigens are equally important [33]. Although the exact prevalence is
unknown, it is estimated to range from 3 to 10% [33]. Even if the prevalence of sensitiza-
tion can only be estimated, there are multiple studies indicating, mold is considered an
important allergen source for allergic asthma [34].

Recent studies indicate, that classical outdoor species like A. alternata and A. fumigatus,
as well as various indoor mold species exert strong inflammatory and allergenic properties
in asthmatics with mold sensitization [24]. Next to allergic asthma, fungal rhinosinusitis
(AFRS) a subset of chronic rhinosinusitis with nasal polyps (CRSwNP) has also been
classified as type 1 allergy with elevated levels of mold-specific IgE [35].

In addition to type 1 allergies, mold can also induce type 3 and 4 hypersensitive
reactions, known as hypersensitivity pneumonitis (HP) [36]. These reactions are mediated
by immune complexes and T helper 1 cells, respectively [37,38]. HP has been associated
with airway exposure to high concentrations of mold spores, especially due to occupational
conditions like farmer’s lung, or trombone player’s lung in wind musicians [25,26,36,39].

2.3. Immune Modulatory Potential of Mycotoxins

Mycotoxins occurring in food have been associated with long-term health effects like
immune deficiency, which can result in an increased risk of infection susceptibility and
cancer [16]. A recent review article addressing aflatoxin B1 (AFB1) summarized the acute
and chronic effects including immunotoxicity of AF in humans and animals. The mech-
anisms of action underlying immunotoxicity of AF are still under investigation. AF can
induce immunosuppressive but also immunostimulatory effects [40]. A recent in vivo
study showed, that aflatoxin M1 (AFM1) suppressed innate and acquired immunity [41].
Patulin, a mycotoxin found in several fruits and their products such as juice or jams, has
been shown to suppresses innate immune responses in vitro [42]. Furthermore, the my-
cotoxin ochratoxin A (OTA) mainly occurring in cereals, coffee, and red wine, has been
reported to affect immunological response in piglets [43]. In humans, it is predominantly
known for its acute nephrotoxic effect and a range of chronic disorders like upper urothelial
carcinoma [44], but also immunomodulatory effects are under discussion [45].

Contamination with the Fusarium spp. mycotoxin deoxynivalenol (DON) in food is
a public health concern according to WHO [16]. To date it is still unclear whether DON
exposure influences certain diseases such as allergies.

www.allergen.org
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3. Mold-Induced Exacerbation of Immune System Disorders
3.1. Mold Exposure and Increased Asthma Severity

Asthma is a very heterogeneous disease, characterized by airway inflammation and
hyperreactivity. Asthma pathogenesis is complex and can be induced by allergens, non-
allergens, and intrinsic factors [46]. Irrespectively from etiology, asthma can be categorized
into different severity phenotypes with mild-to-moderate versus severe asthma. Accord-
ing to ERS/ATS 2014 guidelines, severe asthma is defined as difficult-to-treat asthma,
accompanied by either lung impairment and/or risk of exacerbation [47,48].

Current knowledge about mold exposure and association with asthma was analyzed
in a meta-analysis, including 148 studies [49]. Dampness or mold exposure was associated
with increased asthma development and exacerbation in allergic and nonallergic individu-
als [49]. Mold exposure might modulate asthma severity in two aspects, (1) as sensitizer
associated with increased severity of allergic asthma [50], and (2) as a pathogen related to
severe asthma by a non-specific inflammatory mechanisms [50].

First, A. fumigatus has recently been shown to be of special concern as a sensitizer
associated with increased allergic asthma severity (Table 1) [50].

In a case control study of Vincent et al., 2018 [50] 64 asthmatic subjects were classified
as mold-sensitized asthmatic cases (positive skin prick test and/or CAP test to mold)
or asthmatics without mold sensitization (negative for all skin prick tests and/or CAP
test). In A. fumigatus sensitized asthmatics elevated total IgE, a higher degree of broncho-
obstruction (FEV1/FVC) and a tendency of increased risk for severe asthma were detected
in comparison to asthmatics without mold-sensitization [50]. Regarding the used surrogate
markers in the presented human studies [50] (Table 1), total serum IgE-measurement was
used as standard measurement to assess possible allergy. Notably, the clinical significance
of an antigen does not lie in its IgE-binding capacity but in its capability to induce strong
IgE-medicated and T-cell-mediated reactions [33]. These reactions should be assessed
in vitro by measurement of basophil histamine release and in vivo skin and provocation
test. Moreover, T-cell mediated responses are measured in vitro by T-cell proliferation
assay and in vivo via atopy patch test [33]. Therefore, serum total IgE-measurement is a
weak readout for the assessment of an ongoing allergic reaction. The FEV1/FVC ratio,
also called Tiffeneau-Pinelli index, is a calculated ratio used in the diagnosis of obstructive
and restrictive lung disease (e.g., asthma). The advantage lies in the broad application
and comparison of this parameter between different studies. Moreover, determination of
suspected mycotoxins and/or their metabolites in serum or urine samples would have
increased the impact of the discussed studies (Table 1).

The findings of the human study by Vincent et al., 2018 [50] are in line with in vivo
findings in a mouse model, showing A. fumigatus to be more pro-allergenic (Th2 allergic
response) compared to other mold species [24]. Taken together, at least for A. fumigatus an
association between exposure and severe allergic asthma phenotype due to increased sensi-
tization does exist. However, to date there is no consensus on whether higher sensitization
to allergens in general leads to an increased risk for the development of severe asthma [51].
According to Fitzpatrick et al., 2006 [52] severe asthma in children had a more profound IgE
sensitization and more positive skin prick tests for different allergens (weed mix, D. farinae,
and D. pteryn) than those of mild-to-moderate asthma phenotype children [52]. Of note,
the two study groups did not differ in sensitization to animal dander, tree, or mold [52].
Mendell et al., 2011 [49] summarized in their meta-analyses, that there is strong evidence
for dampness and mold to cause asthma exacerbation in children. On the contrary, severe
asthma was accompanied by less sensitization in adults [52]. Zhang et al., 2018 [53] re-
cently addressed the question, whether fungi including mold act as allergens when they
exert their impact on allergic inflammation and came to the conclusion, that although
allergens play an important role in the promotion of asthma, additional factors that act as
immunomodulators probably contribute the exacerbation of asthma. Mycotoxins might be
considered as one such factor. In vivo, it has been demonstrated that worsening of allergic
asthma hallmarks was related to mycotoxin exposure in the absence of mold allergens [54].
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Exposure of ovalbimun (OVA)-sensitized mice to gliotoxin (GTX) and patulin significantly
increased airway inflammation, the number of eosinophils in bronchoalveolar lavage and
the specific OVA-IgE levels compared to mycotoxin unexposed OVA-sensitized animals.

Next to the role of mold in severe allergic asthma, Penicillium spp. indoor exposure
was also related to increased asthma severity in non-sensitized asthmatics in a small
number of cases (Table 1) [50]. This effect could be explained by non-specific inflammatory
mechanisms. However, due to small sample size verification is necessary [50].

In general, it is currently hypothesized, that the risk factor for increased asthma
severity might not be due to sui generis of mold [50]. This is interesting, since one mold
species can produce several mycotoxins, and vice versa different mold genie may produce
the same mycotoxin. Overall, recent findings strengthen the evidence that mold exposure
might be one of multiple risk factors regarding the development of severe asthma with
exacerbation of asthmatic symptoms and impairment of lung function. Mold allergens
are suspected to be allergic triggers [47]. However, mycotoxins might be considered of
significant relevance in the exacerbation of asthma irrespective of its etiology [54].

3.2. Mycotoxin Exposure and Its Association with Autoimmune Disorders

The pathogenesis of autoimmune diseases is multifactorial with both genetic and
environmental factors playing a role. In addition, epigenetic modifications can be triggered
by environmental exposures to cause aberrant expression of genes and induce autoim-
mune diseases.

Multiple sclerosis (MS) is characterized by neuroinflammation and axonal demyeli-
nation of neurons in the central nervous system and spinal cord. A correlation between
fungal infection and MS has been described for yeast Candida spp. [28]. Irrespective of MS
diagnosis, neural protein autoantibodies were increased in several individuals, which were
exposed to mold [55,56]. Similarly, a conducted cohort study of 8 females with known
exposure to water-damaged or mold-contaminated buildings were tested positive for IgG
neuronal antibodies against microtubule-associated protein-2, myelin basic protein, tau,
glial fibrillary acidic protein, tubulin, and S-100B (Table 1) [57]. Nevertheless, these results
must be considered with caution, since mycotoxin measurements in patients serum and
urine are missing. Of note, an increase in autoantibodies may be caused by multiple factors
including environmental triggers, such as a viral illness or a prolonged exposure to certain
toxic chemicals.

In vivo, GTX exposure worsened the phenotype of an experimental autoimmune
encephalomyelitis (EAE) model by triggering neuroinflammation and demyelination [58]
supporting the hypothesis of an association between mycotoxin exposure and MS aggrava-
tion (Table 1).

Next to neuronal autoimmunity effects additional observations regarding autoimmune
abnormality have been seen regarding fungal and mycotoxin exposure: in a small case
control study the elevated levels of antigenicity for antimitochondrial antibodies (AMA)
in 6 patients were all associated with mold and moisture exposure [59]. Mold-derived
mycotoxins might induce mitochondria damage [60] and trigger autoimmunity via AMA,
which are e.g., detected in more than 90% of patients with primary biliary cirrhosis [59].

For rheumatoid arthritis (RA), another autoimmune disease, only limited data are
available analyzing the effect of mold exposure in humans [61]. A case study published in
the 80s with only a limited number of patients described a tendency of stronger sensitization
to Aspergillus spp. antigens in RA patients compared to controls. There are currently no
further human data available for a decent assessment of a potential relationship between
RA and mold exposure [62]. However, in an experimental RA model OTA and DON
have been examined, showing that both mycotoxins have the potential to increase the
susceptibility and severity of RA [63]. The exposed mice showed an enhanced clinical score
for each paw with histopathology showing infiltrated leucocytes, synovial hyperplasia,
pannus formation, cartilage destruction and bone erosion [63].
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3.3. Mycotoxin Exposure Is Associated with an Onset of Inflammatory Bowel Disease

The incidence of inflammatory bowel diseases (IBD) is increasing in Western and
developing countries. IBD are multifactorial disorders involving complex interactions be-
tween genetic, immune, and environmental factors such as exposure to food contaminants.
Previously, IBD has been classified as autoimmune diseases, but new research has shown,
that inflammation is rather caused due to an immune barrier defect [64].

Inflammagens inducing an aberrant immune response have long been hypothesized
as trigger for the development of chronic inflammatory diseases [65,66]. Brewer et al.,
2013 presented a series of human case reports providing evidence that molds and released
mycotoxins act as inflammagens possibly residing in patients with chronic illness and
contribute to its chronic progression [66]. This hypothesis is partly supported by a recently
published human case report, presenting a 25-year-old male patient with a refractory
ulcerative colitis (CU), chronic fatigue syndrome, and an HLA-DR/DQ genetic background,
who was tested positive for mycotoxin of trichothecene (Table 1) [65]. In this case report
de-challenge of mold exposure resulted at least in recovery of acute pancreatitis symptoms
although colitis itself needed further medical treatment [65]. The strength of this case
report is the test for mycotoxin and the follow-up after de-challenge. This approach is
recommended for future cohort studies. Nevertheless, patients with comorbidities next to
IBD should be excluded to avoid disturbance by concomitant disease when investigating
mycotoxin effects in IBD patients.

Stronger evidence is provided by a well-designed in vivo experiment showing that
mycotoxins DON [67] and zearaleone (ZEA) [68] have the potential to induce the onset of
colitis showing morphological changes and increased colonic inflammation. Next to their
potential to induce or trigger IBD in vivo, mycotoxins also worsened colitis symptoms after
DON exposure in a colitis rat animal model (Table 1) [67].

Taken together, there are currently only few data available indicating that mycotox-
ins might be a relevant risk for the onset or exacerbation of IBD in humans. Therefore,
epidemiological studies are necessary to further investigate the role of mycotoxins as a
relevant risk factor for IBD and other immune-related intestinal disorders.

3.4. Mycotoxin Exposure and Human Immunodeficiency Virus (HIV) Infection

So far, two studies have been published supporting the hypothesis that mycotoxin ex-
posure might have the potential to worsen human immunodeficiency virus (HIV) infection.
It has been demonstrated that a correlation exists between an increased HIV burden and
elevated aflatoxin B1 albumin adducts (AF-ALB) in the serum of HIV-positive individuals
(Table 1) [69,70]. Similarly, a positive correlation between OTA plasma levels, HIV target
cell activation, and plasma levels of the pro-inflammatory chemokine chemokine (C-X-C
motif) ligand 10 (CXCL10) has been shown in a cohort study with children exposed to HIV.
These findings indicate that OTA exposure has the potential to increase immune activation
and is especially harmful for HIV-exposed or HIV-infected individuals (Table 1) [45].

Since AF and OTA exposure, as well as HIV-infection, are known to cause immune
modulation [47,71,72], a synergistic relationship may exist and is postulated [73]. Although,
these studies indicate a possible correlation, there are no in vivo or in vitro studies for a
decent clarification of underlying pathophysiological mechanisms. However, the positive
correlation between increased mycotoxin levels and HIV load might not be of a causative
nature, but rather reflect the high prevalence of HIV-infection and missing food controls
in the living area of the observed population. Pointing towards a poor health and food
supply system.
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Table 1. Mold-induced exacerbation of underlying disease.

Mold Mold
Component Species Disease/

Model
Measured Surrogate
Marker Outcome Source

Increased Asthma severity

A. fumigatus Spores Human Asthma

Total serum IgE ↑
Blood eosinophils
(cells/µL) ↑
FEV1/FVC (%) ↓

Asthma severity
increased [50]

Penicillium spp. Spores Human Asthma FEV1/FVC (%) ↓ Asthma severity
increased [50]

n.a. GTX
Patulin Mouse Allergic asthma/

OVA-model

Airway inflammation ↑
OVA-IgE ↑
BAL eosinophils ↑

Asthma severity
increased [54]

Involved in autoimmune response

Mold water damage n.a. Human n.a.

IgG neuronal antibodies
against
microtubule-associated
protein-2, myelin basic
protein, tau, glial
fibrillary acidic protein,
tubulin, and S-100B

No clincial outcome [57]

n.a. GTX Mouse EAE Neuroinflammation ↑
Demyelination ↑

Aggravation of
autoimmune
encephalomyelitis

[58]

A. fumigatus
A. fumigatus
antigens
(I and VIII)

Human RA IgG ↑
IgA ↑

Stronger
sensitization than
control subjects

[62]

n.a. OTA
DON Mouse RA

DBA1 model

IgG1 ↑
IG2a ↑
Pro-inflammatory
cytokines ↑

Clinical severity
score ↑ [63]

Trigger of IBD

S. chartarum Trichothecene
group Human

CU/CSF
HLA-DR/DQ
susceptible

Mycotoxin test
in urine-positive

Pancreatitis
improved after
withdrawn

[65]

n.a. DON Rat CU
DSS model

Morphological damage
in colon ↑
Colonic inflammation ↑

Exacerbation of
onset and
symptoms of
DSS-induced colitis

[67]

Worsening of HIV condition

Aspergillus spp. AFB1 Human HIV-positive adults Plasma aflatoxin B1 ↑
HIV-1 RNA ↑

Higher viral loads
in HIV-positive
humans with higher
AF-ALB

[69,70]

4. Mode of Action

The immune system plays a central role in mold-host interaction. Several organ-
specific barrier functions are impaired by mycotoxins [71,74,75]. Additionally, immune
response against mold has been shown to be species- and mycotoxin-dependent [72].
Especially trichothecenes, AF, GTX, ZAE, citrinin, fumonisins, ergot alkaloids, OTA, and
patulin have been studied in vivo and in vitro to identify cellular targets and molecular
mechanisms of action [22]. Brown et al., 2021 [76] summarized in detail how various
mycotoxins affect different immune cells under physiological conditions and concluded
that the effects on immune cells exerted by mold toxins most commonly involve the
induction of apoptosis and the suppression of specific immune cell function.

Herein, we summarize the immune response to mold and mycotoxins under different
impaired immune system conditions. Therefore, we focus on in vivo and in vitro models
to sum up and partly discuss the current knowledge of cellular and molecular modes
of action.

4.1. Effects of Mold on the Immune System

Mold species and its components including mold spores and hyphal fragments have
been recognized to be involved in inflammation and as allergens that can cause different
diseases [31]. The immune system is triggered by several mycelium molecules of molds.
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β-1,3 glucans are naturally occurring in the cell walls of fungi and are recognized by host
phagocytic cells, dendritic cells, neutrophils, and epithelial cells via C-type lectin receptors
(dectin-1 and 2, Mincle and mannose receptors) [77]. Moreover, mold cell wall is composed
of glycoproteins with allergenic properties [78]. In addition, mold allergens are also found
in enzymes released in the external environment during the germination process [79,80].
The lung epithelium and the dendritic cells present in the lung can recognize these allergens
which initiates the allergenic process. Findings show that C-type lectin receptors can
activate innate immune cells, the first line of defense, and modulate the development of the
adaptive immunity through the differentiation of T-helper 1 (Th1) and T-helper 17 (Th17)
cells, two critical cell subsets to mount a protective immune response against pathogenic
fungi [81–83]. These responses have been widely investigated with the pathogenic yeast C.
albicans and the mold A. fumigatus but the relative contribution of C-type lectin receptors
in the development of immune responses against nonpathogenic molds as for instance
Penicillium spp., Cladosporium spp. or A. alternata is lacking and the mechanisms involved
are not formally identified yet.

Moreover, the engagement of C-type lectin receptors triggers the activation of intra-
cellular signaling pathways leading to the activation of inflammasomes and promotes
inflammatory responses critically required to control fungal infections, including mold [84].
For A. fumigatus it has been shown that C-type lectin receptor dectin-1 at the surface
of dendritic cells induces respiratory burst and the production of inflammatory media-
tors, including tumor necrosis factor-α (TNF-α), various interleukins (IL-1β, IL-6, IL-23),
chemokines ligands (CCL-2 and CCL-3), and chemokine (C-X-C motif) ligand 1 (CXCL-
1) [85]. When knocking out dectin-1 in mouse models mortality rate increases due to poor
neutrophil recruitment and an impaired fungal killing of A. fumigatus [86].

Next to the discussed mold components, mycotoxins as secondary metabolites of
molds have been shown to have multiple mode of actions including impairment of barrier
functions and exacerbation of inflammation as presented in the following sections.

4.2. Mycotoxins Are Systemically Bioavailable

The route of mold and mycotoxin exposure might be relevant for the discussion of
local effects and adverse reactions. However, it is important to mention that mycotoxins
are systemically bioavailable irrespective of the route of exposure. Mycotoxin exposure
via the airways results in systemic bioavailability in animal models [87]; multiple organs
are therefore potentially exposed [88,89]. Even oral mycotoxin intake resulted in chronic
inflammation of the lungs [90,91].

4.3. Mycotoxins Compromise Barrier Functions

Epithelia and the mucosal barrier build the initial defense shield against molds,
irrespective of exposure route. Intestinal epithelial cell death or alterations of the tight
junction can be causative for transcellular and paracellular transport. Intestinal barrier
integrity is impaired by e.g., A. flavus toxins AFB1 and AFM1 [92], which has been shown
for differentiated gastrointestinal epithelial cells [75,93].

When mycotoxins are inhaled, they locally affect the respiratory epithelium and
increase the invasive capacity of molds. For GTX in vivo experiments in mice demonstrated
that the invasive capacity of A. fumigatus was increased and even correlated with increased
mortality [94,95].

This is in accordance with in vitro experiments of human alveolar epithelial cells. In
human bronchial epithelial cells GTX promoted cytoskeletal remodeling, which facilitates
the internalization of A. fumigatus [94,95]. Other in vitro experiments were designed to
test effects of acute exposure to AF on airway cell physiology, showing that AF reduced
the respiratory mucosal ciliary function [96]. Moreover, sterigmatocystin (ST) induced
apoptosis in human pulmonary cells in vitro [97]. Even alterations in blood brain barrier
(BBB) permeability upon exposure to GTX have been described by using microvascular
endothelial cells originated from human induced pluripotent stem cells (iPSCs) [98].
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Taken together, these findings implicate mycotoxins facilitate the entrance of mold
components like inflammagens and/or allergens by compromising of the barrier function
resulting in an inappropriate immune response.

An impaired epithelial barrier function is discussed in various diseases like asthma,
IBD and MS to be a risk factor for inflammatory changes. In asthma, airway epithelium is
dysfunctional since tight junction formation is interrupted [74]. Dysfunction of epithelial
barrier and its aggravation are thought to have a significant pathophysiological contribution
in asthma pathophysiology [99].

Moreover, in IBD, the breakdown of intestinal epithelia barrier function is character-
istic for the diseases [100]. Although clinical and experimental data implicate a causality
between intestinal hyperpermeability and IBD, so far no direct causal relationship was
confirmed [101].

Furthermore, in MS the BBB function is altered. A recently published review summa-
rizes pathophysiological studies of MS patients, showing BBB abnormalities and a strong
correlation between inflammation and degeneration in MS progression [71].

In summary, there is evidence that epithelial barrier dysfunction is an important
risk factor for inflammatory changes in various chronic inflammatory diseases and future
research should address the role of mycotoxins as potential trigger and/or booster in
adequate in vivo diseases models.

4.4. Mycotoxins Can Influence the Gastrointestinal Microbiota

The gut microbiome regulates the intestinal homeostasis and is an important part of
the mucosal immune system [102]. Inflammation processes have been shown to result
in dysbiosis having the potential to induce intestinal diseases [71,102] and autoimmune
disorders [103]. It has been demonstrated that mycotoxins including trichothecenes, ZAE,
fumonisins, OTA, and AF can influence the gastrointestinal microbiota directly through
antimicrobial activity and through secondary mechanisms involving the release of an-
timicrobial compounds from mycotoxin damaged host cells [104,105]. So far, it has been
identified that the interaction between gut microbiota and mycotoxins plays a significant
role in the development of mycotoxicosis [104]. As already discussed, DON is a risk factor
for IBD onset [67]. Chronic treatment of rats with DON over 9 months with doses relevant
for currently estimated human diet exposure resulted in a reshaped gut microbiota and
dysbiosis [27]. Furthermore, DON exposure exacerbated the genotoxic effect of E. coli
strains producing colibactin in the gastrointestinal tract [106]. Colibactin is a genotoxic
secondary metabolite produced by a subset of phylogroup B2 E. coli strains and associated
with DNA double-strand breaks in intestinal epithelial cells [106].

These findings might even be a first hint at a synergistic effect between DON exposure,
gut microbiota, and increased risk of intestinal carcinogenesis.

In general, it is most likely that a mycotoxin-induced gut dysbiosis might be a trigger
for the development of various diseases.

4.5. Mycotoxins Have the Potential to Induce and Exacerbate Inflammation

Mycotoxins can initiate or enhance inflammation [76,107], and several molecular
modes of action are considered like overactivation of inflammasome-mediated responses
or the induction of ROS [108,109]. Receptor-mediated inflammasome activation has been
shown for ZEA [68], AFB1 [110], and trichothecene [111]. In addition, patulin induction
of pyroptosis through autophagic inflammasomal pathway has been demonstrated in
liver cells [112].

In autoimmune diseases, inflammatory processes e.g., neuroinflammation in MS
are key mechanisms to pathophysiology. Environmental agents like food additives and
pollutants or toxins, among which are mycotoxins, at prolonged low-dose-exposure con-
ditions, might trigger the essential molecules associated with central nervous system
(CNS)-immune system interactions.
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The inflammatory aspect links these autoimmune diseases and nervous system disor-
ders [113–115]. Traditionally, neuroinflammatory disorders like MS are characterized by
leukocytes invading the CNS parenchyma and deliver cytokines to the tissue, inducing an
inflammatory cascade. Interleukin-1 β (IL-1β) and IL-6 are central to the inflammatory pro-
cess and can be sensed by astrocytes, microglia and monocyte-derived cells [116]. During
the cytokine activation, tryptophan metabolism is also interrupted in favor of decreased
serotonin availability and increased kynurenine, ROS, nitric oxide (NO), and glutamate
release (an excitatory neuromodulator) [117,118]. The increased inflammatory mediator
profile and kynurenine to tryptophan ratio suggest that inflammatory mediators might be
responsible for a high risk of psychological disturbances [119,120]. Figure 1a summarizes
the current knowledge of the complex interaction between mycotoxins and MS patho-
physiology [121,122]. GTX has been shown to effect and damage microglial, astrocytes,
and oligodendrocytes [123]. Direct interactions of fungi including molds with the CNS
or indirect toxin release from a non-neurological site can be causative. Dose-dependent
GTX increased neuroinflammation accompanied by aggravation of demyelination has been
shown in a MS mouse model [58]. CNS analyses revealed that GTX locally increased the
relative expression of inflammatory genes and cytokine production, thereby exacerbating
neuroinflammation [58]. Different neurological diseases might be influenced by mycotox-
ins via similar mechanisms [58]. Immune alterations can induce many proinflammatory
cytokines by peripheral blood mononuclear cell (PBMCs), endothelial cells, glial cells,
and neurons in the Toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer
(NF-kB), and mitogen-activated protein kinases (MAPKs) dependent manner [123–125].
Such unbalanced metabolic and physiological status mediated by pathogen-associated
molecular patterns (PAMPs), damage-associated molecular pattern (DAMPs), cytokines
(TNFα, IL-6, IL-17, and IL-1β), immune cells upregulate TLRs, and cytokine receptors
(G protein-coupled receptors and tropomyosin receptor kinase-A) influence neural circuits.
Hence, a continuous immunological sensory flow involves the fundamental aspects of neu-
ronal integrity, secondary messengers, calcium (Ca2+), cyclic adenosine monophosphate,
and intracellular kinases [113,126].

Chronic inflammation is characterized by infiltration of affected organs by immune
cells like neutrophils, eosinophils, macrophages and dendritic cells [127]. Cytokines, ROS
and other proinflammatory mediators are secreted by these immune cells and released into
blood circulation [127], potentially activating excessive inflammation [128], asthma [34],
and IBD [129]. ZAE has been shown to induce intestinal inflammation in vivo under physi-
ological conditions [68]. First evidence points out, that ROS-mediated nucleotide-binding
oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) in-
flammasome activation might be the possible underlying mechanism [68]. In an animal
model of IBD it has been shown that oral exposure to DON, induces intestinal breakdown
and inflammatory response leading to CU [67]. DON increased morphological damage,
proinflammatory markers (myeloperoxidase, CXCL-1) and IL-1β), and immune cell re-
sponses. In lamina propria of the rat CU models DON increased adaptive and innate
immune responses after anti-CD3/28 or LPS stimulation, respectively. In the spleen, DON
increased IFN-γ secretion and reduced Treg populations. Interestingly, De-epoxy-DON
(DOM-1) a detoxified form of DON did not have any consequences on colitis [67].
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Figure 1. Overview of mechanisms underlying the exacerbating effects of mycotoxin exposure under a dysregulated immune
system. (a) Mycotoxins in the pathogenesis of MS: exposure to GTX alters the blood brain barrier [98]. Mycotoxins affect neu-
ral tissue by damaging astrocytes, oligodendrocytes, and microglia. Loss of oligodendrocytes leads to further demyelination
while targeted astrocytes release proinflammatory cytokines contributing to the neuroinflammatory environment. Another
direct effect of mycotoxins is the induction of proinflammatory gene expression in the CNS. Indirect pathways via proinflam-
matory cytokines like IL-1β are hypothesized to interact with microglia through an augmented kynurenine/tryptophan ratio,
which promotes the secretion of neurotoxic metabolites. (b) Mycotoxins in asthmatic conditions: exposure to mycotoxins
worsens the respiratory epithelium barrier impairment. Dendritic cells take up mycotoxins leading to a decreased production
of IL-12 and an increased ROS production as well as overactivation of the inflammasome. IL-12 reduction further emphasizes
the Th1/Th2 imbalance contributing to the increased airway inflammation in asthmatic mouse model (c) Potential modes
of action between mycotoxin exposure and HIV replication: exposure to mycotoxins modulates immune response via
induction of ROS. ROS inhibits oxidative defense machinery via Nrf2 retention and induces proinflammatory response via
NF-κB induction. Both, mycotoxin related oxidative stress and proinflammatory signals could potentially contribute to an
increased HIV burden and disease progression. Figure 1a adapted from “Allergic airway sensitization”, by BioRender.com
(2021). Retrieved from https://app.biorender.com/biorender-templates; Figure 1b adapted from “Pathogenesis of Multiple
Sclerosis”, by BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates.

BioRender.com
https://app.biorender.com/biorender-templates
BioRender.com
https://app.biorender.com/biorender-templates


Int. J. Mol. Sci. 2021, 22, 12269 12 of 20

4.6. Mycotoxins Interfere with T-Cell Differentiation

In an in vivo study, it has been clearly demonstrated that respiratory exposure to GTX
and intestinal exposure to patulin exacerbated the asthma-like phenotype in the studied
asthma-model (Figure 1b) [54]. The mechanisms of action for underlying exacerbating
effects might be caused by the potential of GTX and patulin to interfere with Th1/Th2
balance [130,131]. Indeed, in an asthma model increased Th2 cytokine levels and a reduced
production of the Th1 cytokine IFN-gamma was detected [54], which might possibly
serve as an explanation for the exacerbating effect. Th1/Th2 imbalance is most likely
connected to a reduction of IL-12 production by dendritic cells [54], without affecting
cell viability [130,131]. Inhibition of IL-12 caused by mycotoxins might therefore be a key
element leading to an impaired Th1 cell differentiation, promoting the development of
Th2-driven asthma and other allergic disease. It has been shown that IL-12 production by
dendritic cells of allergic patients is reduced compared to healthy subjects [132,133].

The role of chronic inflammation in the pathogenesis of inflammatory arthritis, for
example, RA and spondylarthritis, is well established in that immune cytokines attributed
to genetic and environmental factors drive systemic inflammation [134,135]. OTA and DON
have been shown to exacerbate the severity of RA in an experimental mouse model [63].
This effect results through an enhanced stimulation of macrophages leading to an increased
release of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α followed by a promotion
of Th1/Th17 cell differentiation [63]. In addition, the production of IL-1β and IL-6 in
inflamed joints and of IFN-γ and IL-17 in splenocytes were elevated [63].

4.7. Mycotoxins and Their Potential Exacerbating Effect Regarding HIV Infection and
Diseases Progression

In the past years, several human studies (Table 1) supported the idea of a potential
exacerbating effect of HIV progression due to mycotoxin exposure.

Since both, mycotoxins and HIV cause immunosuppression, chronic exposure to
mycotoxins in HIV-positive people could lead to higher levels of viral burden and dis-
ease progression. Mycotoxins like OTA [136], AF [41], and trichothecenes [137] have the
potential to induce immunosuppression. Multiple cellular targets have been described
for these toxins. Among others inhibition of protein synthesis by ribosome targeting, and
disruption of mitochondrial function has been shown [138–141]. In vitro OTA-induced
immunosuppression was recently demonstrated [136]. Long-term instead of short-term
exposure induced immunosuppression, which involved inhibition of autophagy through
upregulating p-Akt1 [136]. In an in vivo mouse model AFM1 exposure resulted in a lower
mass of spleen, indicating an overall lower number of T and B cell subpopulations [41].
It was hypothesized that this effect might be related to ROS and formation of DNA adducts
(AFM1-N7-guanin) [41]. A recent review from Wong et al., 2016 [137] mentioned, that
trichothecenes can cause immunosuppression in lymphocytes [142].

Past studies showed significantly lower percentages of CD4+ T cells [69,143] and
B-cells [143] in HIV-positive patients with high AF-ALB compared to HIV-positive patients
with low AF-ALB levels, indicating a synergistic immunosuppressive effect of mycotoxins
and HIV infection.

However, recent human studies showing increased mycotoxin levels and elevated
HIV burden, while CD4+ T cell numbers were still in normal range [70]. In another study,
levels of HIV target cells and CD4+ T cell activation was increased, which is important
in regard to HIV replication [45]. Moreover, the inflammatory marker CXCL10, which is
associated with Th1 T cell mobilization and activation was significantly increased [45].

Regarding these findings, a modulation of the immune response by mycotoxins re-
sulting in increased HIV burden and HIV disease progression (Figure 1c) is currently
hypothesized. Modulation of the immune response by OTA is believed to be mediated in
part by the induction of reactive oxygen species [45]. OTA can induce one or more critical
redox signaling molecules including NF-κB and NF-E2-related factor 2 (Nrf2) via ROS [144].
It has been shown that OTA-induced ROS and oxidative stress is accompanied by an imbal-
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ance in the cellular oxidative defense machinery via retention of Nrf2 [144]. Simultaneously,
NF-κB is induced, indicating its role in a proinflammatory response [144]. Interestingly, low
dose OTA exposure in pigs was associated with increased replication of porcine circovirus
type 2 (PCV2), possibly mediated by intracellular redox status accompanied by intact cell
viability of treated cells [145]. These observations are important, when speculating about a
possible underlying mechanism of an exacerbating effect of OTA exposure in HIV-positive
individuals. ROS production and oxidative stress caused by mycotoxins are accompanied
by proinflammatory response and immune stimulation, which potentially promotes HIV
replication [146]. There are several studies discussed in a recent review, which together
demonstrate that especially chronic oxidative stress has detrimental consequences to HIV
related immune response, resulting in an impaired capability to adequately respond to
viral replication [146].

In addition, stimulation of proinflammatory pathways due to impaired oxidative stress
response might be crucial [144,145]. Proinflammatory cytokines have multiple modes of
action including: regulation of HIV replication, influencing HIV lifecycle, the establishment
of latent HIV reservoirs, and chronic inflammation can contribute to apoptosis of CD4+

and CD8+ T cells resulting in immune suppression and disease progression [147].
According to available data, it can be hypothesized that mycotoxin exposure in HIV-

positive individuals exacerbate HIV burden in acute phase—at least in part via ROS, en-
hancing oxidative stress and inflammatory response, while chronification of inflammation
during the chronic phase might then enhance immunosuppression and disease progression.

5. Conclusions and Future Perspectives

Mold and mycotoxin exposure results mainly from contaminated food and inhalation
of spores. Mold spores range in their size from 3 to 40 µm allowing them to flow in the
air and being inhaled by animals and humans. Spores serve as vectors for mycotoxins
and are pathogenic due to allergenic and infectious properties. Irrespective of exposure
route, mycotoxins are systematically bioavailable affecting different system organ classes.
In immunocompetent individuals, direct allergenic, and immune modulatory effects of
mycotoxins are well described and accepted. In contrast, from a clinical point of view the
concept of toxic mold syndrome that might be directly caused by mold or mycotoxins is
discussed controversially. Moreover, according to critical opinions there is no sufficient
evidence that mold/mycotoxin exposure might directly induce autoimmune diseases.

The situation appears different considering the role of mold and in particular of
mycotoxins as risk factors in the onset and severity of various diseases in individuals with
an already impaired immune system. Exacerbation of asthma has already been shown in
well-designed human cohort studies, meta-analyses, and animal models. Although there
seems to be an association between mold/mycotoxin exposure and exacerbation of other
dysregulated immune conditions like inflammatory bowel diseases, autoimmune diseases
or disease progression in HIV-positive patients, no causality could be demonstrated to date.

Epidemiological studies are important for the estimation of risk factors regarding
diseases. Future human cohort studies regarding immune system disorders including
chronic inflammatory disease, autoimmune diseases, and HIV disease should consider en-
vironmental chemicals like mycotoxins to a greater extend to evaluate the actual relevance
for human disease progression.

However, to determine a causal relationship randomized controlled double blind
interventional human studies are needed, which are unethical and therefore justifiably not
allowed. Therefore, well-conducted in vivo and in vitro research studies with plausible
explanations of pathological mechanism should be performed. Additionally, the invasion
of mold under such conditions should be addressed as well. Although emerging evidence
outlined in the current review clearly indicates that mycotoxins have an exacerbating effect
on pre-existing immunological disorders, the key elements have yet to be determined. To
do so, we encourage future research to consider the following points:
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(1) Study objectives should include investigation of the adjuvant activity of mycotoxins of
the addressed immune system disorders. For better understanding of the underlying
pathological mechanism, future research should investigate the key modes of action
including the alteration of barrier functions, exacerbation of inflammation and T-cell
differentiation. Moreover, the measurement of relevant disease parameters like the
influence on gastrointestinal microbiota in IBD, or axonal demyelination in MS is
strongly recommended.

(2) Using appropriate disease models for a valuable translation to human exposure and
clinical research is suggested. Therefore, it is necessary to determine state of the art
disease models and use disease-specific biomarkers as readout. Real-world human
mycotoxin exposure scenarios should be mimicked in model organisms to be able to make
estimations about critical threshold concentration for specific vulnerable populations.

(3) Investigations to develop prevention or treatment strategies to face the exacerbation
of pre-existing immune system disorders due to mycotoxin contamination should
be addressed as well. It should be questioned if the harmful effects are reversible
after elimination of the mycotoxin or by interfering with the mycotoxin modes of
action. E.g., the development of sensitive and specific detection assays for multiplex
mycotoxin detection could be established for comprehensive diagnostics.

(4) Next to mycotoxin exposure, also invasion mechanisms of mold might be of interest
depending on the disease model. Under this scope, antifungal treatment options
should be investigated as well.

These different research approaches are needed to complement the current clinical
knowledge and link the dots until well-studied interventions are available to properly
assess the combination of concern—mold, mycotoxins and a dysregulated immune system.
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