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Abstract
Surfacic networks are structures built upon a 2D manifold. Many systems, including transportation networks and various urban 
networks, fall into this category. The fluctuations of node elevations imply significant deviations from typical plane networks and 
require specific tools to understand their impact. Here, we present such tools, including lazy paths that minimize elevation 
differences, graph arduousness which measures the tiring nature of shortest paths (SPs), and the excess effort, which characterizes 
positive elevation variations along SPs. We illustrate these measures using toy models of surfacic networks and empirically examine 
pedestrian networks in selected cities. Specifically, we examine how changes in elevation affect the spatial distribution of 
betweenness centrality. We also demonstrate that the excess effort follows a nontrivial power law distribution, with an exponent that 
is not universal, which illustrates that there is a significant probability of encountering steep slopes along SPs, regardless of the 
elevation difference between the starting point and the destination. These findings highlight the significance of elevation fluctuations 
in shaping network characteristics. Surfacic networks offer a promising framework for comprehensively analyzing and modeling 
complex systems that are situated on or constrained to a surface environment.

Significance Statement

Networks on nonflat surfaces, such as transportation and urban systems in hilly places, require specialized analyses due to elevation 
fluctuations. We introduce metrics like lazy paths and graph arduousness to quantify path difficulty and the excess effort which char
acterizes positive elevation variations along shortest paths (SPs). By analyzing simple models and real-life pedestrian networks, we 
show how elevation variations affect betweenness centrality, path ruggedness, and the overall network efficiency. The additional ef
fort required to travel from one point to another follows a broad distribution, indicating the notable occurrence that many SPs entail 
significant extra exertion to ascend steep slopes. Understanding how elevation fluctuations influence network navigation is essential 
for analyzing and modeling these systems that are situated on surfaces.
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Introduction
Surfacic networks are defined by a set of nodes and edges that 
are embedded in a 2D manifold. This manifold could be the 
plane in the case of usual “plane networks” (i.e. embedded in a 
plane, but not necessarily planar), or a sphere, or any other rug
ged surface that correspond to the topography of a place. More 
generally, this surface could be Earth’s surface, biological mem
branes, or even computational surfaces. As such, they poten
tially constitute a fundamental concept in various fields, 
including geography, computer graphics, materials science, 
and biology. Potential applications could be found in 
Geographic Information Systems (GIS) applications where sur
face networks are used to model transportation networks, utility 
networks, and other spatially distributed systems on the Earth’s 

surface. It is worth noting here that surfacic networks have to be 

differentiated from “surface network” in transport planning/ 

geography used for transport networks that are not air or sub

surface networks. Note that the elevation of a node could also 

in principle represent another quantity such as the gross domes

tic product (GDP), average income, etc. and that surfacic net

works could be used in some abstract space. Surfacic networks 

can be considered as a subset of spatial networks (1). An simple 

example of such a network is shown in Fig. 1 (see the part on toy 

models for details).
Most spatial networks studied so far are embedded in a 2D 

plane and surfacic networks generalize this by considering non 

flat 2D manifolds that can have curvature fluctuations. Other spa

tial networks could be embedded in 3D networks (such as the 
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important case of the neuronal network (2, 3)) and could be de
fined as “volumetric” networks or “physical” networks (4). We 
therefore have the following nested inclusion between these 
sets of networks:

Surfacic ⊂ Volumetric ⊂ Spatial ⊂ Networks 

We mention here the existence of the term “surface networks” 
that was quoted in Ref. (5) where the authors study data-driven 
representations for 3D triangle meshes, which are one of the 
prevalent objects used to represent 3D geometry.

The geometry of the surface will influence the structure and 
the behavior of a surfacic network. Geometric properties such as 
curvature, topology, and spatial constraints certainly play a cru
cial role in shaping the connectivity and dynamics of these net
works. This is essentially due to spatial constraints imposed by 
the surface on which the networks are embedded. These con
straints affect the arrangement of nodes and edges, as well as 
the navigation and flow of information or resources within the 
network. In contrast to spatial networks that have been thorough
ly studied, the impact of the embedding topography on the net
work structure has not been systematically considered in the 
literature. There are a few exceptions such as (6–8) that consid
ered the impact of elevation fluctuations on pedestrian paths. 
Other urban networks are naturally impacted by elevation fluctu
ations, such as the water distribution network where node eleva
tion is an important information that has to be taken into account 
(9). At a more theoretical level, network geometry studies (see 
Ref. (10) and references therein) are probably connected to 

surfacic networks. However, further studies are needed in order 
to exploit this possible correspondence.

A practical example is the road network that follows the topog
raphy of a city. This type of networks was extensively studied (see 
for example (1, 11–14) and references therein), and in this case, 
maps represent in general a vertical projection (“from above”) of 
the surfacic network, which can be very misleading (in particular 
in terms of the physical effort for a pedestrian for example). This 
type of spatial network is different from 3D spatial networks (such 
as the brain for example) and constitute a prime example of a 
surfacic network. Some specific measures will then be needed to 
characterize the importance of the “third” dimension. The 
example of road and street networks is particularly relevant for 
pedestrians and perhaps even more so for cyclists, where the alti
tude variation represents an effort for individuals. These net
works are fundamental for analyzing spatial relationships, 
optimizing routes, and supporting decision-making in urban plan
ning, logistics, and environmental management.

In order to quantity the impact of the surface shape on the net
work structure, we will introduce a set of new tools that take into 
account the third dimension described by the elevation of nodes. 
In addition to an adjacency matrix, each node is described by its 
coordinates (x, y, z) where the elevation (or height) z can display 
large fluctuations. In the general case of volumetric networks 
the elevation z has no constraint, while for surfacic networks, 
the elevation z is a function of the coordinates: z = F(x, y). The 
function F defines the 2D manifold embedded in 3D space. In 
the constant case z = const., we recover usual plane networks.

Fig. 1. Example of a surfacic network: random geometric graph on a Gaussian surface (the network is constructed here for N = 1,500 points and with 
threshold r0 = 0.1, and the Gaussian surface is obtained for zmax = 1.0 and σ = 0.4).
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There are many important theoretical questions about surfacic 
networks. For example, we need to understand what is the impact 
of elevation fluctuations on the usual properties of graphs. This 
concerns the spatial distribution of the betweenness centrality 
(BC), the shape of shortest paths (SPs), etc. For this, we can moni
tor on toy models the evolution from a graph on a flat plane to a 
graph on a deformed surface. Also, it is important to understand 
the impact of elevation fluctuations on standard graphs such as 
the minimum spanning tree and other benchmarks.

We introduce a toy model where the network is constructed 
over a paraboloid which will allow us to discuss various properties 
related to SP, or to the BC. We then consider empirical examples of 
road and pedestrian networks in real cities, for which elevation 
differences are particularly relevant.

Tools and measures
The coordinates of a node i is denoted by xi.yi, zi. The Euclidean 
distance between two adjacent nodes can be generalized under 
the form

ℓγ(i, j) =
��������������������������������������

(xi − xj)
2 + (yi − yj)

2 + γ(zi − zj)
2

􏽱

. (1) 

With this definition, we can monitor the influence of elevation: for 
γ = 0, the network is “flat,” and for γ = 1, we consider the full impact 
of elevation fluctuations.

We note that surfacic networks can be seen as weighted 2D net
works where nodes are weighted by their elevation, but encoding 
the elevation in weights could be very complex. In this respect, the 
network could be seen as a fitness or hidden variable model (15, 
16). An important fact here is that the weights (elevation) are non
trivially correlated (depending on the surface) and depend in a 
complicated way on the shape of the surface. In 
the case where the surface is defined by a function of the form z = 
F(x, y) (and the network connects the nodes of coordinates 
(xi, yi, zi = F(xi, yi)), we can construct the weights that encodes 
the elevation. For example, if an edge e connects two nodes 
M(x, y, z) and M′(x′, y′, z′), and if we assume that these nodes are 
close to each other, the weight that represents the total distance 
is given (if one assumes that the surface is differentiable):

w(e) =
���������������������������

Δx2 + Δy2 + (∇
→

F · ue
→)2

􏽱

, (2) 

where Δx = x′ − x, Δy = y′ − y, and ue
→= (Δx, Δy). We see here that, 

although the representations in terms of a weighted 2D graph 
and a surfacic network are equivalent, the formulation with 
weights could rapidly become very complex.

Also, in this representation, we see that if the network is con
structed on a differentiable surface z = F(x, y), if xi ≈ xj and yi ≈ yj, 
we have: zi ≈ zj. We expect such a continuity property to be valid 
in general for real-world networks (such as road networks for ex
ample), but there could be exceptions such as in the case of pedes
trian networks, where elevators for example induce discontinuities.

Excess effort
A shortest path SP(i, j) from i to j incurs a total elevation difference 
given by

􏽘

e∈SP(i,j)

Δz(e) = z(j) − z(i) ≡ Δz(i, j), (3) 

where Δz(e) is the elevation difference of edge e (in the direction of 
the SP Δz(e) = z(target) − z(source)). Any continuous path must sat
isfy this equation, but if there is a discontinuity (such as an 

elevator for example) we would have to include vertical edges in 
order to still satisfy it.

In a human navigation domain, where positive slope requires 
more effort, we define the elevation effort between i and j as

Δz+(i, j) =
􏽘

e∈SP(i,j)

Δz(e)θ(Δz), (4) 

where θ(x) is the Heaviside function (we can similarly define Δz− 

for negative slope segments to represent down-hill energy, time, 
etc. advantage).

If the SP from i to j is monotonically increasing, we have 
Δz+(i, j) = Δz(i, j). However in real cases, we have to go up and 
down so that we have to climb up a distance Δz+ larger than the 
elevation difference Δz. There is therefore an excess effort E(i, j) 
that we can measure with

E(i, j) =
Δz+(i, j)
Δz(i, j)

− 1. (5) 

With these measures, we can then study various network statis
tics such as its average, distribution, etc.

Lazy paths and graph arduousness
In general, the SP on a spatial network is computed 
using as the weight the Euclidean length of a link: 
w(e) = ℓ1(e) =

�������������������
Δx2 + Δy2 + Δz2

􏽰
. The (weighted) SP is then the one 

that minimizes the sum of w(e) along it.
In surfacic networks, however the elevation of a node is import

ant. We can therefore define SPs so that they weight elevation dif
ference, rather than minimizing total distance only. In particular 
for pedestrians, it makes sense to avoid paths with a large (posi
tive) elevation difference. We therefore assign the following 
weight to an edge

w(e) =
ℓ1(e) + μΔz(e) if Δz(e) > 0

ℓ1(e) if Δz(e) < 0,

⎧
⎨

⎩
(6) 

where Δz(e) = z(end node) − z(starting node) and where μ > 0 is a 
parameter. We then look for the optimal path that connects two 
nodes such that the total weight W =

􏽐
e∈path w(e) is minimum. 

We note that with this choice of weight, smoother slopes are al
ways favored. However, in reality, a pedestrian might prefer a 
path with a steeper slope followed by a longer flat section (see 
Fig. S1). It would be interesting to explore more complex weight 
functions that account for this behavior.

The parameter μ governs the relative weight of the elevation 
effort and the length of the trip. For μ = 0, this optimal path is the 
usual SP that minimizes the total distance. When μ ≫ 1, the optimal 
path essentially minimizes the excess effort. The choice μ = 1 corre
sponds then to the case where we choose a longer path if the detour 
is of the order (or smaller) than the excess effort difference. More 
precisely, assume there is a path 1 characterized by a total weight 
W1 = L1 + μΔz1 and another path 2 by W2 = L2 + μΔz2. Assume that 
L1 > L2. If Δz1 > Δz2, there is no ambiguity the SP has also the small
est excess effort and the optimal path is L2. In contrast, if Δz1 < Δz2, 
we are in an ambiguous case: the path L1 is longer but it has a small
er excess effort. The resulting optimal path will then depend on the 
value of μ, and the path 1 will be chosen if W1 < W2 which implies 
that L1 − L2 < μ(Δz2 − Δz1) which indeed corresponds to the fact 
that what we lose in detour, we gain in excess effort. Larger values 
of μ would give more weight to the elevation effort. We show in the 
SI (see Fig. S2) the evolution of the arduousness for different values 
of μ. Here and in the following, we will use μ = 1.
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We thus look for the path that minimizes the total weight with 
weights given by Eq. 6. The optimal path is then the shortest one 
that minimizes the total elevation effort, which we coin “lazy 
path,” and we denote its length by Llazy(i, j) which is given by

Llazy(i, j) =
􏽘

e∈LP(i,j)

ℓ1(e), (7) 

where LP(i, j) is the set of links belonging to the lazy path from i to j. 
We leave Δz < 0 unweighted in this experiment, but note that we 
could assign a negative weight to represent any advantage con
ferred by a “down-slope” link. In pedestrian networks, a negative 
Δz confers energy, time, and psychological advantage in navigat
ing a surfacic network. This may not be the same in other do
mains. Note that this lazy distance naturally induces 
directionality in the network: Llazy(i, j) ≠ Llazy(j, i).

We denote by Ltot(i, j) the total length of the SP between i and j, 
which minimizes the following expression

Ltot(i, j) =
􏽘

e∈SP(i,j)

ℓ1(e), (8) 

where SP(i, j) is the set of edges of the SP between i and j. Note that 
the expressions in Eqs. 7 and 8 both represent a total length. 
However, for Eq. 7, it corresponds to the total length of the path 
that minimizes 

􏽐
e w(e), while for Eq. 8, the path minimizes 

􏽐
e ℓ1(e).
We then construct the ratio of these two lengths

A(i, j) =
Llazy(i, j)
Ltot(i, j)

− 1. (9) 

For a flat network, we have A(i, j) = 0. If for a pair (i, j), we have a 
large value of A, it means that the lazy path is much longer than 
the SP and that elevation is critical. We can average this quantity 
A(i, j) over all pairs of nodes and obtain the average “arduousness” 
of the graph G

A(G) =
1

N(N − 1)

􏽘

i≠j

A(i, j). (10) 

The arduousness of a flat network is defined as A( flat) = 0. Higher 
values of A indicate greater significance of elevation, implying 
that, without a detour, one must contend with substantial eleva
tion differences. We note that in other fields such as optimization 
on nonconvex problems, we could imagine that arduousness 
might provide a measure of search difficulty in data with many lo
cal optima.

Toy models
We introduce the concept of surfacic networks using pedestrian 
paths through a topographical city, but there are certainly many 
models of surfacic networks that can be imagined. Potentially, 
any network model can be embedded on any surface, leading to 
an infinite number of possible models. Here, we explore three sim
ple models that allows to investigate different aspects of surfacic 
networks. First, we consider a network constructed over a parab
oloid, mimicking cases where the topography has a single peak. 
The main parameter is then the height of the peak (rescaled by 
the typical size of the area), and we can discuss various properties 
when this maximum height is varied. In the second “Gaussian” 
model, the width of the peak can also be monitored. Finally, we 
consider another random null model where the elevation of a 
node is a random variable. This allows us to investigate the impact 
of elevation fluctuations on various aspects of surfacic networks.

For practical purposes and expositional simplicity, we con
struct the toy networks as a function of the underlying topog
raphy. We could have merely layered a network topology on a 
topographical surface.

The parabolic model
The idea of this model is to mimic a network that is defined on a 
surface which has one main “peak.” We thus assume that the 
xi, yi coordinates of the nodes are random distributed in the plane 
(typically in the disk of radius R = 1), and that for each node i, the 
elevation zi is given as a function of their (random) planar coordi
nates xi, yi by

zi = zmax(1 − x2
i − y2

i ). (11) 

More generally, for a surface defined by z = f (x, y), we would 
choose zi = f (xi, yi) with random xi and yi. We can then choose 
any rule to construct the network on top of this surface. Here, 
we choose to construct a random geometric graph (RGG) (17) 
where two nodes i and j are connected only if their distance is 
less than a threshold ℓ1(i, j) ≤ r0. We choose r0 such that the aver
age degree is 6 ensuring the existence of a large giant component 
(see Ref. (1) and references therein). We note here that Krioukov 
et al. (18) considered a RGG built on a hyperbolic geometry, a first 
example of a surfacic network (see Ref. (19) for a recent review on 
RGG).

In this simple case considered here, we thus have a paraboloid 
embedding the network which allows us to investigate the impact 
of elevation by varying zmax from 0 at the minimum (which corre
sponds to a flat network) to zmax at the maximum, which is much 
larger than the typical size R. For this model, we will discuss its ar
duousness, excess effort, and the spatial distribution of BC.

Arduousness
We compute the arduousness (Eq. 10) for the parabolic graph 
when zmax varies from 0 (flat network) to zmax large (in our experi
ment, we choose zmax = 5). We obtain the result shown in 
Fig. 2A. We observe on this figure the presence of a maximum 
(and we expect this feature to be quite general): when zmax is 
small, the arduousness is small as they are many SPs that do 
not necessitate to climb large elevation differences. For very large 
zmax, most SPs avoid the peak of the mountain and the lazy and 
SPs are very similar. There is therefore a maximum value zmax = 
z∗ for which many SPs actually go through the peak and entail 
climbing many edges with a relatively large Δz. Around this point 
z∗, there is a large difference between SP and lazy path.

Excess effort
We compute the average excess effort 〈E〉 and obtain the distribu
tion P(E) shown in Fig. 2B. We observe on this figure that this distri
bution has a power law tail of the form P(E) ∼ E−γ with γ ≈ 2. This 
behavior indicates that there is a small but non negligible probabil
ity of finding a pair of nodes such that E is very large (up to 104). 
Large values of E typically occur when the distance ℓ1(i, j) is large 
(i.e. nodes i and j are far apart) while their elevation difference is 
small. In such cases, the SP traverses nodes with significant eleva
tion changes, leading to a large Δz+, and consequently, a very high 
value of E.

We also measure the distribution of the angle θ of 
edges (see Fig. 2C). The angle for an edge e connecting 
nodes M = (x, y, z) and M′ = (x′, y′, z′) is defined as 
θ = atan(z′ − z)/[(x′ − x)2 + (y′ − y)2]1/2. It is here an indication of 
the slopes experienced by SPs. In the case of the parabolic model 
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find a roughly uniform distribution. The average angle 〈θ〉 of edges 
depends however on zmax, and we show the result on Fig. 2D. 
We observe a rapid increase when zmax goes to 1, followed by a plat
eau for a value 〈θ〉 ≈ 40◦. It is interesting that 〈θ〉 never crosses this 
value: when zmax becomes too large, SPs naturally avoid the steep 
edges on paths that are also too long.

The spatial distribution of the BC
BC is an important measure in networks and represents a reason
able proxy for the traffic on a link (see for example (1)). It points to 
structurally important nodes that can be considered as bottle
necks in a network. For node i, it is defined as

g(i) =
1

N(N − 1)

􏽘

s≠t

σst(i)
σst

, (12) 

where σst is the number of (weighted) SPs between s and t and σst(i) 
is the number of (weighted) SPs between s and t that go through 
the node i (N is the number of nodes in the graph). In this context, 
SPs are determined based on a specific weight (referred to as 
weighted BC by some authors, but here simply as BC), where we 
consider the length of an edge as its weight.

For most spatial networks, there is some correlation (on aver
age) between BC and distance to the center (1). For example, on 
a regular 1D lattice of length L, BC is g(x) = x(L − x) for x ∈ [0, L] 

and has a maximum at L/2 (note that for a disordered planar 
network, the BC can be more complicated, see for example 
(1, 20)). We expect that elevation will be an important factor 
governing the spatial distribution of the BC, and it is interesting 
to study the correlation between the BC and the elevation. 
We note that some analysis of flows on a pedestrian surfacic 
network, can be found in Ref. (6) where the authors test the as
sociation between various BC metrics and pedestrian flow 
counts.

For flat (isotropic) networks, BC decreases with the distance d 
from the center. We can then plot the average BC vs. the distance 
d for different values of zmax (the peak of the parabolic surface). 
The result is shown in Fig. 3A.

For small zmax, we recover the usual flat network behavior: high 
BC nodes are close to the center of the graph (which corresponds 
to the center of the disk here). When zmax increases, we observe 
that there is a crossover to another regime where the large BC no
des are actually close to the boundary where the elevation 
is small. This can be confirmed by visual inspection on the 
two cases presented in Fig. 3B and C where large BC nodes are 
shown in yellow (this figure is shown for a random geometric 
graph with a large average degree; for smaller value of 〈k〉 the phe
nomenon exists but with a smaller amplitude).

We provide a simple hand-waving argument to estimate when 
this crossover happens (for a disk of radius R = 1). We consider two 

Fig. 2. The parabolic model. A) Arduousness of the graph computed for the parabolic model when zmax is varied. B) Distribution P(E) of the excess effort 
(for zmax = 1, N = 200 and 1,000 configurations). The straight line is a power law on the tail with exponent 2.0 (r2 = 0.99). C) Distribution P(θ) of the angle of 
edges (N = 200, 1,000 configurations, zmax = 1). D) Average slope vs. zmax (N = 200, 1,000 configurations).
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diametrically opposed nodes A and B with both having a small ele
vation and located at a radial distance of order ∼ R = 1 from the 
center. The length ℓS(A, B) of the path going through the center 
(i.e. the “peak” of the mountain) is given by the arc length of the 
parabola from −R to +R which is given by

ℓS(A, B) = 2 ∫R0
����������������

1 + (2zmaxτ)2
􏽱

dτ

=
������������

1 + 4z2
max

􏽱

+
1

2zmax
log 2zmax +

������������

1 + 4z2
max

􏽱􏼔 􏼕

.

(13) 

The equatorial path (i.e. that avoids the mountain peak and goes 

around) is of length ℓE(A, B) = πR = π. For zmax small, it is shorter to 

go straight from A to B: ℓS < ℓE. When zmax increases ℓS increases 

and at a certain point ℓS and ℓE become equal. This happens for 

zmax = z∗ ≈ 1. Above this value z∗, it becomes more optimal to 

avoid the peak of the mountain and in this case the small eleva

tion nodes become central.

The Gaussian model
Next, we experiment with a Gaussian shaped surface (see an ex
ample in Fig. 4A). As in the parabolic case, we choose random co
ordinates (xi, yi) and compute the surfacic network as a function 
of an underlying topography

zi = zmaxe−(x2
i
+y2

i
)/2σ2

. (14) 

As in the parabolic case, we can monitor the effect of the peak 
height zmax but also the width of this peak with σ. For a small σ 
the peak is very steep, while for a large σ (compared to the system 
size R), the slope of paths towards the peak of the mountain are 
shallow.

Fig. 3. A) Spatial distribution of the BC for parabolic networks: we plot here the average BC versus the distance to the center for different values of zmax 

(computed for 100 nodes and averaged over 100 configurations). B, C) Spatial distribution for BC for a flat network (left, zmax = 0.0) and a nonflat network 
with a maximum at the center (right, zmax = 4.0). The color code and size of nodes is proportional to the BC (Calculation are done on random geometric 
graphs of size N = 100, 200 configurations, and average degree 〈k〉 = 12).
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We compute the arduousness in this Gaussian case for two dif
ferent values of σ = 0.1 and σ = 1.0. The results are shown in Fig. 4B. 
We observe that for σ = 1 we recover a behavior similar to the one 
obtained in the parabolic case. However, when σ is too small (here 
σ = 0.1), the peak is very narrow and the influence of zmax is limited 
as few SPs actually go over it (and go around it), leading to an al
most constant arduousness.

The random model
A simple model for studying the impact of fluctuations on various 
properties of surfacic networks can be defined as follows. We start 

from a flat graph G where nodes have coordinates (xi, yi), and we 
assign to each node i a random elevation zi defined as

zi = z + σξi, (15) 

where ξi is a random number of order 1, and σ determines the scale 
of the fluctuations. We simulated this model for a uniformly dis
tributed random set of points. Here, we focus on just two different 
aspects: the structure of SPs and the minimum spanning tree.

With this model, we can observe how elevation fluctuations alter 
SPs. This is important from a practical point of view for city maps: if 
the SPs are very different, it means that we should be careful when 
using the view from above (or the projection of the map) for 

Fig. 4. A) Example of a Gaussian shaped surfacic network (here an Euclidean minimum spanning tree for N = 1,500 nodes and constructed over a 
Gaussian surface with zmax = 2/0, and σ = 0.2). B) Arduousness computed for the Gaussian model when zmax is varied and for two different values of σ = 0.1 
and 1 (results are computed for N = 200 nodes, 100 configurations, and for 100 × 100 pairs of nodes).
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navigating in the city. We tested this on a random geometric graph 
(see Refs. (1, 21) and references therein) constructed over a set of 
points in the 2D plane and where we assign to each point (xi, yi), a 
random elevation zi. Results are shown in Fig. 5A and B. We have 
highlighted in this figure a pair of nodes and the corresponding SP. 
On the Fig. 5A, we consider the flat graph, and in the Fig. 5B, we 
take into account the (random) elevation. We observe that in the 
presence of elevation, the SP is very different and typically avoids 
large elevation nodes, as expected from the BC analysis.

There are many other aspects that we could study. In particu
lar, we could study the Euclidean minimum spanning tree 
(EMST) for this model and characterize the importance of eleva
tion fluctuations in the structure of the EMST (see Fig. S3 that 
highlights the impact of elevation on the EMST structure). It is 
well known (22) that for flat networks, the total length Ltot of 
an EMST scales as Ltot ∼ Nτ with τ = 1/2. Results presented in 
Fig. 5C show that for the surfacic model with zi = σui (where ui 

is a random number in [ − 1, 1]), the exponent is different τ ≈ 
0.64 (for σ = 1). For a dimensional network, we expect that the 
typical distance between nodes is of order 1/N1/d which leads 

to a total length scaling as N1−1/d. The result obtained here thus 
corresponds to d = 3, showing that the fluctuations in this model 
are enough to destroy the surfacic feature of the network which 
now ressembles more a 3D network. Real-world surfaces does 
not display this sort of large fluctuations, but we believe that 
the scaling of the MST on surfaces deserves probably further 
study, with possible crossovers for some models from a 2D to a 
3D behavior.

Empirical analysis
Pedestrian (and road) networks are typical examples of surfacic 
networks where elevation plays a critical role. Elevation directly 
influences the accessibility of various urban points, shaping nu
merous aspects of a city’s spatial economy, including land val
ues, the viability of commercial centers, and the balance 
between jobs and housing. Despite its importance, research on 
pedestrian networks remains less developed than that on road 
networks (23), even though it is a vital component of urban in
frastructure. Notably, elevation affects pedestrian speeds, 

Fig. 5. A, B) Example of the deformation of a SP. On the left (A), we show the SP computed for the flat graph, and on the right (B), we show the shortest 
(between the same pair of nodes) computed for the surfacic network. C) Scaling of the total length with the number of nodes. Dotted lines are power law 
fits of the form Ltot ∼ Nτ . For the flat network, we obtain τ ≈ 0.46 (in agreement with the standard result 

���
N
√

and for the random model, we obtain τ ≈ 0.64 a 
3D behavior (with r2 = 0.99 in both cases). These results are obtained for an average over 100 configurations and the random surfacic network is obtained 
for σ = 1.
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influencing the geometry of minimum-time paths. Early discus
sions on footpaths in hilly terrains were initiated in Ref. (24) and 
later revisited in Ref. (25). For flat cities (i.e. with small fluctua
tions of the elevation—for example, the maximum elevation 
for Paris is 130 m), elevation difference is irrelevant. This is in 
contrast with other cities constructed over hilly surfaces. This 
is for example the case of Hong Kong island, a densely inhabi
tated urban space rising from sea-level to over 500 m and having 
very many steeply sloped roads and paths. We will also consider 
the case of San Francisco, which is interesting in the sense that 
most hilly cities have curving streets to accommodate the topog
raphy, but San Francisco is an outlier case where the road grid 
was laid over the top of the hills, so some parts of the city have 
particularly steep streets. These two examples will help us to il
lustrate our measures and results. These networks are extracted 
from the extensive dataset provided in Ref. (14). More specifical
ly, geopackages are provided for each city, and the graph was 
topologically simplified such that nodes represent dead-ends 
and junctions, but full correct edge geometry is maintained. 
This graph’s edges contain attributes for “length” (representing 
Haversine distances between original unsimplified nodes, then 
summed when graph was simplified), and also a 3D length that 
represents 3D Euclidean distances between projected original 
unsimplified nodes, then summed when graph was simplified 
(see the SI for more details about the network construction 
and the corresponding pseudocode).

Elevation and slope distributions, excess effort
Simple statistics for pedestrian networks can be measured using 
the extensive dataset provided in Refs. (14, 26) such as the eleva
tion distribution, fluctuations across cities in the world, etc. (see 
Fig. S4 for the elevation distribution for cities in different coun
tries). Beside standard statistical indicators, we compute for a giv
en city the average elevation of nodes and their Gini coefficient: if 
all the elevations are (almost) equal the Gini coefficient is (close to) 
zero and if a few nodes have a very different elevation than the 
rest, the Gini coefficient will be close to one. The result is shown 
for a few countries in the Fig. S5. We observe that the average ele
vation z decreases with the Gini coefficient G: cities with large fluc
tuations are found at a lower altitude (a rough fit gives z ∼ 1/G). 
This might seem counter-intuitive but is because, as with the 
case of Hong Kong island, coastal and deltaic cities often spread 
into surrounding hilly terrain. On the other hand, high altitude cit
ies are often built on mountain plateaux (such as Mexico City).

The slope distribution is also an interesting indicator of the in
tensity of elevation fluctuations experienced on a surfacic net
work. We show the result for the two different cities Hong Kong 
and San Francisco in Fig. 6A.

Excess effort
We computed the excess effort for the two cities and the results 
are shown in Fig. 6B. We observe that for E > 1, the tail can 

Fig. 6. A) Slope distribution for edges for the two networks of Hong Kong and San Francisco. B) Excess effort distribution P(E) for Hong Kong and 
San Francisco (computed for 500 × 500 pairs of nodes). The dotted lines represent power law fits (with exponents γ = 1.72 and 1.82). C, D) Distribution of 
the BC in Hong Kong (the size and color depend on the BC: the larger it is or the brighter it is and the larger the BC). On C), we show the result computed on 
the 2D plane graph (neglecting the elevation) and on D), we show the result when elevation is taken into account.
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reasonably be fitted by a power law of the form P(E) ∼ E−γ with γ = 
1.72 for Hong Kong and γ = 1.82 for San Francisco. These values are 
close to each other, but significantly different from the parabolic 
model for which we obtain γ = 2. The occurrence of pairs of nodes 
for which the excess effort is very large is thus more likely in these 
two cities compared to the parabolic model. This is somehow ex
pected as these real-world surfacic networks display more than 
one peak and are more rugged. The results are shown here for 
500 × 500 pairs of nodes randomly chosen. We plotted (see 
Fig. S6) the distribution for different sizes (up to 1,000 × 1,000) 
which displays a quick convergence with size.

BC: spatial distribution
As expected from the theoretical considerations and results ob
tained for toy models (see above for results on the parabolic mod
el), when the elevation of a node is too large it becomes something 
to avoid. As a consequence, SPs avoid elevation peaks and low ele
vation nodes become more central than in a flat city.

This is confirmed in the specific case of Hong Kong where we 
show both the BC map (see Fig. 6C and D) in the 2D case (elevation 
is not taken into account) and the full 3D case (with elevation). 
The results confirm our theoretical analysis: in the 2D case, cen
tral nodes (in the spatial sense) are also the ones with the largest 
BC and when we take elevation into account we observe that large 
BC nodes are on the boundary of the island (especially the nor
thern one where the density of roads is larger).

Discussion
We have described a class of networks that has not been formally 
considered before, which we call surfacic network. For these net
works, the shape of the surface governs the elevation fluctuations 
and therefore movement through the network, in our example 
pedestrian experience and behavior. The difference between non
surfacic and surfacic version of a network is crucial in general for 
any network where there is a cost associated with an elevation dif
ference, or indeed a benefit.

We illustrate using an urban pedestrian network, with our results 
showing that elevation changes the network dynamics of city move
ment potential. This category of networks potentially represents a 
powerful framework for analyzing and modeling complex systems 
that are located on, or confined to, some kind of surface.

A more definitive and comprehensive characterization of sup
ply networks is needed. While this article has provided a minimal
istic approach, a thorough mapping of surfacic network properties 
onto established graph-theoretic concepts would be valuable. A 
potential direction is linking geometric aspects, such as elevation- 
based surfaces z = f (x, y), with graph theoretical properties of net
works. Specifically, surfacic networks require tools to measure 
flatness, effort, connectivity, and weighted distance on a surface 
where elevation is systematically related to network traversal, 
setting them apart from other networks where proximity in z is 
unrelated to traversal effort. Second, the impact of directionality 
in surfacic networks needs further exploration. Defining surfacic 
networks as directed graphs (digraphs) opens up a rich area of 
study. Pedestrian networks, for instance, may be navigated differ
ently based on direction, and revisiting the current work with dir
ectionality in mind could reveal new insights. A digraph model 
could capture differences in path efficiency, excess effort, and 
weighted centrality depending on direction, prompting questions 
such as whether a lazy path uphill is equivalent to one downhill, 
and under what circumstances they differ.

Potentially, surfacic networks represent a versatile and inter
disciplinary concept with applications across various fields. For 
example, they might be used to model chemical processes on bio
logical structures, such as trees, forests or coral reefs, where top
ography influences performance (e.g. by governing exposure to 
light). Surfacic network measures that we have defined, such as 
excess effort, would seem to have potential in measuring benefits 
and costs of traversing such networks, for example, in building 
physical infrastructure, or in expending energy when moving 
through a surfacic network; and benefits of capitalizing on local 
slopes, such as when using gravity in hydrological systems engin
eering, or estimating profit potential of alternative paths in a net
work representation of a financial derivative instruments. By 
capturing explicit relationships between network topology and 
an underlying geometric topography, these networks provide 
valuable insights into the structure, behavior, and dynamics of 
complex systems situated on surfaces, paving the way for advan
ces in science, engineering, and technology.
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