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Abstract
In dynamic Positron Emission Tomography (PET), an estimate of the radio activity concentra-

tion is obtained from a series of frames of sinogram data taken at ranging in duration from 10

seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms

require known data statistical properties. It limits the speed of data acquisition, besides, it is

unable to afford the separated information about the structure and the variation of shape and

rate of metabolism which play a major role in improving the visualization of contrast for some

requirement of the diagnosing in application. This paper presents a novel low rank-based

activity map reconstruction scheme from emission sinograms of dynamic PET, termed as

SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imag-

ing. In this method, the stationary background is formulated as a low rank component while

variations between successive frames are abstracted to the sparse. The resulting nuclear

norm and l1 norm related minimization problem can also be efficiently solved by many

recently developed numerical methods. In this paper, the linearized alternating direction

method is applied. The effectiveness of the proposed scheme is illustrated on three data sets.

Introduction
Positron emission tomography (PET) holds one of the most important applications in nuclear
medical imaging device as a biomedical research technique and clinical diagnostic procedure.
A fundamental characteristic of the biological system is that its metabolism is inherently time-
dependent. Thus, the ability of PET to observe physiological and biochemical processes in liv-
ing subjects in a dynamic mode has potential to enhance our understanding of drug activity
during preclinical drug development and diseases like kinds of tumors or cancers.

Dynamic PET imaging is usually performed with the collection of a series of frames of sino-
gram data taken at ranging in duration from 10 seconds to minutes. Earlier dynamic image
reconstruction approaches largely fall into two groups. The first one attempts to reconstruct
the activity maps in the same manner as static PET imaging. Iterative statistical methods have
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been a primary focus on many efforts, including notable examples of maximum likelihood-
expectation maximization (ML-EM) [1–3], maximum a posteriori (MAP) [4–6], penalized
weighted least-squares [7–10], and penalized-likelihood (SAGE) algorithms [11–13]. With the
continuing progresses of PET imaging, much attention has also been paid on 3D PET recon-
struction [14–17] and TOF-PET reconstruction [18, 19].

The second group attempts to improve the signal-to-noise ratio (SNR) by integrating the
iterative statistical methods with prior temporal knowledge as reconstructing tokens and some
recent works use the noise reduction technique. It includes the use of temporal voxel smooth-
ing [20, 21] and temporal basis function [22]. On the other hand, there have been considerable
efforts aimed at using time-varying filters. Some of the most interesting ideas include the use of
wavelet filter [23, 24], the use of principal components transformation (also called as Karhunen
CLove transform) [25, 26], and the use of a tensor product spline basis [27, 28].

Although of great progresses achieved, there are still something to be improved. In general,
specific assumptions on the measurement distribution (Poisson or Shifted Poisson) is required
in conventional methods. It results in a relative long acquisition time for each frames. Other-
wise, when the acquisition time is not sufficient, the proportions of the scatter and random
events in all events would increase, which generally leads to a poor visual image quality and a
poor contrast of the target region in reconstruction images. In addition, the correlation between
different frames was usually ignored in the prior techniques, and it leads to all of them are pow-
erless to extract the useful motion or shape deformation information during reconstruction.

Inspired by the recently developed sparse and low rank representation, we develop a novel
dynamic PET reconstruction model that aims at making full use of the information of the adja-
cent frames to achieve a high quality reconstruction without any specific assumptions on the
measurement distribution. Following the robust principal component analysis [29, 30] para-
digm, the background is formulated as a low rank component while variations between succes-
sive frames are abstracted to the sparse. Then, the linearized alternating direction method is
applied to tackle the optimization problem with affine constraint of the PET imaging. To dem-
onstrate the effectiveness and robustness of the proposed method, three experiments are
designed and shown in this paper.

The rest of this paper is organized as follows. In section 2, problem formulations and solu-
tions are presented. Section 3 provides experiments along with results compared with the pre-
vious methods.

Materials and Methods

Notations
In this section, a brief summary of the notation used in the following paper is given. Matrices are
all capital, vectors are lowercase. For instances, Y is a matrix and y is a vector. The lowercase i rep-
resents the number of the frames of PET sinogram or images. Nuclear norm of matrix is denoted
by kXk�, defined as the sum of the input matrix singular values, it represents the rank of matrix.
kXk denotes Frobenius (or Euclidean) norm and hX, Yi is the standard inner product, and
k X k2F¼ hX;Xi. kXk1 is l1-norm which represents the sum of the absolute value of all elements
in a matrix, kXk0 is l0-norm which represents the number of the non-zero elements in matrix.

Basic Data Model for Dynamic PET Imaging
For non-dynamic PET imaging, the signal and reconstructed image are related by the following
equation:

y ¼ Gx þ n ð1Þ

SLCR for PET Imaging
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Where y represents the sinogram (available data), G represents the detection probability, x is
the reconstruction image and n is the noise. In dynamic imaging, a series of the temporal sino-
gram data are acquired. Denoted by yi the sinogram from the i − th scan, and by xi the image of
the i − th frame. Stack each xi and yi as a column vector of matrix X and matrix Y respectively,
that is:

X ¼ x1; x2; :::; xi; :::; xn½ �: ð2Þ

Y¼ y1; y2; :::; yi; :::; yn½ � ¼ Gx1 þ n1; :::;Gxn þ nn½ � ð3Þ
with G the system matrix. Then the data model for dynamic PET imaging can be written as fol-
lows:

Y ¼ GX þ N; ð4Þ
where N = [n1, n2, . . ., ni, . . ., nn].

Sparse and Low rank Representation
Sparse and low rank representation, also widely known as robust principle component analy-
sis techniques [29, 30] in image analysis or processing, is a novel concept in the medical imag-
ing community. In recent years, some researchers have proposed some related methods in CT
and MRI [31, 32]. However, it is the first time to be used in PET imaging. The separated back-
ground and dynamic information are useful for PET preclinical/clinical application like
Image-guided radiation therapy (IGRT) [33]. But it is difficult to find the strict stationary or
background component in PET imaging directly. Because PET images reveal the radio-activity
distribution in body which means that all the regions in PET images are not constant. How-
ever, compared to the target region, the varying rate of the background component in PET
images is relative low. Therefore, this component could be considered as an invariant compo-
nent. However, this assumption would result in the sparsity of the dynamic PET data is not
pronounced in some situations. To achieve high quality reconstruction images, a framelet
domain transformation is used to constrain the sparsity during the reconstruction. This trans-
formation not only ensures the mathematical constraint required by sparse and low rank
representation, also enhances the tolerance of noise and data loss for reconstruction. It is
quite helpful to obtain high contrast reconstruction images in the low count or under-sam-
pling situation.

Model description
Hence, we stack each frames in the sequence as a column to form a matrix X, and decompose it
into two disjoint parts:

X ¼ X1 þ X2 ð5Þ
where X1 is the low-rank component of X, which models the stationary background (or refer-
ence state) over time, and X2 is the sparse component of X, which represents the variation in
intensity from one frame to another. Now, rewriting the Eq (4) as:

Y ¼ GðX1 þ X2Þ þ N: ð6Þ

Based on the idea about decomposing the images matrix X into a low rank matrix and a
sparse matrix, and the model Eq (6), the following matrix minimization problem is a natural
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choice for sparse and low rank representation model in Dynamic PET imaging:

ðX1;X2Þ ¼ argminðrankðX1Þ þ lk AX2 k0Þ

þ 1

2t
k GðX1 þ X2Þ � Y k2F

ð7Þ

Where A is a tight framelet transform operator, the sparsity of X2 is enhanced in the wavelet
domain. λ> 0 and τ> 0 are parameters balancing the weights of the low rank matrix, sparse
matrix, and reconstruction error in the decomposition. In the model Eq (7), k�kF is the Frobe-
nius norm. kAX2k0 is defined as the total number of non-zero elements in matrix AX2. By min-
imizing the first two terms, X1 and X2 are forced to be low rank and sparse respectively. The
accuracy of the reconstruction could be improved by minimizing the last term in Eq (7). How-
ever, the model Eq (7) is non-convex and hard to solve. As suggested in the literatures [34] to
make problem tractable, we consider the following relaxed problem of Eq (7):

ðX1;X2Þ ¼ arg min
X1 ;X2

kX1 k�

þlkAX2 k1 þ
1

2t
k GðX1 þ X2Þ � Y k2F ;

ð8Þ

Where k�k� is the nuclear norm. For a matrixM of dimensionm × n, k M k� ¼:
Pmin ðm;nÞ

i si,
and σi is the i-th largest singular value ofM.

Alogrithm
In this section, we give a description about the solution of the proposed model. To solve model
Eq (8), Linearized Alternating Direction Method (LADM) is applied. Denoted by LðX1;X2Þ
the objective function in the proposed model Eq (8), i.e.,

LðX1;X2Þ ¼k X1k�
þl k AX2k1 þ

1

2t
k GðX1 þ X2Þ � Y k2

F

ð9Þ

Then alternating direction scheme iterates as follow

Xkþ1
1 ¼ arg min

X1
LðX1;X

k
2Þ

¼ arg min
X1

k X1k� þ
1

2t
k GðX1 þ Xk

2Þ � Y k2F
ð10Þ

Xkþ1
2 ¼ arg min

X2
LðXkþ1

1 ;X2Þ

¼ arg min
X2

k AX2k1 þ
1

2t
k GðXkþ1

1 þ X2Þ � Y k2F
ð11Þ

Where k is the number of the iterations. To solve the X1 subproblem we linearize the data fidel-
ity term at Xk

1 , that is

k GðX1 þ Xk
2Þ � Y k2F�k GðXk

1 þ Xk
2Þ � Y k2F

þhgkX1 ;X1 � Xk
1i þ

b1

2
k X1 � Xk

1 k2F
ð12Þ

where gkX1 ¼ 2G>ðGðXk
1 þ Xk

2Þ � YÞ is the gradient of the linearized data term at Xk
1 and β1 > 0

is a constant.
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As for X2, by using the fact that A
−1 A = I, we linearize k GðXkþ1

1 þ X2Þ � Y k2F at AXk
2 as fol-

lows:

k GðXkþ1
1 þ X2Þ � Y k2F�k GðXkþ1

1 þ A�1AX2Þ�Y k2
¼GðXkþ1

1 þ A�1AXk
2Þ�Y þhgkAX2 ;AX2 � AXk

2i

þb2

2
k AX2 � AXk

2 k2F
ð13Þ

where gAXk
2
is the gradient of k GðXkþ1

1 þ X2Þ � Y k2F at AXk
2 . After above linearization, the sub-

problems of X1 and X2 can be transformed to the following standard forms with closed form
solutions as follows respectively:

US�½S�VT¼ arg min
X

� k X k� þ
1

2
k X �W k2F

and S�½W� ¼ arg min
X

� k X k1 þ
1

2
k X �W k2F ;

ð14Þ

Here,W is the remaind terms of optimal function, for example, when X1 is the desired matrix,
terms including X2 will be theW,USVT is the Singular Value Decomposition(SVD) ofW and for
a matrixW S�½W� is also a matrix, and ðS�½W�Þi;j ¼ maxf0; jwi;jj � �gsgnðwi;jÞ:We alternatively

solve Eqs (12) and (13), but only do one iteration for each sub-problem. The program should be
stopped when the relative stopping criterions (based on empirical estimations) are reached:

�1¼
k Xkþ1

1 �Xk
1 k

k Xk
1 k

<10�4;

�2¼
k Xkþ1

2 �Xk
2 k

k Xk
2 k

<10�4;

ð15Þ

The convergence of the scheme can be proved similarly as that in [35] if βi� kGk2, (i = 1, 2).

Parameters and convergence
Since constrain parameters have a great influence on the final results, they should be chosen
carefully. In this work, λ is used to balance the low rank and sparse decomposition, its value
will influence the proportion of the stationary and dynamic components in decomposition.
Candes [29] has recommended that the most appropriate value of λ is expressed as
l ¼ 1

ðmax ðn;mÞÞ1=2, where n(m) is the number of rows (columns) of sinogram. The constants β1,

β2 are viewed as the stepsizes for iterations, and affect the speed of convergence. In this work,
the boundary of β is set from 0.1 to 10. The maximum number of iteration is set 1000 and itera-
tion will be stopped if the stopping criterions Eq (15) are met.

Results
Three experiments were designed to evaluate the effectiveness of the SLCR in this work.
Dynamic PET data corresponding to Zubal-thorax, brain and cardiac were used in these exper-
iments respectively. Monte Carlo simulation (using a toolbox GATE) was used to create the
experimental data sets. All experiments are well designed and focus on distinguishing target
region boundary (Zubal-thorax), accurate and high contrast and clear boundary image recon-
struction for low count data (brain) and extracting dynamic and structural information respec-
tively when the organ has a large deformation (cardiac).

SLCR for PET Imaging
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Maximum likelihood expectation maximization (ML-EM, code is based on image recon-
struction toolbox by Fessler) was used as the comparison in this work. The maximum iterative
number of ML-EM is set to 100 in all three experiments. All codes in the three experiments are
implemented in Matlab R2011a (MathWorks Corporation, USA) and run in a desktop com-
puter with i3 Intel Core CPU and 4 GB memory.

In order to analyze the reconstruction results quantitatively, we define the measurements as
follows:

bias ¼ 1

n

Xn

i¼1

ðx̂ i � xi
xi

Þ ð16Þ

variance ¼ 1

n� 1

Xn

i¼1

ðx̂ i � xi
xi

Þ2 ð17Þ

where xi is the ith pixel of ground truth x, x̂ i is the ith pixel of the reconstructed images x, since
the decomposition of SLCR results in the values of pixel of both stationary and time-varying
components are less than the ground truth. For a fair comparison, x̂ i is defined as the sum of
the value of the pixels in the stationary and time-varying components.

Furthermore, we also compute the contrast recovery coefficient (CRC), which is defined as
follow:

CRC ¼ Contrastmeasure

Contrasttheory
¼ ðS=BÞmeasure � 1

ðS=BÞtheory � 1
ð18Þ

where S is the mean activity of the region of interest and B is the mean activity of the white
matter region (background) in the reconstructed image. CRC is used to indicate the contrast of
the region of interest in reconstructed images.

Zubal-thorax Experiment
In the first experiment, the schematic representation of the Zubal-thorax phantom is given in
Fig 1. It includes four main regions of interest (ROIs) with different colors. Yellow, red, deep
red and soft blue were used to indicate ROI1, ROI2, ROI3 and ROI4 respectively. The deep red
region is the target region (marked in black rectangle in phantom and red rectangle in recon-
structed images) and this region is the major dynamic part in zubal phantom.

The simulated PET scanner was Hamamatsu SHR74000 from Hamamatsu Photonics K.K.
The radioactivity tracer was C11-acetate, total scanning time was 38 mins, and divided into 53
frames (only results of # 1, 17, 33, 49 frames are shown in figures), all the device settings are the
same as in application, including dead time, energy resolution, time resolution and energy win-
dow et.al. The images reconstructed by ML-EM (Fig 2(1)) and SLCR method (Fig 2(2) is the
stationary component of SLCR and Fig 2(3) is the time-varying component) are given in Fig 2.

In Fig 2(1), there are aliasing artifacts in the reconstruction images of the ML-EMmethod.
It is difficult to distinguish the target region and detail boundary information from adjacent
ROIs, even worse, the differences between different frames (from #1 to 20) are not distinctive.
Compared with the results of the ML-EM, the results of the SLCR present an obvious reduction
of the aliasing artifacts and improve the contrast in the target region (Fig 2(2) and Fig 2(3)). In
the meantime, the results of time-varying component indicate the variations between adjacent
frames, and it extracts successfully the target region information from the dynamic data set
(Fig 2(3)). Moreover, in time-varying images, the radio-activity variation between different

SLCR for PET Imaging
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frames could be observed easily. It is obvious that the SLCR could provide more helpful infor-
mation than the ML-EMmethod.

Brain Experiment
The data set based on Hoffman brain phantom (Fig 3) was simulated by Monte Carlo simula-
tion in the second experiment. This phantom contains complicated physical structural infor-
mation and eight highlight areas, the areas marked by red and green rectangle are target areas

Fig 1. The image of the Zubal-thorax phantom. The target region is marked by black rectangle in phantom.

doi:10.1371/journal.pone.0142019.g001
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which present two tumors in human brain, and the reconstruction pixel value of these regions
are used for quantitative analysis. The blue line marks the lateral displacement profile. The spa-
tial resolution of the simulated scanner was 3.5 mm full width at half maximum (FWHM) in
sagittal or coronal plane and 3.2 mm FWHM in axial plane. The radioactivity tracer was fluor-
odeoxyglucose (FDG), and the concentration was 333–444 MBq (9–12 mCi/cc). The total scan-
ning time was 30 mins. The data set was divided into 20 frames. The total count of the
recorded event was 1.92 × 107 (count level 1) in this data set, the proportion of the scatter

Fig 2. The reconstruction images for the Zubal-thorax phantom. Form the top to bottom, the images in the first line (from left to right is frame #1, 17, 33,
49) are the reconstruction results of the ML-EMmethod, the second line are the stationary component of SLCR reconstruction images and the third line are
the time-varying component of the SLCR reconstruction images.

doi:10.1371/journal.pone.0142019.g002
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events was 0.12%, and the proportion of the random events was 0.063%. The images recon-
structed by ML-EM and SLCR (the sum of two components of SLCR (ST + SP), the stationary
(ST) and time-varying (SP) components) methods for the #10 frames are shown in Fig 4. And
Fig 5 shows the profiles of reconstruction results by ML-EM and SLCR compared with the

Fig 3. The ground truth of the brain phantom. The target regions are marked by red and green rectangles. And the blue line marks the lateral
displacement profile.

doi:10.1371/journal.pone.0142019.g003
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ground truth. For a fair comparison, the sum of stationary and time-varying components was
used in this profiles. It is clear that the SLCR gives the closer fit to ground truth. In Fig 4, the
stationary component extracts the background of brain phantom data set, and the time-varying
component extracts the dynamic information. It lists the bias and variances and CRC of images
reconstructed by ML-EM and SLCR in Table 1. The calculated biases and variances shows that
the SLCR provides a more accurate reconstruction than ML-EM. The values of CRC shows
that the decomposition of SLCR results in improving the contrast in time-varying component.

Fig 4. The reconstruction images for brain phantom for count level 1. From left to right, the reconstruction images are the results of the ML-EM (First),
the sum of two components of SLCR (ST + SP, second), the stationary (ST, third) and time-varying (SP, forth) components of the SLCR for the brain phantom
at the #10 frame in count Level 1.

doi:10.1371/journal.pone.0142019.g004

Fig 5. The profile of the reconstruction result. The reconstruction profiles through the marked lines (blue line) in Fig 3.

doi:10.1371/journal.pone.0142019.g005
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To evaluate the robustness of the SLCR in low count data, two extra count levels were simu-
lated and the corresponding proportions of the random and scatter events were recorded. Level
2: the total count was 1.32 × 106, the proportion of the scatter events was 19.7%, and the pro-
portion of the random events was 1.63%); Level 3: the total count was 6 × 105, the proportion
of the scatter events was 39.75%, and the proportion of the random events was 3.363%. Data
sets in both level 2 and level 3 are considered as the low-count data. The images reconstructed
by ML-EM and SLCR methods for these two levels are shown in Fig 6. Though all images
reconstructed by ML-EM and SLCR go worse when the data count decrease, the SLCR method
provide more accurate and less aliasing artifacts reconstructions than ML-EM in both count

Table 1. Comparative studies of estimated activity distribution in the red and green rectangle region in brain on synthetic data.

Red rectangle region Green rectangle region

Method Bias Variance CRC Bias Variance CRC

ML-EM 0.135 0.067 0.843 0.084 0.054 0.850

SLCR(ST + SP) 0.104 0.054 0.854 0.068 0.049 0.858

Stationary (ST) 0.842 0.849

Time-varying (SP) 0.867 0.868

doi:10.1371/journal.pone.0142019.t001

Fig 6. The reconstruction images for brain phantom for count level 2 and 3. From left to right, the reconstruction images are the results of the ML-EM
(first), the sum of two components of SLCR (ST + SP, second), the stationary (ST, third) and time-varying (SP, forth) components of the SLCR for the brain
phantom at the #10 frame in count Level 2 to 3.

doi:10.1371/journal.pone.0142019.g006
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levels, especially in the target regions. In addition, it is easy to locate the position of the target
regions in the time-varying component of SLCR.

The bias, variances and CRC of the reconstructions in these two levels are listed in Table 2.
The quantitative analysis shows that the bias and variance for ML-EM go up faster than

SLCR when the data count decrease. All of these demonstrate that the SCLR is better and more
robust reconstruction method.

Cardiac Experiment
In the third experiment, a series of the cardiac phantoms with respected to the short axis of car-
diac in stress (only five frames were shown in the results due to the limitation of the number of
pages) were simulated. And the region selected for quantitative analysis is marked by the black
rectangle in the 5th picture. Such a highlight area always indicates a potential lesions or abnor-
mal tissue in clinical situation. These cardiac phantoms were based on a 61-year-old patient
with arterial hypertensionand type 2 diabetes mellitus. A distinctive shape deformations (vol-
ume variation and myocardial wall motion) were included in these data sets. The main purpose
of this experiment was to evaluate the effectiveness of the motion extraction of the SLCR
method. The radioactivity tracer was 13N − Ammonia. In addition, to evaluate the robustness
of the SLCR method, two count levels were simulated. The proportions of the scatter and ran-
dom events in these two levels were recorded, level 1: the total count is 5.4 × 106, and it contains
0.1% scatter events and 0.06% random events. level 2: the total count is 1.2 × 105 (low count

Table 2. Comparative studies of estimated activity distribution in the red and green rectangle region in brain for count level 2 and 3.

Count level 2

Red rectangle region Green rectangle region

Method Bias Variance CRC Bias Variance CRC

ML-EM 0.323 0.189 0.701 0.384 0.168 0.712

SLCR(ST + SP) 0.291 0.162 0.723 0.308 0.155 0.730

Stationary (ST) 0.703 0.716

Time-varying (SP) 0.752 0.767

Count level 3

Red rectangle region Green rectangle region

Method Bias Variance CRC Bias Variance CRC

ML-EM 0.648 0.478 0.531 0.675 0.522 0.501

SLCR(ST + SP) 0.607 0.401 0.542 0.651 0.499 0.553

Stationary (ST) 0.530 0.481

Time-varying (SP) 0.557 0.619

doi:10.1371/journal.pone.0142019.t002

Fig 7. The truth images sequence of the cardiac phantom. The target region is marked by red rectangle in 5th picture.

doi:10.1371/journal.pone.0142019.g007
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data), and it contains 19.54% scatter events and 1.2% random events. Similar to the former two
experiments, the ML-EMmethod is implemented as the comparison. The truth images
sequences of the cardiac phantom are given in Fig 7. The images reconstructed by the ML-EM
and SLCR in different count levels have been shown in Fig 8 (Level 1) and Fig 9 (Level 2),
respectively. From these figures, two conclusions could be concluded:

1. The SLCRmethod is able to extract the dynamic and structural information effectively when
the organ has a large deformation. Since the geometric shape of different frames are quite dif-
ferent in the cardiac sequence, it only contains the outline of the short axis of cardiac in the
stationary component and loses lots of detailed information in the marginal area of the differ-
ent regions. In contrast, the detailed information in the marginal area of the different regions
are enhanced in the time-varying component. Since the decomposition of the SLCR enhances
the structural and marginal information in stationary and time-varying components respec-
tively, the sum of these two components shows a more accurate reconstructions.

2. The SLCR also has a good reconstruction result even for the low count data. When data
count is not sufficient, the results of the ML-EMmethod are heavily corrupted by the ran-
dom/scatter events. There are aliasing artifacts and noise points in the reconstruction
images of the ML-EMmethod. The SLCR method solved this problem. Though the image
quality of the SLCR method also deteriorates in the low count data, the results of both sta-
tionary and time-varying components show a more clear outline and detailed information
than ML-EM. In addition, the sum of these two components of SLCR provides the better
reconstruction. Therefore, the SCLR could provide a better reconstruction results than
ML-EM in any count levels.

The bias, variance and CRC in the target region are calculated and shown in Table 3. The
quantitative analysis results shows that the bias and variance for ML-EM go up faster than
SLCR when the data count decreases. And the SLCR could provide more accurate and robust
reconstruction images than ML-EM in different count levels data. All of these demonstrate
that the SCLR is better and more robust reconstruction method. In addition, the values of CRC
also shows that the decomposition of SLCR results in the improvement of the contrast in time-
varying component. It is easy to locate the position of the target regions in the SLCR especially
in the time-varying component.

Discussion
Summarizing all results of the three experiments, the SCLR is capable of extracting the back-
ground and dynamic components during reconstruction, and producing a high contrast and
accurate reconstruction images even in a low count data. Compared with the conventional
ML-EMmethod, both of the accuracy and robustness of images are improved. However, the
interference or information sharing between background and time-varying components caused
by strong coherence between the adjoint frames exists in all experiments, especially when the
difference between adjoint frames is not remarkable. One possible reason for this phenomenon
is that the sparsity constraint in the framelet domain is not enough to force the time-varying
component only contains dynamic information. In the future work, we will focus on how to
solve this problem.

Conclusion
A novel method called SLCR is proposed, analyzed and tested for dynamic PET imaging in this
work. The advantages of this method are that 1) it is capable of separating the background and
dynamic components during reconstruction, 2) it is able to afford a high contrast and accurate
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Fig 8. The reconstruction images for the cardiac phantoms in the count Level 1. From the top to bottom, the first line is the images reconstructed by
ML-EM, the second line is the images of the sum of stationary and time-varying components of SLCR (ST + SP), the third line is the images of the stationary
component (ST) of SLCR, and the last line is the images of the time-varying component (SP) of SLCR.

doi:10.1371/journal.pone.0142019.g008
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Fig 9. The reconstruction images for the cardiac phantoms in the count Level 2. From the top to bottom, the first line is the images reconstructed by
ML-EM, the second line is the images of the sum of stationary and time-varying components of SLCR (ST + SP), the third line is the images of the stationary
component of SLCR, and the last line is the images of the time-varying component of SLCR.

doi:10.1371/journal.pone.0142019.g009
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reconstruction images even in a low count data. Three experiments have been used to demon-
strate the effectiveness and robustness of the SLCR method. However, for a real clinical appli-
cation of dynamic PET imaging such as monitoring of radiotherapy, more work needs to be
done. For example, the rate of convergence in SCLR is still too slow, the maximum number of
iteration is too large for a clinical application. In addition, the interference between stationary
background and time-varying components also needs to be solved. Therefore, we will cope
with these problems in the future work.
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