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Background. The rapidly growing field of targeted tumor therapy often utilizes an antibody, sometimes tagged with a tumor-
ablating material such as radioisotope, directed against a specific molecule. Methodology/Principal Findings. This report
describes the discovery of nine novel decapeptides which can be radioactively labeled, bind to, and deliver 32P to colon cancer
cells. The decapeptides vary from one another by one to three amino acids and demonstrate vastly different binding abilities.
The most avidly binding decapeptide can permanently deliver very high levels of radioisotope to the adenocarcinoma cancer
cell lines at an efficiency 35 to 150 times greater than to a variety of other cell types, including cell lines derived from other
types of cancer or from normal tissue. Conclusions/Significance. This experimental approach represents a new example of
a strategy, termed peptide binding therapy, for the potential treatment of colorectal and other adenocarcinomas.
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INTRODUCTION
Illness and death due to colorectal and esophageal cancer

constitute a monumental health care challenge in the United

States and throughout the world [1,2]. Current treatments include

radiotherapy, surgery, and chemotherapy. There are a number of

immunotherapies approved for use in the treatment of various

types of cancers (e.g., Herceptin, Rituxin, Avastin, and others) [3–

6]. All of these immunotherapies utilize a monoclonal antibody

directed against a specific cellular molecule [7,8]. Destructive

action against tumor cells is thought to involve ADCC (antibody-

dependent cellular cytotoxicity), cellular lysis via the complement

pathway, or the induction of apoptosis [9,10]. Avastin is a mono-

clonal antibody directed against VEGF (vascular endothelial

growth factor) and is approved for treatment of colorectal cancer

[11–13].

In addition, Non-Hodgkins lymphoma (NHL) is currently

treated with two approved radioimmunotherapeutic regimens:

Bexxar and Zevalin. Both utilize a monoclonal antibody directed

against the B-cell marker CD20 and can deliver either 131I

(Bexxar) or 90Y (Zevalin) isotopes to target lymphoma cells

[14,15]. Beta-particles (electrons) generated by these isotopes can

deeply penetrate cells and damage DNA, leading to cell death.

However, there are currently no radioimmunotherapies approved

for the treatment of patients with colorectal cancer.

The decapeptides described herein bind to and transfer isotope

(32P) to cell lines derived from several colorectal carcinomas.

Under identical experimental conditions, very little (viz., less than

1% of the colon cancer cell lines’ rates) of the most efficient 32P-

labeled decapeptides bind to cell lines established from a variety of

other cancers or to normal colon, kidney, or esophageal cells.

RESULTS
We have identified nine decapeptides, differing from one another

by only a few amino acids, that when labeled with 32P can bind to

a number of colorectal carcinoma cell lines. All decapeptides

contain a protein kinase A substrate sequence and are designated

as MAs (Modified Adjuvant). Figure 1 is a schematic represen-

tation of the production of the 32P-labeled peptides and the

experimental design of assays to measure binding of peptides to

cell lines.

Figure 2 displays the number of 32P counts per minute (cpm)

remaining bound to eighteen different cell lines and blank wells

after a two hour incubation with MA5, the most efficient binding

decapeptide (see below). The Caco-2 colon adenocarcinoma cell

line retained the greatest number of radioactive counts after a two-

hour incubation and subsequent washes with complete medium,

the average value of triplicate wells equaling 298,639 cpm per

10,000 cells. HCT116 colon adenocarcinoma cells retained an

average value of 131,998 cpm per 10,000 cells. Blank wells and

nonbinding cell lines had mean values of less than 550 cpm; bars

representing these values are not visible at the scale used in

Figure 2. For example, HeLa S3 cervical cancer cells only

retained an average of 534 cpm per 10,000, HT1080 fibrosarco-

ma cells retained 367 cpm, and the human embryonic kidney cell

line 293H retained 429 cpm per 10,000 cells.

Seven of the eighteen cell lines demonstrated very strong

retention of radioactivity when incubated with MA5 (Modified

Adjuvant radioactive peptide) with five of these being colon

adenocarcinoma cell lines (Caco-2, HCT15, HCT116, LoVo,

HT29), one being an esophageal adenocarcinoma cell line (SEG1),

and one being a Barrett’s esophagus cell line (QHTRT). In

contrast, the eleven nonbinding cell lines were mostly squamous

cell lines derived from carcinomas of the cervix (HeLa S3), colon

(RKO), lung (1271, A549), esophagus (KYSE-70), a fibrosacroma
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(HT1080), or cells cultured from normal kidney (293H), colon

(1459), or esophagus (HEEpiC). Nonbinding cell lines included

T84, derived from a colon adenocarcinoma metastatic to lung,

and SK-BR-3, isolated from a breast adenocarcinoma. The ratio

of cpm retained by Caco-2 (298,639) to the average of the eleven

nonbinding cell lines (365) was 818:1. Caco-2 cells retained

approximately 18% of the total radioactive counts present in the

incubation well after two-hour incubation.

Nine MA variants were assayed for adherence to Caco-2 cells

after two hours’ incubation. The relative binding level and amino

acid composition of each MA variant is displayed in Figure 3A.

Alteration of only one to three amino acids within the peptide

resulted in retention differences as large as 70-fold, e.g., in variant

MA2 vs. variant MA5.

To investigate how quickly 32P isotope could be transferred

from the peptide variants and incorporated into cellular proteins,

the three most avidly binding MAs (see Figure 3A) were added to

replicate wells containing Caco-2 cells, then washed away at

varying time intervals and the cells and supernatant assayed. As

shown in Figure 3B, substantial percentages of these 32P-labeled

variant decapeptides bound to cells within only a few minutes,

with large amounts of radiolabeled cellular proteins appearing at

two hours after exposing cells to the labeled peptides. Notably,

a parallel experiment in which conditions described in Figure 3
were duplicated, but washed cells were incubated overnight in

complete medium (data not shown), still revealed similar levels of
32P-decapeptide release and retention for all nine MAs, as

described for MA5 in Figure 2.

The peptide binding, washing and assay experiment described

for Figure 2 was then repeated in the seven most avidly binding

cell lines using MA5, except that after three washes of medium,

200 ul of complete medium was added to each well and the cells

were incubated overnight at 37uC. Figure 4A shows the cpm

Figure 1. Schematic diagram of experimental approach. A bacterial
recombinant expression system produced various gluthathione-S-
transferase decapeptide fusion proteins which were bound to
gluthatione and labeled with 32P utilizing protein kinase A. After
washing, the labeled decapeptides were recovered after thrombin
digestion and incubated at various times with several different cell lines.
doi:10.1371/journal.pone.0000964.g001

Figure 2. Levels of binding of decapeptide MA5 to eighteen different cell lines.The 32P labeled decapeptide MA5 was incubated for two hours with
10,000 cells, washed three times, and the radioactive counts of the cells determined by scintillation counting. Seven cell lines demonstrated avid
binding of MA5 and are shown as bar graphs of the mean and one standard deviation in triplicate wells. The remaining eleven cell lines, along with
one blank well averaged only 365 cpm. These values are so small as to not be visible at the scale used in this figure. Further information on the
individual cell lines is provided in the Supplemental Information.
doi:10.1371/journal.pone.0000964.g002
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retained by cells or released into the medium after this overnight

incubation. Approximately 88% of MA5 radioactive counts

initially retained by the colon cancer cell lines was released into

the medium, while approximately 12% of initially retained

radioactive counts were retained by cells. The two esophageal

cell lines that originally retained large amounts of radioactive

counts, QH-TRT and SEG1, retained 39% and 37% of their

original counts, respectively, after overnight incubation. Caco-2

cells retained the greatest number of counts, averaging

58,305 cpm in triplicate wells containing 10,000 cells each. This

figure represents approximately 5.8 cpm, or 348 counts per hour,

per cell (i.e., when extrapolated over a potential 2-week exposure

period, equivalent to over 87,000 counts per cell).

Figure 4B shows the time course of the release of MA5 from

the Caco-2 adenocarcinoma cell line over a 48-hour time period.

The majority of the total counts released over the 48 hour time

period are released by nine hours of incubation. Figures 4C and
4D consist of two autoradiograms showing the locations of the

radioactive molecules described in Figure 4B on polyacrylamide-

SDS gels. The sizes of the cellular radioactive proteins in the cells

are shown in Figure 4C; 32P-labeled MA5 released into the

medium is shown in Figure 4D. There is apparent agreement on

the distribution and overall radioactivity levels in comparing

Figure 4B and Figures 4C and 4D. As soon as two hours after

the introduction of the radioactive peptide, a substantial portion of

the isotope appears to have been transferred to higher molecular

weight proteins.

DISCUSSION
This report describes the discovery of decapeptides that can be

labeled with a high energy (1.7 Mev) beta emitter (32P) and can

bind avidly to several different adenocarcinoma cell lines,

efficiently delivering this potential tumor-ablating material to the

cells. The decapeptides, termed MA for Modified Adjuvant, are

protein kinase substrates. Previously, it had never been shown or

suspected that this substrate, when labeled with a tumor-ablating

material such as 32P, could bind to and transfer the radioisotope to

a cell line after one to two hours of incubation. Moreover, we have

shown for the first time that transfer of isotope from these

decapeptides is restricted to cell types derived from primary colon

and esophageal adenocarcinomas. For example, exposure of

certain colon cancer cell lines (e.g. Caco-2) to the most avidly

binding labeled peptide, MA5, for a two-hour period resulted in

the transfer of a radioactive dose of over 29 counts per minute per

cell after a two hour incubation, wash, and immediate de-

termination of the retained radioactivity.

The incubation of 32P-labeled decapeptide with certain cell lines

resulted in large amounts of peptide being retained after a two-

hour incubation, but a substantial proportion of this bound

peptide was released after an overnight incubation. For example,

after incubation of the labeled variant MA5 with Caco2 cells for

two hours, three wash steps, and overnight incubation in medium,

88% of the originally retained 32P isotope was released. However,

the 12% that was retained by cells still represented 5.8 cpm per

cell, extrapolating to over 8,300 counts per cell per day. In

addition, radioactivity that was still retained by cells after

overnight medium incubation was permanently incorporated into

a variety of cellular proteins, as demonstrated by polyacrylamide

gel electrophoresis of post-exposure cellular lysates

Among 18 cell lines assayed for their ability to bind the

decapeptides, seven demonstrated very high retention of isotope

after two-hour incubation. Although all seven of these lines

released from 63% to 88% of this radioactivity after an overnight

incubation, the amount of isotope that was retained overnight was

still substantial. Of these seven cell lines, five were derived from

colorectal adenocarcinomas, one from an esophageal adenocarci-

noma, and one from a Barrett’s metaplasia specimen. The 11 cell

lines that did not bind the radioactively labeled decapeptide MA5

Figure 3. Relative levels of binding of nine 32P-labeled decapeptide variants. (A) Nine 32P-labeled different decapeptides, varying from one
another by only one to three amino acids, were incubated with Caco-2 cells for two hours, the cells washed three times, and counts remaining bound
to the cells are shown as a percentage of the total amount of counts for each decapeptide used. Amino acid substitutions for each variant (relative to
MA1) are underlined and bolded. (B) The variants, MA1, MA4, and MA5 were incubated with Caco-2 cells for intervals varying from five minutes to
two hours, washed, the adherent cells dissolved in gel loading buffer and an aliquot run on a 10%–20% gradient polyacrylamide-SDS gel. The three
lanes marked ‘‘24h’’ (lanes 5, 10, and 15) were incubated with the respective labeled decapeptides (MA1, MA4, MA5) for two hours, washed, and the
cells incubated with complete medium for 24 hours. The cells were treated as described for the other lanes of this figure.
doi:10.1371/journal.pone.0000964.g003
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were derived from a variety of tissue origins. These included

squamous cell carcinomas of the cervix, lung, breast, and

a fibrosarcoma, as well as normal kidney, colon, and esophageal

tissues.

The majority of approved immunotherapeutic regimens for

cancer involve an antibody directed against a specific cellular

molecule [16]. These agents can function by binding to the cell

surface and may utilize ADCC, complement activation, or cellular

apoptosis. The antibodies may also be coupled to a tumor-ablating

agent, such as toxins or radioisotopes [17-21]. The addition of

isotope to peptides, and their use for both diagnostic and

therapeutic purposes, is an active area of biomedical research

[22-25]. Our work utilizes protein kinase A substrates labeled with
32P isotope. A high-energy beta-emitting radioisotope results in an

electron pathlength range of up to 5 mm, permitting substantial

penetration of solid tumors. Due to a predicted ‘‘bystander’’ effect,

one beta particle will penetrate hundreds or thousands of cells

within the tumor, even those not directly binding the decapeptide.

Moreover, since the molecular weights of these minuscule

decapeptides proteins are far lower than the exclusionary

molecular weight limit of the filtering kidneys, these peptides

should be rapidly eliminated in the urine, leading to reduced

systemic toxicity. Thus, it should be feasible for both a radioactive

dose and unbound radioactivity to be eliminated easily and in

a relatively short period of time. We anticipate that additional

known enzyme substrates may eventually be identified as potential

vehicles for the specific delivery of anti-tumor agents to cancer

cells and that potential cancer therapeutic regimens employing this

peptide or other similar substances might be the newest strategy

for peptide binding therapy.

MATERIALS AND METHODS
Production of the 32P-labeled decapeptides: Different DNA

oligomers were cloned into pGEX-4T-1 (GE Healthcare) which

yield various decapeptides after thrombin cleavage designated

MA1 through MA9 (Modified Adjuvant). The protein sequences

are: MA1, GSRRASVGSA; MA2, GSRGASVGGA; MA3,

GSRRGSVGSA; MA4, GSRRGSVASA; MA5, GSRRASVASA;

MA6, GSRRASVGSG; MA7, GSRGGSVGSA; MA8,

GSRGGSVASA; MA9, GSRGGSVGSG. DH5-a bacteria con-

Figure 4. The majority of the 32P-labeled decapeptide MA5-bound molecules are released from Caco-2 cells. (A) The 32P-labeled decapeptide
MA5 was incubated for two hours with seven different cell lines, the cells were washed, and complete medium was added. Following a 24 hour
incubation, the number of counts per minute released into the medium (R) as well as the number of counts remaining bound to the cells (B) were
determined. Each bar shows the mean and one standard deviation of triplicates wells. (B) Time course for the release and retention of the 32P-labeled
decapeptide MA5. MA5 was incubated for two hours with Caco-2 cells, the cells washed, and the cpm released (dashed line) as well as remaining
bound (solid line) to the cells determined for time intervals post-washing. Each point shows the mean plus/minus one standard deviation of triplicate
determinations. C) Radioactive well contents described as bound (solid line) in Figure 4B were run on a 16.5% polyacrylamide-SDS gel and exposed
to film. Immediately after washing (i.e., at 0 hours), the majority of the counts were visualized as 32P-peptide. Over the next 48 hours, the peptide
counts greatly diminished, with the majority of bound radioactivity incorporated into cellular proteins. (D) Aliquots of medium containing the
released (dotted line) 32P-peptide MA5 were assayed at time intervals after washing, as described in Figure 4B. As time progressed, more of the 32P-
peptide was released, reaching a plateau by 24 hours after washing.
doi:10.1371/journal.pone.0000964.g004
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taining these clones were grown overnight in LB (containing

100 mg/ml ampicillin), diluted 1/10 in LB-Amp and grown at

37uC for two hours. IPTG was added to 1 mM and the culture

grown at 37uC for five hours. Ten ml of each culture were

centrifuged and the cell pellet resuspended in 1 X TBS containing

100 mg/ml lysozyme. After two cycles of freeze-thaw, the lysate

was centrifuged and the supernatant was mixed with 100 ml of

Sepharose-Glutathione for two hours at RT. Each pellet was

washed three times with 1 X TBS, and the bound recombinant

fusion proteins were labeled with 32P using protein kinase A and
32P-c-ATP according to the manufacturer’s instructions (Sigma,

St. Louis, Mo.). The pellet was washed four times with 1 X PBS

and the labeled decapeptide was cleaved and released into the

supernatant with thrombin (GE Healthcare).

Assay of the binding of 32P-labeled decapeptides to cell lines:

Cell lines were grown in complete medium containing 10% bovine

fetal serum (heat inactivated). In each well of a 96-well plate,

10,000 cells from various cell lines were grown overnight in

complete medium. Ten ml of the labeled-peptide in 1 X PBS and

90 ml of complete medium were added to each well and incubated

at 37uC at various times of up to two hours. The peptide-medium

was removed and one ml added to 100 ul gel loading buffer and

counted by scintillation counting for the probe control or run on

a polyacrylamide-SDS gel (Biorad).The adherent cells were briefly

and gently washed with complete medium three times and some

wells were assayed immediately by adding 100 ml of gel loading

buffer to each well and run on a gel or counted in a scintillation

counter. Other wells had 100 ml complete medium added and

incubated for a further time period. Samples were either counted

in a liquid scintillation counter or run on polyacrylamide-SDS

gels, exposed to x-ray film, and the film developed.

ACKNOWLEDGMENTS
We thank Dr. Yutaka Shimada (Hyogo College of Medicine, Japan) for the

gift of cell line KYSE-70.

Author Contributions

Conceived and designed the experiments: JA. Performed the experiments:

JA. Analyzed the data: JA FS YC BP TK AO ZJ JY RA SD JH TI YM

SM. Contributed reagents/materials/analysis tools: YC BP TI SM. Wrote

the paper: JA FS YC BP TK AO ZJ JY RA SD JH TI YM SM.

REFERENCES

1. Edwards BK, Brown ML, Wingo PA, Howe HL, Ward F, et al. (2005) Annual

report to the nation on the status of cancer, 1975-2002, featuring population-

based trends in cancer treatment. J. Natl. Cancer Inst. 97: 1407–1427.

2. Jemal A, Siegel R, Ward E, Murray T, Xu J, et al. (2007) Cancer Statistics,

2007. CA Cancer J. Clin. 57: 43–66.

3. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, et al. (2001) Use of

Chemotherapy plus a monoclonal antibody against HER2 for metastastatic

breast cancer that overexpresses HER2. N. Engl. J. Med. 344: 783–792.

4. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, et al. (2005)

Trastuzumab plus adjuvant chemotherapy for operable HER2 positive breast

cancer. N. Engl. J. Med. 353: 1673–1684.

5. Tan-Chiu E, Yothers G, Romond E, Geyer CE, Ewer M, et al. (2005)

Assessment of cardiac dysfunstion in a randomized trial comparing doxorubicin

and cyclophosphamide followed by placlitaxel, with or without Trastuzumab as

adjuvant therapy in node positive, human epidermal growth factor receptor

2-overexpressing breast cancer. J.Clin. Oncol. 23: 7811–7819.

6. Davis TA, Grillo-Lopez AJ, White CA, McLaughlin P, Czuczman MS, et al.

(2000) Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s

lymphoma: safety and efficacy of re-treatment. J. Clin. Oncol. 18: 3135–3143.

7. Nahta R, Esteva FJ (2007) Trastuzumab:triumphs and tribulations. Oncogene

26: 3637–3643.

8. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, et al. (1997)

Humanization of an anti-vascular endothelial growth factor monoclonal

antibody for the therapy of solid tumors and other disorders. Cancer Res. 57:

4593–4599.

9. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors

modulate in vivo cytoxicity against tumor targets. Nat. Med. 6: 443–446.

10. Siberil S, Dutertre CA, Fridman WH, Teillaud JL (2007) FcgammaR: The key

to optimize therapeutic antibodies? Crit. Rev. Oncol. Hematol. 62: 26–33.

11. Rini BI, Rathmell WK (2007) Biological aspects and binding strategies of

vascular endothelial growth factor in renal cell carcinoma. Clin. Cancer Res. 13:

741–746.

12. Van Cutsem E, Peeters M, Siena S, Humblet V, Hendlisz A, et al. (2007) Open-

label phase III trial of panitumumab plus best supportive care compared with

best supportive care alone in patients with chemotherapy-refractory metastatic

colorectal cancer. J. Clin. Oncol. 25: 1658–1664.
13. Cilley JC, Barfi K, Benson AB, Mulcahy MF (2007) Bevacizumab in the

treatment of colorectal cancer. Expert Opin. Biol. Ther. 7: 739–749.

14. Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, et al. (2001)
Biodistribution and dosimetry results from a phase III prospectively randomized

controlled trial of Zevalin radioimmunotherapy for low-grade, follicular, or
transformed B-cell non-Hodgkin’s lymphoma. Crit. Rev. Oncol. Hematol. 39:

181–194.

15. Vose JM (2004) Bexxar: novel radioimmunotherapy for the treatment of low-
grade and transformed low-graade non-Hodgkin’s lymphoma. (2004) Oncologist

9: 160–172.
16. Zafir-Lavie I, Michaeli Y, Reiter Y (2007) Novel antibodies as anticancer agents.

Oncogene 26: 3714–3733.

17. Kreitman RJ (2006) Immunotoxins for targeted cancer therapy. AAPS J. 8:
532–551.

18. Kreitman RJ, Pastan I (2006) Immunotoxins in the treatment of hematologic
malignancies. Curr. Drug Targets 7: 1301–1311.

19. Kreitman RJ (2003) Recombinant toxins for the treatment of cancer. Curr.
Opin. Mol. Ther. 5: 44–51.

20. Boerman OC, Koppe MJ, Postema EJ, Corstens FH, Oyen WJ (2007)

Radionuclide therapy of cancer with radiolabeled antibodies. Anticancer Agents
Med. Chem. 7: 335–343.

21. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for
immunoconjugates. Nat. Biotech. 23: 1137–1146.

22. Okarvi SM (2004) Peptide-based radiopharmaceuticals: Future tools for

diagnostic imaging of cancers and other diseases. Med. Res. Rev. 24: 357–397.
23. Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic Cancer Targeting

Peptides. Biopolymers 66: 184–199.
24. Wangler C, Buchmann I, Eisenhut M, Haberkorn U, Mier W (2007)

Radiolabeled peptides and proteins in cancer therapy. Protein Pept. Lett. 14:
273–279.

25. Aina OH, Marik J, Liu R, Lau DH, Lam KS (2005) Identification of novel

targeting peptides for human ovarian cancer cells using ‘‘one-bead one-
compound’’ combinatorial libraries. Mol. Cancer Ther. 4: 806–813.

Peptides Bind To Cancer Cells

PLoS ONE | www.plosone.org 5 October 2007 | Issue 10 | e964


