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A B S T R A C T   

The impact of the ravages of COVID-19 on people’s lives is obvious, and the development of novel potential 
inhibitors against SARS-CoV-2 main protease (Mpro), which has been validated as a potential target for drug 
design, is urgently needed. This study developed a model named MproI-GEN, which can be used for the de novo 
design of potential Mpro inhibitors (MproIs) based on deep learning. The model was mainly composed of long- 
short term memory modules, and the last layer was re-trained with transfer learning. The validity (0.9248), 
novelty (0.9668), and uniqueness (0.0652) of the designed potential MproI library (PMproIL) were evaluated, 
and the results showed that MproI-GEN could be used to design structurally novel and reasonable molecules. 
Additionally, PMproIL was filtered based on machine learning models and molecular docking. After filtering, the 
potential MproIs were verified with molecular dynamics simulations to evaluate the binding stability levels of 
these MproIs and SARS-CoV-2 Mpro, thereby illustrating the inhibitory effects of the potential MproIs against 
Mpro. Two potential MproIs were proposed in this study. This study provides not only new possibilities for the 
development of COVID-19 drugs but also a complete pipeline for the discovery of novel lead compounds.   

1. Introduction 

COVID-19, caused by SARS-CoV-2, has been a pandemic worldwide 
since 2019, imposing a strong shock on economic and social stability 
worldwide [1]. According to the ninth version of the living guidelines 
published by the WHO on January 14, 2022 [2], some drugs, such as 
Janus kinase inhibitors [3], molnupiravir [4], and sotrovimab [5], are 
recommended for COVID-19. Pfizer’s Paxlovid also received the emer-
gency use authorization in December 2021 and is available in multiple 
countries [6]. Unfortunately, the existing recommended drugs still 
exhibit some limitations: (1) considering the urgent need for effective 
drugs, the development time required for existing drugs is insufficient, 
so the safety of these drugs has yet to be validated; (2) uncertainty re-
mains regarding the therapeutic effects of existing drugs on patients 
with different symptoms. Therefore, the development of more potential 

inhibitors against SARS-COV-2 is urgently needed to provide potential 
dugs for COVID-19. Empirical trials involving trial-and-error are often 
costly, which is the major reason why drug development is time- and 
money-consuming. To meet the urgent need for the development of 
drugs to defend against COVID-19, it is necessary to rapidly discover 
potential lead compounds with computational methods. 

Two overlapping polyproteins in SARS-CoV-2, pp1a and pp1b, are 
used to encode the replicates that are essential for viral replication and 
transcription. The main protease (Mpro) of SARS-CoV-2 operates at 
pp1a and pp1b for intramolecular cleavage, resulting in several non- 
structural proteins (NSPs). These NSPs are involved in the synthesis of 
viral subgene RNA and four structural proteins (the envelope protein, 
membrane protein, spike protein, and nucleocapsid protein), thereby 
completing the reproduction and release of progeny viruses [7–9]. 
Considering that Mpro plays a crucial role in the viral life cycle and that 
no homologous protein is possessed by humans, Mpro is an ideal target 
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for antiviral drug development. In this study, Mpro was selected as the 
drug target for the design of an anti-SARS-CoV-2 drug. 

Research related to drug design and screening has been conducted 
around the clock [10,11]. Jin et al. designed a Michael acceptor inhib-
itor (N3) for SARS-CoV-2 Mpro, which was used as the positive control 
in this study [7]. Additionally, Ma et al. screened the Selleckchem 
bioactive compound library with a FRET-based enzymatic assay and 
identified several potential inhibitors, including boceprevir, GC-376, 
and calpain inhibitors II and XII [12,13]. 

Most drug discovery efforts concerning SARS-CoV-2 have focused on 
repurposing existing drugs [14–16]. For example, corticosteroids, IL-6 
receptor blockers (tocilizumab and sarilumab), and Janus kinase in-
hibitors (baricitinib, ruxolitinib, and tofacitinib) are recommended as 
drugs for COVID-19. However, uncertainty remains regarding these 
drugs. For example, the safety of the drugs in different patients, such as 
children, pregnant individuals, and immunocompromised people, 
cannot be determined, and it is impossible to determine whether these 
drugs are suitable for patients with different disease severity levels [2]. 
These results suggest the need to design better and more potent Mpro 
inhibitors (MproIs) that specifically target SARS-CoV-2. The de novo 
design of compounds aims to automatically design compounds with 
structural diversity, synthetic accessibility, and specific biological ac-
tivities. In recent years, with developments in the field of artificial in-
telligence (AI), it has become possible to mine knowledge from 
unlimited chemical spaces and use this information to develop novel 
small molecules with the desired biological and physicochemical prop-
erties [17–22]. Zhavoronkov et al. developed a deep generative model 
for the de novo design of small molecules and used this model to 
discover potent inhibitors of discoidin domain receptor 1 in 21 days 
[18]. Godinez et al. developed a generative model named JARGER based 
on the junction tree variational autoencoder for discovering novel 
molecules with desired bioactivity properties and designed novel small 
antimalarial molecules. They selected, synthesized, and experimentally 
validated the inhibitory activities of molecules designed by JARGER 
against malaria, and the results demonstrated the validity of the 
developed model [23]. These works have widely applied deep learning 
(DL) and achieved success [24,25]. Additionally, to solve the problem 
regarding a lack of inhibitor data on SARS-CoV-2 Mpro, we also used 
transfer learning. Transfer learning was proposed to solve the problem 
of data scarcity by exploiting the knowledge contained in related data-
sets, and it has been widely used to address tasks with low data volumes 
in many fields, such as computer vision [26], natural language pro-
cessing [27,28], and drug discovery [29]. 

In this study, we used DL and transfer learning methods to achieve 
the de novo design of SARS-CoV-2 Mpro inhibitors. The molecules 
contained in the ZINC database were used to train the small-molecule de 

novo design model named General-GEN, which was composed of long 
short-term memory (LSTM) to generate novel and valid molecules. 
Then, General-GEN was fine-tuned with SARS-CoV and SARS-CoV-2 
MproIs to derive a target-specific generation model named MproI- 
GEN, which was used to design specific molecules for targeting Mpro. 
Finally, the molecules designed by MproI-GEN were filtered with ma-
chine learning (ML) models and molecular docking to obtain potential 
SARS-CoV-2 MproIs. 

2. Methods and materials 

2.1. Data sources and usage 

Four datasets were used in this paper: one for training General-GEN, 
one for fine-tuning General-GEN to obtain MproI-GEN, one for training 
ML models that could classify Mpro inhibitors and non-inhibitors, and 
one for evaluating the performance of molecular docking. An overview 
of these four datasets is shown in Table 1. 

These four datasets were collected from the ZINC database [30], 
BindingDB database [31], PubChem database [32], and some papers 
[12,33–35] that were recently published. DATASET-1 consisted of about 
5 million compounds randomly sampled from the ZINC database. 
Considering the distribution of the inhibitors to be designed should be 
similar to the existing inhibitors in chemical space, the molecular 
properties of the existing inhibitors were calculated, and the filtering 
criteria were formulated accordingly. Then, the molecules were filtered 
according to the following criteria: (1) the molecular weight (MW) need 
to be in the range from 200 to 800; (2) the molecular Log P needed to not 
be greater than 6.5; (3) the number of rotatable bonds could not be 
greater than 8; (4) the molecules whose charges needed to be neutral-
ized were exploded; (5) only molecules without atoms other than C, N, 
O, S, F, Cl, Br, and H were included; and (6) the first dataset was filtered 
via medicinal chemistry filters and PAINS filters [36]. The final 

List of abbreviations 

Mpro main protease 
MproIs Mpro inhibitors 
DL: deep learning 
PMproIL: potential MproI library 
ML: machine learning 
MD molecular dynamics 
NSPs non-structural proteins 
AI artificial intelligence 
LSTM long short-term memory 
MW molecular weight 
IC50 half-maximal inhibitory concentration 
CharRNN char-level recurrent neural network 
SVM support vector machine 
RF random forest 

k-NN k-nearest neighbor 
XGBoost extreme gradient boosting 
ECFP extended connectivity fingerprints 
CV cross-validation 
RMSD root mean square deviation 
MM/GBSA molecular mechanics-generalized Born surface area 
ROC: receiver operating characteristic 
AUC the area under the ROC curve 
ACC accuracy 
SEN sensitivity 
SPC specificity 
HBAs number of H-bond acceptors 
HBDs number of H-bond donors 
QED quantitative estimate of drug likeness 
TPSA topological polar surface area  

Table 1 
Overview of the datasets used in this study.  

Name Size Note Source 

DATASET- 
1 

575, 
815 

Train the General-GEN [30] 

DATASET- 
2 

249 Fine-tune the General-GEN to get the MproI- 
GEN 

[12, 
31–35] 

DATASET- 
3 

494 Train the ML models [12, 
31–35] 

DATASET- 
4 

38 Evaluate the performances of different 
scoring functions in molecular docking 

[12, 
31–35]  

S. Li et al.                                                                                                                                                                                                                                        



Computers in Biology and Medicine 147 (2022) 105728

3

DATASET-1 contained 575,815 molecules, which were used to train 
General-GEN. Considering that the sequence identity of Mpro in 
SARS-CoV and SARS-CoV-2 is as high as 96.1%, the inhibitors of these 
two enzymes might be similar. The inhibitors and non-inhibitors against 
SARS-CoV and SARS-CoV-2 were collected from the BindingDB database 
[31], PubChem AID1890 assay [32], and some papers [12,33–35]. The 
molecules whose half-maximal inhibitory concentration (IC50) values 
were less than 10 μM were treated as positive data (with inhibition 
abilities), and the molecules whose IC50 values were greater than 50 μM 
were treated as negative data (without inhibition abilities). Under these 
settings, a total of 645 molecules were obtained. Then, the above filter 
criteria were applied to filter these molecules. After filtering, 
DATASET-3 was obtained, which was used to develop the ML models. 
DATASET-3 contained 495 molecules, among which 253 are positive, 
and DATASET-2 (used to fine-tune General-GEN) was composed of these 
253 molecules. DATASET-4 was composed of 38 experimentally vali-
dated inhibitors and non-inhibitors against SARS-CoV-2 Mpro to eval-
uate the performance of molecular docking with different scoring 
functions. 

2.2. Model training and fine-tuning 

This study developed a generative model specifically for the de novo 
design of SARS-CoV-2 MproIs. Four steps were involved in this work 
(Fig. 1): (1) General-GEN, which could generate novel and valid com-
pounds, was developed based on a char-level recurrent neural network 
(CharRNN) [37]; (2) General-GEN was fine-tuned with DATASET-2 to 
obtain MproI-GEN, which could design novel MproIs for SARS-CoV-2; 
(3) 500,000 potential MproIs were designed by MproI-GEN to form 
potential MproI library (PMproIL) 1 and then filtered by ML models and 
molecular docking to obtain PMproIL 2 and PMproIL 3; (4) PMproIL 3 
was clustered to obtain PMproIL 4, and the potential MproIs were 
validated with molecular dynamics (MD) simulations. 

General-GEN was implemented with the framework of a CharRNN, 
which could model the distribution of the next character based on the 
given character, and the model was used to generate novel compounds 
[37]. Based on the CharRNN, General-GEN consisted of an embedding 
layer, a linear layer, and four LSTM layers. General-GEN took molecular 

SMILES as inputs, and the embedding layers encoded these inputs as 
vectors. Later, the LSTM layers modeled the distribution of these strings, 
which enabled the model to predict the next character based on the 
given character (Fig. S1). General-GEN was trained on DATASET-1 and 
was implemented with PyTorch [38]. 

General-GEN, trained on DATASET-1, generated only reasonable 
molecules with structurally unknown activities against SARS-CoV-2 
Mpro. Therefore, General-GEN needed to be transferred to generate 
active molecules against SARS-CoV-2 Mpro, forming MproI-GEN. In this 
part, we used a fine-tuning technique to achieve our goal. After 
obtaining General-GEN, the parameters of all layers except the last 
linear layer were frozen, and the linear layer was retrained on 
DATASET-2. This step was also implemented with PyTorch. 

2.3. Evaluation metrics for the generated molecules 

In this study, the performance of General-GEN and MproI-GEN were 
evaluated from two perspectives: (1) their generation performance and 
(2) their active molecule design performance. The evaluation metrics of 
generation performance mainly refer to the MOSES [39]. 

To evaluate the generation performance of the generated molecules, 
the DATASET-1 was split into three non-intersecting parts: train set 
(477,297 molecules), test set (53,034 molecules), and scaffold test set 
(45,484 molecules). The molecules in the scaffold test set all have Bemis- 
Murcko scaffolds [40] mainly containing the ring structures in mole-
cules and the linker fragments connecting with the ring. The scaffold test 
set was used to assess whether the model could produce novel scaffolds 
that were not present in the training set. Among them, the test set and 
the scaffold test set would be used as reference sets. 

The validity was defined as the proportion of valid molecules among 
all generated molecules, and the valid molecules were defined as those 
for which the valences of the atoms and bonds in their rings were 
consistent. The atom valency and the consistency of the bonds in the 
rings of the generated molecules were checked with RDKit 2019.03.2 
[41]. 

The novelty measure was defined as the proportion of the generated 
molecules that did not appear in DATASET-1 and DATASET-2; this 
metric was used to evaluate the originality of the generated molecules. 

Fig. 1. The workflow of this study. First, DATASET-1 was used to develop General-GEN to generate novel and reasonable molecules. Afterward, DATASET-2 was 
used to fine-tune General-GEN to generate potential MproIs. Finally, the generated MproIs (PMproIL 1) needed to be filtered and validated. 
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The uniqueness was defined as the proportion of unique compounds 
among the first 10,000 valid compounds in the generated set; this metric 
was used to measure the diversity of the generated molecules to ensure 
that multiple patterns of generated molecules were formed. 

BRICS similarity was designed to compare the distributions of 
BRICS fragments [42] in generated sets and reference sets, which was 
denoted as SIM (frag). SIM (frag) will be large if there are similar BRICS 
fragments in both sets, and the limits of this metric are [0, 1]. 

Bemis-Murcko scaffold similarity, denoted as SIM (scaffold), is 
similar to BRICS similarity, except that the SIM (scaffold) evaluates the 
Bemis-Murcko scaffold distributions in generated sets and reference sets. 

It is worth noting that both SIM(frag) and SIM(Scaffold) are 
compared from the substructure of the molecules, so it is possible to 
have high similarity even if the compared molecular structures are 
different. 

In this study, the activity of the molecules generated by General-GEN 
and MproI-GEN were evaluated by ML models, and activity was defined 
as the proportion of the active molecules among all valid generated 
molecules. 

2.4. Screening with ML and molecular docking 

In this study, MproI classification models based on ML and molecular 
docking were used to further screen the PMproIL 1 set generated by 
MproI-GEN. 

2.4.1. MproI classifiers based on ML 
Four different ML models were trained on DATASET-3 for MproI 

prediction: a support vector machine (SVM), a random forest (RF), a k- 
nearest neighbor (k-NN) classifier, and an extreme gradient boosting 
(XGBoost) model. These four models were trained with the 2,048 bits 
extended connectivity fingerprints whose radius was equal to 4 (ECFP4) 
[43], and the calculation of the ECFP4 was implemented with RDKit 
[41]. DATASET-3 was split into 80% and 20% subsets. Eighty percent of 
DATASET-3 was used to train these four ML models, and 20% of 
DATASET-3 was used as the external validation dataset to validate the 
predictive abilities of these ML models on new data. The parameters 
were searched through a grid search during the training process 
(Table S1), and the search process was evaluated by 5-fold 
cross-validation (CV), which was implemented with scikit-learn 0.24.2 
[44]. 

2.4.2. Filtering with molecular docking 
Current molecular docking-based screening methods typically use 

the scores given by a scoring function integrated into the docking soft-
ware to rank the obtained compounds. Therefore, these scores were used 
as the main basis for the selection of potential inhibitors. In recent years, 
new scoring functions based on ML methods have been introduced and 
have been shown to outperform a wide range of classic scoring functions 
[45]. RF-Score is a scoring function built with the RF algorithm that has 
outperformed 22 state-of-the-art scoring functions on the PDBbind 
benchmark [46]. 

For molecular docking, the 3D structures of the ligands were 
generated with Open Babel 3.1.0 [47]. The crystal structure of the re-
ceptor (SARS-CoV-2 Mpro) was downloaded from the Protein Data Bank 
(PDB ID: 7BQY). The water molecules were removed with PyMol 
(version 2.6), and the hydrogen atoms and Gasteiger charges were 
added with MGLTools (version 1.5.6). Then, the prepared structure was 
converted into PDBQT format for subsequent study. The binding con-
formations of the receptor and ligands were predicted with the molec-
ular docking software AutoDock Vina 1.1.2. The centre and the size of 
the grid box were determined based on the position of the complex 
crystal structure of Mpro-N3 (PDB ID: 7BQY). The size of the grid box 
was set to 30 × 30 × 30 with a spacing of 1.000 Å, and its centre was 
located at (X = 5.914, Y = 0.576, and Z = 22.883) to cover all the main 
key amino acids that were combined with drugs (Fig. S2). The options 

were set to energy_range = 3, exhaustiveness = 8, and num_modes = 9. 
In this study, the performances of the RF-Score and AutoDock Vina’s 
default scoring function (Vina-Score) were evaluated on DATASET-3. 
After the comparison, the RF-Score function was used to measure the 
binding affinities of the protein-ligand complexes and screen PMproIL 2 
based on the yielded scores. 

2.5. MD simulations combined with Gibbs free energy calculation 

To pick the molecules which could stabilize binding within the 
pocket, the MD simulation analysis was performed. In this study, an 2 ns 
MD simulation was performed for the complex structure of the receptor 
with the molecules in PMproIL 4, and the molecules with binding free 
energies below − 40 kcal/mol were picked for a further 100 ns MD 
simulation, which was implemented with AMBER 20 [29]. The 
protein-ligands systems were solvated in a TIP3P water model within an 
orthorhombic box with buffer dimensions of 15Å× 15Å× 15Å, and the 
systems were neutralized by adding Na+ or Cl− . The steepest descent 
method with 500 steps and the conjugate gradient method with 500 
steps were selected during the energy minimization processes. After 
conducting energy minimization, these systems were heated from 0 K to 
300 K over 30,000 steps with a 2 fs step. The solvated complex was 
balanced by a density equilibrium of 50 ps, the complex was weakly 
constrained, and then a constant pressure equilibrium of 10 ns was 
achieved at 300 K [48]. The above steps were performed by the pmemd. 
cuda module. 

The stability of the protease-inhibitor complexes during the MD 
simulations was evaluated by calculating the ligand-receptor root means 
square deviation (RMSD), the number of H-bonds, and the molecular 
mechanics-generalized Born surface area (MM/GBSA) binding free en-
ergies. The RMSD and H-bond lifetime analyses were performed with the 
cpptraj module, and the binding free energies and contribution energies 
of individual residues were decomposed by the MMPBSA.py script [49]. 
For generalized Born calculations, igb2 was employed, and MM/GBSA 
was calculated from the first frame to the 1000th frame with a one-frame 
step. To calculate the binding free energy, the MM/GBSA method was 
applied. According to MM/GBSA theory, the binding free energy 
required between a ligand and a receptor to form a complex is calculated 
as: 

ΔGbind = ΔGMM + ΔGGB + ΔGSA  

where ΔGMM is the sum of van der Waals and electrostatic interactions 
and ΔGPB and ΔGSA are the polar and nonpolar solvation energies, 
respectively [50]. 

3. Results and discussion 

3.1. Generation performance of General-GEN and MproI-GEN 

The DATASET-1 collected from ZINC was used to train a general 
generation model named General-GEN, which could effectively generate 
compounds. The process of training General-GEN started with pre-
training. After pretraining, General-GEN was fine-tuned to obtain 
MproI-GEN. The fine-tuning process was achieved by freezing the 

Table 2 
The generation performance of General-GEN and MproI-GEN.   

General-GEN MproI-GEN 

Validity 0.9973 0.9248 
Novelty 0.9525 0.9668 
Uniqueness 0.9996 0.0652 
SIM(Frag) SIM(Frag)/test 0.9998 0.8584 

SIM(Frag)/scaffold 0.9927 0.8310 
SIM(Scaf) SIM(Scaf)/test 0.7949 0.0000 

SIM(Scaf)/scaffold 0.1234 0.0004  
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previous weights and retraining the weights of the last layer (linear 
layer) on DATASET-2. The outputs included 500,000 molecules 
designed by General-GEN and MproI-GEN, and these molecules were 
evaluated (Table 2). 

For General-GEN, the validity, novelty, and uniqueness of the 
generated molecular set were 0.9973, 0.9525, and 0.9996, respectively. 
That is, 95% of the generated molecules were not duplicates of those in 
DATASET-1. Among the first 10,000 valid generated molecules, 99.96% 
of the molecules did not repeat each other. Therefore, General-GEN 
could generate reasonable and novel molecules. Additionally, we also 
evaluated the generation performance of MproI-GEN. For MproI-GEN, 
the validity, novelty, and uniqueness were 0.9248, 0.9668, and 
0.0652, respectively. In other words, 92.48% of the molecules were 
valid among the molecules generated by MproI-GEN, and 96.68% of the 
generated molecules were not duplicates of those in DATASET-2, which 
meant that MproI-GEN could be used to design structurally valid and 
novel potential MproIs. The uniqueness ratio was very low, which was to 
be expected. The fine-tuning technique was performed to make the 
model generate specific kinds of molecules, so it was reasonable that the 
uniqueness decreased after the fine-tuning operation; this problem could 
be eliminated by designing as many molecules as possible. The SIM 
(Frag) of generated molecules with General-GEN (0.9998 and 0.9927) 
are higher than generated molecules with MproI-GEN (0.8584 and 
0.8310), implying fewer BRICS fragments in the molecules generated 
with MproI-GEN. BRICS fragments are related to drug-like properties of 
molecules, and the result indicates that the molecular drug-like prop-
erties of the MproI-GEN are lower than those of the General-GEN. 
Considering the relatively drug-likeness of the molecules in the 
DATASET-2, it is reasonable for the model to produce such changes after 
fine-tuning. The SIM(Scaf) could illustrate how similar the scaffolds are 
in the generated set and the reference set. In the molecular set generated 
with General-GEN, the SIM(Scaf) is 0.7949 with the test set and 0.1234 
with the scaffold test set. In the molecular set generated with MproI- 
GEN, the SIM(Scaf) is approximately zero in both the test set (0.0000) 
and the scaffold test set (0.0004). This means that the chemotypes of 
molecules generated by MproI-Gen are very different from those in the 
test set and scaffold test set. 

3.2. The ability of MproI-GEN to generate PMproILs 

As described in section 3.1, both General-GEN and MproI-GEN could 
generate novel and valid molecules. The difference between the 

molecules generated by these two models was that the molecules 
generated by MproI-GEN needed to be active molecules against SARS- 
CoV-2 Mpro. 

To evaluate whether MproI-GEN could generate active molecules, we 
trained four different ML models as target prediction models: an RF 
model, an SVM model, an XGBoost model, and a k-NN model. The ranges 
of the areas under the ROC curve (AUC), accuracy (ACCs), sensitivity 
(SEN) and specificity (SPCs) of these four ML models in the CV ranged 
from 0.8814 (k-NN) to 0.8930 (XGBoost), 0.7795 (k-NN) to 0.8305 (RF), 
0.7394 (k-NN) to 0.8084 (XGBoost), and 0.6969 (k-NN) to 0.7800 (RF), 
respectively. The ranges of the AUC, ACC, SEN and SPC values of these 
four ML models in the external validation were from 0.8469 (k-NN) to 
0.9096 (SVM), 0.7303 (k-NN) to 0.8315 (RF and XGBoost), 0.7568 (k- 
NN) to 0.9189 (RF), and 0.7143 (XGBoost) to 1.0000 (SVM), respec-
tively (Fig. 2). These statistics show that these four ML models could 
predict whether the molecules had inhibitory activity against Mpro with 
high accuracy. 

The molecules generated by General-GEN formed the General Mol-
ecules Library after the removal of invalid and repeating molecules. The 
molecules generated by MproI-GEN formed PMproIL 1 after the removal 
of invalid and repeated molecules. We used these ML models to predict 
the General Molecules Library and PMproIL 1 (Table 3). A small per-
centage of the molecules were predicted to be active in the General 
Molecules Library (from 0% to 2.85%), and a larger percentage of the 
active molecules were predicted to be active in PMproIL 1 (from 73.12% 
to 83.08%). The increase in the percentage of active molecules meant 
that MproI-GEN could be used to design potential inhibitors against 

Fig. 2. The prediction performances of the ML models. A. The prediction 
performance of these four models in the CV. B. The prediction performance of 
these four models in the external validation. 

Table 3 
The validity and the activity of the ML models were evaluated based on the 
molecules generated by the General-GEN and MproI-GEN, respectively.   

General-GEN Generation MproI-GEN Generation 

Valid Active Active 
Ratio (%) 

Valid Active Active 
Ratio (%) 

SVM 491, 594 3 0 6, 963 5, 091 73.12 
RF 491, 594 6, 597 1.34 6, 963 5, 785 83.08 
k-NN 491, 594 13, 990 2.85 6, 963 5, 465 78.49 
XGB 491, 594 12, 321 2.51 6, 963 5, 762 82.75 
Inter- 

section 
491, 594 1 0 6, 963 4, 531 65.07  

Fig. 3. The ROC curves of RF-Score (yellow curve) and Vina-Score 
(green curve). 
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Fig. 4. A heatmap was used to evaluate the structural similarity among the molecules in PMproIL 4 and the inhibitors in DATASET-4.  

Fig. 5. Distribution of the molecular properties of PMproIL 4 (yellow) and DATASET-4 (green). Distributions of the calculated molecular properties: A. Log P, B. 
molecular weight, C. number of HBAs, D. number of HBDs, E. number of rotatable bonds, F. QED, and G. TPSA. 
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SARS-CoV-2 Mpro. The intersection among the active molecules pre-
dicted by these four ML models was taken as PMproIL 2, which included 
4,531 potential MproIs. 

3.3. Screening based on molecular docking 

The MproIs in PMproIL were further screened by molecular docking. 
Before the filtering, the scoring ability of RF-Score and Vina-Score was 
evaluated, specifically. The data included in DATASET-3 contained 
experimentally validated inhibitors and non-inhibitors of SARS-CoV-2 
Mpro, and the data sources are described in section 2.1. With this 
dataset, the RF-Score and Vina-Score functions were evaluated 
regarding their effectiveness in virtual screening for the MproIs of SARS- 
CoV-2. Briefly, these ligands in DATASET-3 were docked to the crystal of 
SARS-CoV-2 Mpro using AutoDock Vina. The virtual screening perfor-
mances achieved by using AutoDock Vina with the two different scoring 
functions are presented based on their receiver operating characteristic 
(ROC) curves (Fig. 3). 

The AUC value of the RF-Score was 0.920, and that of the Vina-Score 
was 0.659, which illustrated that the RF-Score could predict the docking 
of ligands and SARS-CoV-2 Mpro more accurately. In the classification 
problems, the cut-off values had a direct impact on the confusion matrix, 
so it is important to determine an appropriate cut-off value. In this study, 
the best cut-value was determined based on the F1 score. The cut-off of 
6.24 was selected at the highest F1 score of 0.8947 (Table S2), which 
meant that the compounds whose RF-Score values were less than 6.24 
were non-inhibitors, and those with values greater than 6.24 were po-
tential MproIs. Under this threshold, the ACC of the RF-Score function 
was 89.5%, the SEN was 89.5%, and the SPC was 89.5% (Table S3). 
Considering the effectiveness of the molecular docking approach based 
on RF-Score for the recognition of MproI, PMproIL 2 was filtered with 
this method. 

The molecules in PMproIL 2 were docked with the crystal structure of 
SARS-CoV-2 Mpro, and the binding affinity values of these conforma-
tions were calculated with the RF-Score functions. The molecules with 
scores lower than 6.24 were considered non-inhibitors, and the mole-
cules with scores higher than 6.24 were considered potential MproIs 
against SARS-CoV-2 Mpro. At this point, 3,938 compounds remained in 
PMproIL 3. After this, the molecules in PMproIL 3 were clustered by 
their structural similarities via the binning clustering algorithm in 
ChemMine tools [51], with similarity cut-offs of 0.7, 0.8, and 0.9 
(Table S4). When the cut-off value equaled 0.7, the structural similarity 
differences among the molecules between clusters were the largest. To 
provide structurally diverse potential MproIs, the clustering results ob-
tained with a cut-off value of 0.7 were selected. After clustering, the 
molecules with the highest docking scores in each cluster constituted 
PMproIL 4 (Table S5, Fig. S3), which contained 78 potential MproIs. 

3.4. Structural diversity and property analysis of potential inhibitors 

The structural similarity between the inhibitors in DATASET-4 and 
the molecules in PMproIL 4 (Fig. 4, Table S6) was determined with 
RDKit [41] and Seaborn [52]. First, use RDKit to calculate the ECFP of 
each molecule, and then calculate the Tanimoto similarity scores be-
tween ECFPs of different molecules. There are 1,404 (78× 18) simi-
larity scores in the similarity matrix, of which 1,323 similarity scores 
were lower than 0.5, and 301 similarity scores were lower than 0.3. The 
similarity scores between pos_522-gen_2724 and pos_520-gen_1044 
were lower than 0.2; these were the lowest similarity scores in the 
similarity matrix. These results show that most of the molecules in 
PMproIL 4 were different from the inhibitors in DATASET-4, indicating 
that the molecules designed with MproI-GEN were structurally novel. 

Additionally, we computed the molecular properties of the screened 
molecules and DATASET-4, such as the Log P, MW, number of H-bond 
acceptors (HBAs), number of H-bond donors (HBDs), number of rotat-
able bonds, quantitative estimate of drug-likeness (QED), and 

topological polar surface area (TPSA) of these potent inhibitors 
(Table S7 and Table S8). The molecular property distributions of the 
molecules in PMproIL 4 were consistent with those of the inhibitors in 
DATASET-4 (Fig. 5). 

3.5. MD simulation study of potential inhibitors 

To obtain better approximations, 2-ns MD simulation snapshots were 
collected for the MM/GBSA calculation process, and 11 molecules with 
binding free energies below − 40 kcal/mol were selected for a further 
100-ns MD simulation (Table 4, Fig. S4, and Table S9). The final 

Table 4 
Calculated energy components and MM/GBSA free energy (kcal/mol) values for 
the SARS-CoV-2 Mpro complexes with potent inhibitors against the N3 snap-
shots collected from the 100-ns MD simulation trajectories.  

No. ID ΔG Bind 
(kcal/mol) 

ΔG Bind 
Coulomb 
(kcal/mol) 

ΔG Bind 
Solv GB 
(kcal/mol) 

ΔG Bind 
vdW (kcal/ 
mol) 

1 gen_3854 ¡47.59 ± 
11.60 

− 37.70 ±
12.09 

48.16 ±
9.96 

− 58.05 ±
9.83 

2 gen_1502 ¡46.60 ± 
4.43 

− 30.94 ±
4.25 

39.44 ±
3.33 

− 55.10 ±
4.44 

3 gen_2723 ¡42.43 ±
5.26 

− 28.62 ±
6.81 

49.55 ±
5.66 

− 63.35 ±
4.85 

4 gen_3946 − 39.89 ±
7.84 

− 34.51 ±
7.20 

38.06 ±
5.57 

− 43.44 ±
7.57 

5 gen_1617 − 39.20 ±
4.51 

− 17.26 ±
5.21 

28.70 ±
4.51 

− 50.64 ±
4.45 

6 gen_3052 − 37.99 ±
3.86 

− 14.66 ±
5.51 

27.57 ±
4.00 

− 50.90 ±
3.87 

7 gen_4104 − 35.40 ±
4.40 

− 28.24 ±
5.17 

37.20 ±
4.52 

− 44.37 ±
4.47 

8 gen_1369 − 34.35 ±
5.43 

− 29.31 ±
13.17 

40.69 ±
11.17 

− 45.73 ±
4.58 

9 gen_976 − 33.73 ±
7.90 

− 35.59 ±
14.73 

47.26 ±
11.04 

− 45.40 ±
5.44 

10 gen_2717 − 32.72 ±
3.88 

− 31.88 ±
6.52 

43.75 ±
5.89 

− 44.59 ±
3.95 

11 gen_1482 − 29.32 ±
8.21 

− 12.64 ±
8.30 

23.23 ±
8.52 

− 39.91 ±
8.68 

Control N3 − 49.69 ±
6.66 

− 35.75 ±
9.18 

52.11 ±
8.83 

− 66.05 ±
6.80  

Fig. 6. Individual residue contributions to the binding energies for A. 
gen_3854-Mpro and B. gen_1502-Mpro. C. The active site and key residues with 
energy values less than − 1.0 kcal/mol are marked. 
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estimated binding energy (ΔG Bind) is influenced by various types of 
nonbonded interactions, including electrostatic energy (ΔG Bind 
Coulomb), solvation energy (ΔG Bind Solv GB), and van der Waals 
contributions (ΔG Bind vdW). 

The complexes with binding free energies below − 40 kcal/mol were 

gen_3854-Mpro, gen_1502-Mpro, and gen_2723-Mpro, where gen_3854- 
Mpro and gen_1502-Mpro had binding energies below − 45 kcal/mol. In 
addition, the recorded binding affinity values for each complex were 
analyzed; among all the types of interactions, the ΔG Bind Coulomb and 
ΔG Bind vdW energies contributed most to achieving the average 

Table 5 
Hydrogen bond analysis results derived from the 100-ns MD trajectories of the studied systems.  

Complex H-Bond Acceptor H-Bond Donor Percentage 
Occupancy (%) 

Average 
Distance 

Average 
Angle 

gen_3854-Mpro GLU_166@O H⋯ N2@gen_3854 44.0 2.8326 156.9342 
gen_3854@O1 H⋯N@GLU_166 40.0 2.8727 161.4542 
gen_3854@O4 H⋯N@GLY_143 28.4 2.8488 149.0044 
gen_3854@O HE2 … NE2@HIE_41 23.8 2.8665 152.9741 
GLN_189@OE1 H18⋯N1@gen_3854 14.8 2.9015 157.3969 
gen_3854@O4 H⋯N@CYS_145 10.5 2.9196 155.7685 

gen_1502-Mpro HID_164@O H9⋯N@gen_1502 74.7 2.8397 158.6999 
gen_1502@O2 HE2 … NE2@HIE_163 62.2 2.8214 151.6997 
gen_1502@O1 H⋯N@CYS_145 38.8 2.901 159.6612 
PHE_140@O H8⋯N1@gen_1502 15.2 2.8945 153.0401 

N3-Mpro N3@O4 H⋯N@GLU_166 46.6 2.8790 163.6436 
N3@O HE2 … NE2@HIE_41 25.8 2.8386 148.8377 
GLN_189@O H35⋯N3@N3 16.1 2.8858 157.9821 
GLN_189@OE1 H26⋯N2@N3 12.2 2.8865 156.3211  

Fig. 7. The structures with the lowest complex energies during the MD simulations. A Structure of gen_3854-Mpro at frame 381, B structure of gen_1502-Mpro at 
frame 847, and C structure of N3-Mpro at frame 371. 
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binding energy. Hence, these binding free energy values suggested the 
potential of gen_3854 and gen_1502 as SARS-CoV-2 Mpro inhibitors 
against SARS-CoV-2 infection. 

To further analyze the individual residue contribution energies of 
SARS-CoV-2 Mpro, energy decomposition was performed on the MD- 
simulated trajectories (Fig. 6). Compared with the affinity energy in 
N3-Mpro, gen_1502-Mpro and gen_3854-Mpro slightly increased the 
binding free energies on residues MET 49, ASN 142, GLY 143, SER 144, 
HIE 163, HID 164, and GLU 166. Among them, ASN 142, HIE 163, and 
GLU 166 were the key residues of SARS-CoV-2 Mpro, and the contri-
bution of these residues was less than − 1.0 kcal/mol, which meant that 
gen_1502 and gen_3854 could bind into the active pocket of SARS-CoV-2 
Mpro. Therefore, these two molecules could be potential inhibitors. 

A hydrogen bond analysis performed on the MD trajectories revealed 
that SARS-CoV-2 Mpro was responsible for the formation of hydrogen 
bonds with gen_1502, gen_3854, and N3. The hydrogen bonds with 
occupancy percentages exceeding 10% were analyzed (Table 5). 

Table 5 shows that the gen_3854 and Mpro of the SARS-CoV-2 
structure were stabilized by six hydrogen bonds at residues GLU166 
(O–H⋯N, 2.83 Å; O1–H⋯N, 2.87 Å), GLY143 (O4–H⋯N, 2.85 Å), HIE41 
(O-HE2 … NE2, 2.87 Å), GLN189 (OE1-H18 … N1, 2.90 Å) and CYS145 
(O4–H⋯N, 2.92 Å). However, the N3 and Mpro of the SARS-CoV-2 
structure were stabilized by four hydrogen bonds at residues GLU166 
(O4–H⋯N, 2.88 Å), HIE41 (O-HE2 … NE2, 2.84 Å), and GLN189 
(O–H35⋯N3, 2.89 Å; OE1-H26 … N2, 2.89 Å). The number of hydrogen 

bonds in gen_3854-Mpro was greater than that in N3-Mpro, which 
meant that gen_3854 could bind with Mpro effectively. The gen_1502 
and Mpro structures were stabilized by four hydrogen bonds at residues 
HID164 (O–H9⋯N, 2.84 Å), HIE163 (O2-HE2 … NE2, 2.82 Å), CYS145 
(O1–H⋯N, 2.90 Å) and PHE140 (O–H8⋯N1, 2.89 Å). The number of 
hydrogen bonds was the same as that in N3-Mpro, but the occupancy 
percentage of the hydrogen bonds in gen_1502-Mpro was highest 
(74.7%, 62.2%, 38.3%, and 15.2%). These results indicated that 
gen_3854 and gen_1502 could bind well with the Mpro of SARS-CoV-2 
(Fig. 7). Therefore, it could be suggested that gen_3854 and gen_1502 
had a good affinity with the major target (SARS-CoV-2 Mpro). 

Furthermore, the RMSD was extracted from the MD trajectory for 
each complex (Fig. 8). The Cα atoms of SARS-CoV-2 Mpro produced a 
constant RMSD in the Mpro-gen_1502 complex, which meant that the 
viral protease conformation remained stable after the binding of 
gen_1502. However, the Mpro-gen_3854 complex exhibited a higher 
variation when the simulation lasted for 75 ns. Additionally, gen_1502 
exhibited equilibrium throughout the 100 ns simulation when docked 
with Mpro, but N3 showed variations at 25 ns and 75 ns. Interestingly, 
the Mpro-gen_1502 complex did not yield RMSD descriptors above 4 Å, 
validating the rigid conformation of the drug complexes, and the Mpro- 
gen_3854 complex had a low RMSD trend between 20 and 60 ns (which 
thereafter increased slightly), but this complex did not over fluctuate, 
demonstrating a rigid conformation. 

4. Conclusion 

Despite the large-scale outbreak of SARS-CoV-2, no effective drug is 
available. This study used DL and transfer learning to develop a de novo 
drug design model that could design potential SARS-CoV-2 Mpro in-
hibitors. PMproIL 1 was filtered by the constructed ML models and the 
molecular docking method, and MD simulations were used to validate 
the potential inhibitors. 

First, the ZINC dataset was used to train the General-GEN system 
consisting of an LSTM module for designing novel and valid small 
molecule compounds. Afterward, General-GEN was fine-tuned to obtain 
MproI-GEN, which could design specific molecules targeting Mpro. After 
PMproIL 1 was designed by MproI-GEN, it was filtered with the ML 
models and molecular docking. Finally, MD simulations were used to 
validate the effectiveness of the inhibitors. 

In this study, PMproIL 1 was designed with MproI-GEN and consisted 
of 6,963 molecules. After that, four ML models (an RF, an SVM, a k-NN 
classifier, and an XGBoost model) were used to filter PMproIL 1 to obtain 
PMproIL 2, which contained 4,513 molecules that were active against 
both SARS-CoV-2 Mpro and SARS-CoV Mpro. Then, PMproIL 2 was 
filtered with molecular docking, which was implemented via AutoDock 
Vina. In the molecular docking process, we used the SARS-CoV-2 Mpro- 
N3 complex as the control. During molecular docking, SARS-CoV-2 
Mpro was used as the receptor to screen out compounds with docking 
scores lower than the cut-off value (6.24). After performing filtering 
based on molecular docking, 3,938 molecules remained and made up 
PMproIL 3. PMproIL 3 was clustered according to structural similarity, 
and 78 clusters were obtained. The molecules with the highest docking 
scores were selected from each cluster for a 2-ns MD simulation and a 
binding free energy calculation. Twelve molecules had binding energies 
less than − 40 kcal/mol, and these molecules were selected for a further 
100-ns MD simulation. Among these 12 molecules, the binding free 
energies of gen_3854 and gen_1502 were less than − 45 kcal/mol. 
Further individual residue contributions, hydrogen bonds, and RMSD 
analyses involving these two molecules revealed that gen_3854 and 
gen_1502 could bind to the active pocket of SARS-CoV-2 Mpro. Hence, 
gen_3854 and gen_1502 could be considered SARS-CoV-2 Mpro in-
hibitors for further evaluation. 

However, this study still has some limitations. First, the molecular 
structures designed by the MproI-GEN are not very diverse. This is 
because the molecular structures used for fine-tuning in DATASET-2 are 

Fig. 8. RMSD values were extracted for the alpha carbon atoms of SARS-CoV-2 
Mpro (green curve) and the ligand compounds (yellow curve) from the docked 
complexes. A. gen_3854, B. gen_1502, and C. N3. 
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not very different. Second, the ML models used to filter potential MproIs 
were trained on the inhibitors data of SARS-CoV and SARS-CoV-2. This 
is because the number of existing SARS-CoV-2 MproIs is too small to 
train reliable predictive models. It is believed that with the increase of 
experimentally validated SARS-CoV-2 MproI, MproI-GEN could provide 
a more novel molecular scaffold for the development of drugs against 
SARS-CoV-2. 
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