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Although plasmids are important for bacterial survival and adaptation, plasmid detection and assembly from genomic,
let alone metagenomic, samples remain challenging. The recently developed plasmidSPAdes assembler addressed some
of these challenges in the case of isolate genomes but stopped short of detecting plasmids in metagenomic assemblies, an
untapped source of yet to be discovered plasmids. We present the metaplasmidSPAdes tool for plasmid assembly in meta-
genomic data sets that reduced the false positive rate of plasmid detection compared with the state-of-the-art approaches.
We assembled plasmids in diverse data sets and have shown that thousands of plasmids remained below the radar in already
completed genomic and metagenomic studies. Our analysis revealed the extreme variability of plasmids and has led to the
discovery of many novel plasmids (including many plasmids carrying antibiotic-resistance genes) without significant simi-

larities to currently known ones.
[Supplemental material is available for this article.]

Plasmids are extrachromosomal independently replicating DNA
molecules that provide their bacterial hosts with additional genet-
ic material important for their survival and adaptation. Before the
sequencing era, plasmids were detected based on the various
phenotypic changes they provide to their host, such as antibiotic
resistance or ability to degrade recalcitrant organic compounds.
Sequencing efforts, however, have revealed many cryptic plasmids
that do not contribute to the phenotype of the host cell in any ob-
vious way. Although there are about 10,000 plasmids listed in the
RefSeq database (Pruitt et al. 2007), many plasmids remain unde-
tected because the task of assembling plasmids from genomic
and metagenomic data sets is far from trivial (Antipov et al.
2016; Rozov et al. 2017). We thus conjecture that many classes
of plasmids continue to remain unknown the same way as many
of the previously unknown classes of viruses that were found in re-
cent studies (Paez-Espino et al. 2016; Roux et al. 2016).

Because plasmids exchange genetic material with the host
chromosomes and vary in structure (circular or linear), size (from
a thousand to millions of nucleotides), and gene content, it is
not clear how to computationally define the concept of a plasmid
in such a way that it would be possible to distinguish them from
the chromosomes. Also, plasmid assembly is complicated by vari-
ous repeats that are difficult to resolve using short-read sequencing
technologies:

1. An intra-plasmidic repeat refers to a repeat within a plas-
mid. Thirty-four percent of plasmids in the RefSeq database
contain intra-plasmidic repeats >300 bp, the typical insert size
in metagenomic studies.

2. An inter-plasmidic repeat refers to a repeat shared by mul-
tiple plasmids.

3. A shared repeat refers to a repeat shared between a plasmid
and a chromosome. For many isolate samples, shared repeats

3These authors contributed equally to this work.

Corresponding author: d.antipov@spbu.ru

Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.241299.118.

can be resolved if the plasmid coverage by reads significantly
differs from the chromosome coverage (Antipov et al. 2016).
It is, however, difficult to resolve such repeats in the case of
metagenomic samples with a wide spectrum of chromosome
and plasmid coverages across the bacterial community (Rozov
et al. 2017) or in the case of isolate samples sequenced during
the growth phase (Antipov et al. 2016).

Circular plasmids form uniformly covered cycles within geno-
mic and metagenomic assembly graphs, that is, cycles that have a
relatively uniform coverage by reads (with the exception of regions
corresponding to intra-plasmidic, inter-plasmidic, and shared re-
peats). These cycles are difficult to detect because they are “hidden”
within a large assembly graph that contains both chromosomal edges
(originating from chromosomes) and plasmidic edges (originating
from plasmids). Moreover, plasmids with inter-plasmidic repeats
form self-overlapping cycles (that traverse edges corresponding to
these repeats more than once), thus complicating their detection
even further.

plasmidSPAdes (Antipov et al. 2016) and Recycler (Rozov et al.
2017) are plasmid assembly tools that identify plasmids as short
uniformly covered cycles in the assembly graph constructed by
the SPAdes assembler (Bankevich et al. 2012). Both tools address
the complications caused by shared repeats using the difference be-
tween the plasmid and chromosome coverages (plasmidSPAdes is
limited to isolate genomes, whereas Recycler can work with meta-
genomes). Although plasmidSPAdes and Recycler revealed a num-
ber of novel plasmids, they report many false positives, especially in
situations when the chromosome coverage is nonuniform.
Arredondo-Alonso et al. (2017) benchmarked these tools on 42
data sets containing short reads sampled from isolate bacterial
genomes with 148 plasmids, and estimated that plasmidSPAdes
and Recycler have a precision of 0.78 and 0.30, respectively.
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The low precision and reliance on the A
uniform coverage makes plasmidSPAdes
inapplicable to metagenomic data sets
with highly varying coverage across mul-
tiple genomes. This is unfortunate
because metagenomic data sets represent
an untapped source of yet-to-be-discov-
ered plasmids (Jorgensen et al. 2014; Li
etal. 2015).

We present the metaplasmidSPAdes
algorithm that improves on plasmid-
SPAdes and Recycler by (1) iteratively
extracting subgraphs with gradually
increasing coverage from the metage-
nome assembly graph, (2) finding puta-
tive plasmids as uniformly covered
cycles in these subgraphs, and (3) verify-
ing the found putative plasmids using a
new plasmidVerify tool. We applied
plasmidSPAdes* (plasmidSPAdes com-
plemented by plasmidVerify) and meta-
plasmidSPAdes to diverse genomic and metagenomic samples
and revealed thousands of plasmids that were missed in previous
studies, including many plasmids that share no significant similar-
ities with currently known plasmids, as well as plasmids carrying
antibiotic-resistance genes (ARGs).

Results

metaplasmidSPAdes workflow

plasmidSPAdes constructs the plasmid graph by removing all edg-
es with coverage similar to the median coverage in the assembly
graph. This approach does not work for metagenomes because
they have highly nonuniform coverage across various bacterial ge-
nomes within a metagenome. metaplasmidSPAdes improves on
plasmidSPAdes by resolving dominant plasmids in metagenomes,
that is, plasmids with coverage exceeding that of chromosomes
and other plasmids, with which they share repeats.

metaplasmidSPAdes uses metaSPAdes (Nurk et al. 2017) for
transforming the de Bruijn graph into an assembly graph. It fur-
ther detects plasmids in the assembly graph by iteratively con-
structing smaller and smaller subgraphs of the assembly graph
and detecting plasmids in these subgraphs. metaplasmidSPAdes
removes low-coverage edges (with increasing coverage cutoff at
each iteration), uses exSPAnder (Prjibelski et al. 2014) to generate
contigs, and detects putative plasmids as cyclic contigs (cyclocon-
tigs) or small connected components in the generated subgraphs.

metaplasmidSPAdes sets a coverage cutoff cov, removes all
edges with coverage below cov from the assembly graph, and
searches either for a cycle (cyclocontig) supported by the paired-
end reads or for a small connected component in the resulting
graph. Some of the found cyclocontigs and connected compo-
nents represent dominant plasmids that were “hidden” in the
assembly graph before the removal of low-coverage edges. To re-
veal more and more hidden plasmids with progressively increasing
coverage, metaplasmidSPAdes iteratively increases the coverage
cutoff as cov+covaaq Or as cov*covmy (Fig. 1). Finally, it uses the
plasmidVerify tool to check whether contigs and connected com-
ponents found by metaplasmidSPAdes indeed represent plasmids.
The Methods section describes the metaplasmidSPAdes workflow
in further detail.

Figure 1. Iterative plasmid detection in the assembly graph. (A) The assembly graph Graph with three
dotted edges representing edges with the lowest coverage. (B) Removal of three edges with the lowest
coverage from Graph reveals a plasmid (cyclocontig) shown in blue. The three edges on the graph in A
now represent a single dashed edge that has the lowest coverage in Graph. (C) The same graph after the
second iteration of metaplasmidSPAdes that removes the dashed edge with the lowest coverage and re-
veals a plasmid (connected component) shown in red.

Plasmid verification

Each cyclocontig/component reconstructed by metaplasmidSPAdes
may contain some chromosomal edges (or even consist entirely of
chromosomal edges) arising from phage sequences, transposons,
repeats within bacterial chromosomes, etc. We thus developed a
plasmidVerify tool that examines the gene content of a cyclocon-
tig and classifies it as plasmidic (chromosomal) using a naive
Bayesian classifier. Because plasmids harbor a large variety of
genes, plasmidVerify uses a plasmid-specific profile-HMM data-
base to detect remote similarities between cyclocontigs/compo-
nents detected by metaplasmidSPAdes and known plasmid-
specific genes (see Methods section). To construct a set of plas-
mid-specific HMMs, we formed the PlasmidDatabase data set con-
taining all 9937 plasmids from the RefSeq database (total length
1007 Mb) and the nonPlasmidDatabase data set containing a ran-
domly selected 10% of complete bacterial chromosomes from
RefSeq (837 bacterial genomes with total length 3229 Mb).

Analysis of putative novel plasmids found by metaplasmidSPAdes

We annotated some putative novel plasmids found by
metaplasmidSPAdes using Prodigal (Hyatt et al. 2010) in metage-
nomic mode for gene prediction (version 2.6.3), the hmmsearch
tool (hmmer.org) with PfamA 30.0 database for gene annotation
(version 3.1b2), and the Comprehensive Antibiotic Resistance
Database (CARD) (Jia et al. 2017) for predicting ARGs (only “per-
fect” and “strict” hits).

Benchmarking plasmid verification tools

We benchmarked plasmidVerify against three plasmid verification
tools (Table 1):

1. a cBar tool based on 5-mer frequencies (Zhou and Xu 2010),

2. aPlasFlow tool based on deep neural networks (Krawczyk et al.
2018), and

3. arepl_HMM approach based on manually curated plasmid rep-
licase HMMs (Jorgensen et al. 2014).

We did not include PlasmidFinder (Carattoli et al. 2014) in
the benchmarking because Arredondo-Alonso et al. (2017) recent-
ly showed that it has a very low recall rate (0.36).
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Table 1. Benchmarking various plasmid verification tools

cBar PlasFlow repl_HMM plasmidVerify

PlasmidDatabase test data set, true positive, 2484 plasmids
nonPlasmidContigs test data set, true negative, 80,840 contigs

2117 (85.2%)
15,810 (19.5%)

1959 (78.9%)
16,526 (20.4%)

1298 (52.3%)
580 (0.7%)

2208 (88.9%)
2463 (3.1%)

PlasmidDatabase (9937 plasmids) and nonPlasmidContigs (323,362 contigs of length 10 kb) were divided into training (75%) and test (25%) data
sets. plasmidVerify was trained on the training data set. All plasmid verification tools were benchmarked on the test data set. Because our goal is to dis-
tinguish complete plasmids from short chromosomal fragments output by metaplasmidSPAdes, our benchmarking data sets differ from the ones de-
scribed by Zhou and Xu (2010) and Krawczyk et al. (2018), in which various plasmid verification tools were benchmarked on full plasmids/

chromosomes or plasmidic/chromosomal contigs of varying lengths.

To construct a true negative data set for benchmarking, we
randomly selected 10% of bacterial genomes from the RefSeq data-
base using the Python random.sample() function. Because most
putative plasmids output by metaplasmidSPAdes are shorter
than typical bacterial chromosomes, we split all bacterial chromo-
somes into fragments of length 10 kb and used them as the true
negative data set. This procedure resulted in 323,362 sequences
(partitioning of PlasmidDatabase into 10-kb-long fragments) that
we refer to as nonPlasmidContigs. We selected PlasmidDatabase as
the true positive data set for benchmarking.

Table 1 illustrates that plasmidVerify improved on both the
true positive and false positive rates compared with the cBar and
PlasFlow tools. Although the repl HMM approach (which uses a
small manually curated set of plasmid replicase HMMs) has a lower
false positive rate than plasmidVerify, it is not well suited for our
goals because it has a low true positive rate and is limited in its abil-
ity to detect diverse plasmids; that is, it fails to detect novel plasmid
with replicases that significantly differ from the replicases in the
curated data set.

To evaluate plasmidVerify’s performance on the unseen
branches of the microbial tree of life, we performed the following
procedure. For each of the four phyla (Firmicutes, Proteobacteria,
Cyanobacteria, and Bacteroidetes), we removed all plasmids from
the phylum from the training data set, retrained plasmidVerify
on the reduced training data set, and tested it on the members of
the removed phylum (Supplemental Table S1). The false negative
(positive) rates varied from 14.6% to 19.6% (1.3% to 3.6%) across
the four analyzed phyla.

We also tested various plasmid verification tools on the set of
viral contigs that represent a major source of nonplasmidic circular
DNA elements (Supplemental Table S2).

Data sets

Webenchmarked metaplasmidSPAdes using one data set with mul-
tiple isolate genomes, three mock metagenomic data sets with
known bacterial genomes, four metagenomic data sets (with un-
known genomes), and one plasmidome data set (all data sets con-
tain paired-end Illumina reads). To infer the set of plasmids in
each mock metagenomic data set, we compiled the list of known
plasmids from the genomes (including all strains with data present
in RefSeq) present in this data set. To check which plasmids from
this list are indeed present in the mock sample, we mapped all
metagenomic reads to each of these plasmids. We assume that a
plasmid is present in the mock data set (reference plasmid) if
>95% of its length is covered by metaSPAdes assembly. We used
metaSPAdes for this verification because all known metagenomic
plasmid detection tools use its assembly graph for plasmid assem-
bly. For information about plasmids in the mock data sets, see
Supplemental Table S3. It is worth noting that even though

mock metagenomes are usually formed from well-studied ge-
nomes, metaplasmidSPAdes was able to reveal some still unknown
plasmids even in the mock metagenomes.

Below we provide a brief description of each of the data
sets (for detailed information, see Supplemental Table S4,
“Information about Benchmarking Data Sets”).

ISOLATES

The ISOLATES data set consists of 21,933 bacterial data sets from
the JGI GOLD database (gold.jgi.doe.gov), representing isolate
bacterial samples.

HMP

The HMP data set is a mock community of 19 bacterial species, one
archaea, and one yeast species studied by The Human Microbiome
Project Consortium (The Human Microbiome Project Consortium
2012). Twenty plasmids were originally reported in this data set,
but our more stringent approach reduced the number of reference
plasmids to 14 (total length ~854 kb).

MBARC

The Mock Bacteria ARchaea Community (MBARC) data set is a
mock microbial community of 23 bacterial and three archaeal spe-
cies described by Singer et al. (2016). We identified 10 plasmids of
total length ~756 kb in the MBARC data set.

SYNTH

The SYNTH data set is a mock microbial community of 64 diverse
bacterial and archaeal species described by Shakya et al. (2013).
Shakya et al. (2013) identified 32 plasmids in this data set, but
our more stringent approach reduced the number of reference plas-
mids to 19 (total length ~1450 kb).

INFANT

The INFANT is a human microbiome data set from an infant’s gut
described by Biackhed et al. (2015).

CROHN

The CROHN is a human gut microbiome data set from a patient
suffering from Crohn’s disease (analyzed by Nurk et al. 2017).

PLASMIDOME

The PLASMIDOME is a plasmid-enriched data set from a microbial
community in a biological wastewater treatment reactor described
by Shi et al. (2018).
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MARINE

The MARINE is a marine sediment metagenome data set collected
near the field of active hydrothermal vents in the Atlantic Ocean
(Spang et al. 2015).

LAKE

The LAKE is a lake metagenome data set collected at an Indian lake
subjected to industrial pollution with fluoroquinolone antibiotics.

Analyzing the ISOLATES data set

We searched for plasmids in the ISOLATES data set with the goal of
identifying new plasmids that might have evaded detection in the
already completed sequencing projects. We did not benchmark
Recycler because Arredondo-Alonso et al. (2017) have already
benchmarked plasmidSPAdes and Recycler on diverse isolate
data sets.

plasmidSPAdes generated 44,172 plasmidic connected com-
ponents, including 15,499 cyclocontigs that originated from
7987 out of 21,933 genomes in the ISOLATES data set. To simplify
analysis, we limited benchmarking to cyclocontigs and ignored
other connected components output by
plasmidSPAdes™.

To remove duplicated cyclocontigs
from this set, we clustered them based
on their k-mer content using Mash ..
(Ondov et al. 2016) and classified plas-
mids as duplicates if their k-mer composi- :
tions differed by <1%. Once duplicates 90% .."'- .
had been removed, 6694 out of the !
15,499 identified cyclocontigs were clas-
sified as unique. Of these, 2280 cyclocon-
tigs (referred to as plasmidic cyclocontigs) [
were classified as plasmids by plasmid-
Verify (Fig. 2). We compared these cyclo-
contigs against the CARD database of
ARGs and detected 356 ARGs in 203 out
of 2280 cyclocontigs (see Fig. 2B; for de-
tails, see Supplemental Table S5).

A 100%

Identity

e ..

80%%.
[

70%

to sequences of unknown origin are ignored). BLAST generates ei-
ther a single alignment that extends over the entire length of the
cyclocontig or multiple local alignments. We defined the span of
a cyclocontig as the ratio of the total alignment length over the
cyclocontig length, and the identity of the cyclocontig as the aver-
age percentage of identity across all alignments.

Of 2280 plasmidic cyclocontigs, 1134 and 603 aligned to
known plasmids with the span exceeding 10% and 90%, respec-
tively. The remaining 2280 — 1134 = 1146 cyclocontigs can be bro-
ken down into the following four categories (for details, see
Supplemental Table S5):

1. 255 cyclocontigs ambiguously matched to plasmid/chromo-
some with a span >10% (putative integrative plasmids);

2. 480 matched bacterial chromosomes (false positive bacterial
segments);

3. 31 matched viral sequences (false positive phage segments);
and

4. 380 did not match any known plasmids/chromosomes with a
span >10% and were classified as novel plasmids.

To double-check whether a putative 16%

cyclocontig originated from a plasmid

20% 30% 40% 50% 60% 70% 80% 90% 100

Span

or a bacterial chromosome, we aligned
it against the NCBI nucleotide collection
(nr/nt) using the BLAST tool (Altschul
et al. 1990) with the e-value threshold

Putative plasmids
identified by BLAST

138

1008

Putative plasmids
identified by plasmidVerify

1069

0.001. Cyclocontigs that aligned to the
nonplasmidic sequences in the NCBI
nucleotide collection (nr/nt) (bacterial
chromosomes, viruses, etc.) likely repre-
sent false positives, but cyclocontigs
that aligned to plasmids (or do not align
at all) may represent known or novel
plasmids. Thus BLAST alignments can
be used as an approximation for the
ground truth for additional benchmark-
ing of plasmidVerify, cBar, repl HMM,
and PlasFlow (Supplemental Table S6).
If a cyclocontig aligned to multiple
sequences in the NCBI nucleotide collec-
tion (nr/nt), we analyzed the one with
the maximal BLAST score (alignments

126

10 77

178

Cyclocontigs
containing ARGs

Figure 2. The scatter plot of the span and identity for all 2280 unique cyclocontigs in the ISOLATES
data set reconstructed by plasmidSPAdes* (A) and the Venn diagram for cyclocontigs identified as plas-
mids by plasmidVerify, cyclocontigs identified as plasmids by BLAST (span >10%), and cyclocontigs con-
taining ARGs (B). (A) Each dot represents a cyclocontig reported by plasmidSPAdes and verified by
plasmidVerify. Red dots represent cyclocontigs containing antibiotic-resistance genes (ARGs). Green
dots represent cyclocontigs classified as viral sequences. (B) The Venn diagram illustrates that the
HMM-based approach in metaplasmidSPAdes identifies many plasmids with important phenotypes
that are missed by a straightforward BLAST-based approach.
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We analyzed some of the newly identified plasmids in more
details (for plasmid maps, see Supplemental Fig. S1):

1. A 7895-bp-long putative plasmid (from Streptococcus pseudop-
neumoniae clinical isolate) with span 28% and identity 96% car-
ried an Erm 23S ribosomal RNA methyltransferase, providing
resistance to macrolide antibiotics. It also carried a toxin-anti-
toxin system relB/parE and zeta toxin that may inhibit the cell
wall biosynthesis and act as a bacteriocin.

2. A 53,557-bp-long putative plasmid (from Enterobacter sp.
CC120223-11) with span 12% and identity 90% carried an
ATP-binding cassette (ABC) antibiotic efflux pump. It con-
tained a toxin-antitoxin system vapB/vapC, genes related to
pili and flagella development, and putative members of type
IV conjugal transfer systems (Pfam families T4SS_Tral and
Tral_2_C), indicating that it is likely self-transferable. It was
similar to known plasmids only in the short region containing
the parA/parB operon that ensures the accurate partitioning of
plasmids after division.

3. The longest putative novel plasmid in the ISOLATES data set
(582 kb) belonged to the halophilic marine gammaproteobacte-
ria Ferrimonas marina, strain DSM 16917. It encoded 685 pre-
dicted genes and contained the plasmid replication protein
gene repA, as well as an outer membrane phospholipase Al
(OMPLA) essential for bacterial secretion, proteins for flagella
formation, and ydaS/ydaT toxin-antitoxin system. It also had
some phage signatures such as the phage integrase genes and
bacteriophage T4-like capsid assembly protein (Gp20).
However, the phage integrase genes do not represent a strong
phage marker because they often occur in plasmids.

4. The shortest putative novel plasmid in the ISOLATES data set
(length 1284 bp) encoded a single protein (firmicute plasmid
replication protein RepL) and belonged to the fish pathogen
Candidatus ichthyocystis 2013Ark19i, a recently described novel
intracellular B-proteobacteria (Seth-Smith et al. 2016).

Analyzing the HMP data set

metaplasmidSPAdes reconstructed 21 cyclocontigs in the HMP
data set. plasmidVerify classified seven of them as plasmidic, and
all of them have corresponding reference plasmids. metaSPAdes
and Recycler reconstructed four and six reference plasmids, respec-
tively (Table 2; Supplemental Table S3). metaplasmidSPAdes iden-
tified no small uniformly covered connected components in the
HMP data set.

We analyzed why metaplasmidSPAdes missed 14 — 7 = 7 refer-
ence plasmids in the HMP data set. Six of them were nondominant
plasmids that share repeats with their bacterial hosts or other plas-
mids (for details, see Supplemental Table S3). The remaining one

Table 2. Information about reference plasmids reconstructed as
cyclocontigs by metaSPAdes, Recycler, and metaplasmidSPAdes
(HMP, MBARC, and SYNTH data sets)

No. of No. of reconstructed reference plasmids
Data reference
set plasmids metaSPAdes Recycler metaplasmidSPAdes
HMP 14 4 6 7
MBARC 10 6 6 8
SYNTH 19 6 7 8

The best result for each data set is indicated in bold.

(dominant plasmid NZ_CP015213.1) was not reconstructed as a
single cyclocontig because it had a long intra-repeat. This plasmid
was not output as a uniformly covered connected component
because it shares >50% of its length with another plasmid
(NC_009007.1) and fails the test on the uniformity of coverage
as the total length of medial edges (see Methods section) exceeds
80% of the size of this component. For each plasmid that was
not assembled in a single cyclocontig by metaplasmidSPAdes, we
computed the size and the number of edge count of the largest
connected component that contains this plasmid at each iteration
of metaplasmidSPAdes (Supplemental Table S7).

Analyzing the MBARC data set

metaplasmidSPAdes reconstructed 32 cyclocontigs, and plasmid-
Verify classified eight of them as plasmidic. metaplasmidSPAdes
assembled eight out of 10 reference plasmids in the MBARC data
set into a single cyclocontig (metaSPAdes and Recycler recon-
structed six plasmids each). Two remaining plasmids were non-
dominant plasmids that were missed by metaplasmidSPAdes
because their coverage was close to the median coverages of their
host chromosomes that share long repeats with these plasmids.

plasmidVerify erroneously classified two out of eight assem-
bled reference plasmids as nonplasmidic: (1) One plasmid from
the archaea Natronococcus occultus was misclassified because
plasmidVerify is not designed to verify archaeal plasmids, and
(2) one short plasmid (of length 2931 bp) did not yield any hits
in the Pfam-A database.

Additionally, plasmidVerify classified two cyclocontigs as
plasmidic: a 2876-bp-long cyclocontig with a plasmid replication
protein that likely represents a novel plasmid (span 19% and iden-
tity 76%) and a 53-kb-long cyclocontig that carries a plasmid-spe-
cific resolvase gene and aligns to a bacterial chromosome and
various plasmids.

Analyzing the SYNTH data set

metaplasmidSPAdes reconstructed 87 cyclocontigs in the SYNTH
data set, and plasmidVerify classified 13 of them as plasmidic.
metaSPAdes, Recycler, and metaplasmidSPAdes reconstructed
six, seven, and eight out of the 19 reference plasmids, respectively.
The remaining 11 reference plasmids in the SYNTH data set evaded
identification by metaplasmidSPAdes because:

1. 10 of them were nondominant and share long repeats with
chromosomes or plasmids with the same or higher coverage
(see Supplemental Table S3 for details); and

2. one dominant plasmid was not output as a cyclocontig because
it has inter-plasmidic repeats larger than the library insert size. It
was not output as a uniformly covered connected component
either because its length (408 kb) exceeds the default threshold
for the connected component length (200 kb).

Six out of 13 cyclocontigs that metaplasmidSPAdes classified
as plasmidic likely represent still unknown plasmids in the SYNTH
community:

1. Three cyclocontigs have ~40% span and 80%-93% identity
with known plasmids in various Phaeobacter genomes. Two of
them (lengths of 22,035 and 5444 bp) were conjugative plas-
mids carrying mobilization proteins (MobA/MobC), and one
of them (of length 11,215 bp) contained a plasmid replicase
gene repA, a toxin—antitoxin system parE/parD, and a copper-re-
sistance operon copAB.
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2. One cyclocontig (length of 38,668 bp) did not match any
known plasmid/bacterial genomes but carried a plasmid repli-
case gene.

3. Two cyclocontigs (lengths of 22,963 and 4103 bp) both had
short matches to known plasmids and chromosomes (with
span 20% and identity 97%-99%). Because they carry both a
replicase gene and conjugal transfer proteins, they likely repre-
sent conjugative plasmids.

The remaining two out of 13 cyclocontigs that meta-
plasmidSPAdes classified as plasmidic aligned to bacterial chromo-
somes and likely represent false positives (prophages or
transposons). plasmidVerify misclassified three reference plasmids
(lengths of 16,625, 8368, and 8362 bp) as nonplasmidic because it
did not detect any distinctively plasmidic genes within them.

Analyzing the INFANT data set

metaplasmidSPAdes reconstructed 33 cyclocontigs in the INFANT
data set, and plasmidVerify classified five of them as plasmidic
(Table 3):

1. One of them (length of 4234 bp) matched the pRGFK1358 plas-
mid with 100% span and 95% identity;

2. one of them (length of 4608 bp) matched the pRGFK1348 plas-
mid with 56% span and 95% identity;

3. two of them (lengths of 3687 and 3338 bp) did not match any
known plasmids/chromosomes but harbored the Mob plasmid
recombination enzyme and the initiator of plasmid replication
Rep3; and

4. one of them (length of 1553 bp) matched bacterial chromo-
somes (likely a false positive).

Analyzing the CROHN data set

metaplasmidSPAdes reconstructed 77 cyclocontigs in the CROHN
data set, and plasmidVerify classified 28 of them as plasmidic
(Table 3):

1. Four of them matched known plasmids with 100% span and
identity varying from 92%-99%;

2. 14 of them matched known plasmids with spans varying from
21%-79% and identity varying from 78%-97%;

3. nine of them had a span of <10% and did not have significant
matches with any sequences in the nr database; and

4. one of them aligned to a bacterial chromosome with a span of
38% (likely a false positive).

A 1868-bp-long cyclocontig reconstructed by meta-
plasmidSPAdes and classified as nonplasmidic by plasmidVerify
turned out to be a Streptococcus phage phiJH1301-2, carrying an
aminoglycoside-resistance gene (phages were recently shown to
carry ARGs) (Balcazar 2014). Although plasmidSPAdes and
metaplasmidSPAdes were not designed for viral assembly (there
is still no specialized software for viral assembly from genomic
and metagenomic data sets), our analysis shows that they are
able to detect viruses in genomic and metagenomic data sets.

Analyzing the PLASMIDOME data set

Because the PLASMIDOME data set did not contain information
about the reference plasmids, we generated some references for
this data set by mapping the assembled PLASMIDOME contigs
against the plasmid database (with Mash screen [Ondov et al.
2019], QUAST [Gurevich et al. 2013], and BLAST). This analysis re-
vealed 10 reference plasmids with a total length of ~100 kb. The
fact that the total length of the identified reference plasmids in
the PLASMIDOME data set was two orders of magnitude smaller
than the total assembly length suggests that most plasmids in
the PLASMIDOME data set are not present in the plasmid database.

metaplasmidSPAdes reconstructed 103 cyclocontigs in the
PLASMIDOME data set, and plasmidVerify classified 87 of them
as plasmidic (Table 3). Seven of these 87 cyclocontigs matched
known plasmids with a span >90% (with identity varying from
82%-99%) and 54 have a span exceeding 10% (with identity vary-
ing from 75%-99%). Nine out of these 87 cyclocontigs matched a
bacterial chromosome or a phage with a span exceeding 10% (like-
ly false positives). The remaining 87 — 7 — 54 — 9=17 contigs have
spans <10% and were classified as putative novel plasmids.

Analyzing the MARINE data set

metaplasmidSPAdes reconstructed 127 cyclocontigs in the
MARINE data set, and plasmidVerify classified 21 of them as plas-
midic (Table 3). Three of these cyclocontigs matched known plas-
mids (one with a 99% span and identity, two with spans of 20%
and 60% and identity of 87% and 93%, respectively). Three others
matched bacterial chromosomes with spans of 14%, 33%, and
48% and identity of 75%, 100%, and 74%, respectively. The re-
maining 15 cyclocontigs have spans <10% and were classified as
putative novel plasmids.

Analyzing the LAKE data set

metaplasmidSPAdes reconstructed 1860 cyclocontigs in the
LAKE data set, and plasmidVerify classified 417 of them as plasmi-
dic (Table 3). Seven of these cyclocontigs matched bacterial

Table 3. Number of cyclocontigs reconstructed by metaSPAdes, Recycler, and metaplasmidSPAdes in the INFANT, CROHN, PLASMIDOME,

MARINE, and LAKE data sets

No. of cyclocontigs (no. of cyclocontigs verified by plasmidVerify)

Data set Assembly length (metaSPAdes) metaSPAdes Recycler metaplasmidSPAdes
INFANT 230 Mb 11 (2) 49 (5) 33(5)
CROHN 596 Mb 45 (15) - 77 (28)
PLASMIDOME 18 Mb 56 (35) 71 (49) 103 (87)
MARINE 234 Mb 175 (24) 210 (28) 127 (21)
LAKE 119 Mb 1882 (277) 1609 (370) 1860 (417)

The best result for each data set is indicated in bold. We did not provide the Recycler results on the most complex CROHN data set because it ran for

over a month but did not output any putative plasmids.
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chromosomes, 13 matched viral sequences, and nine matched
both chromosomes and plasmids and thus likely represent integra-
tive plasmids. Fifty-nine cyclocontigs matched known plasmids
with span exceeding 10%, and the remaining 329 cyclocontigs
had no significant matches to the NCBI nucleotide collection
(nr/nt). The large number of putative plasmids in the LAKE data
set (compared with the other data sets we analyzed) may be ex-
plained by the fact that the lake was polluted with fluoroquino-
lones, making plasmids carrying antibiotic resistance and other
genes particularly beneficial to the hosts.

Discussion

We showed that plasmidSPAdes* and metaplasmidSPAdes im-
prove on existing tools for plasmid reconstruction and identify
many novel plasmids in diverse genomic and metagenomic
data sets. However, even with the improved mechanism of iden-
tifying new plasmids, it is still likely that many more plasmids
continue to evade detection (false negatives), and some nonplas-
midic cyclocontigs end up being reported as plasmids (false
positives).

Because some plasmids do not harbor any distinctively
plasmidic genes (as defined based on the analysis of known plas-
mids), the corresponding cyclocontigs are not detected by
metaplasmidSPAdes. Users have the option to switch off the
plasmidVerify tool and manually analyze all cyclocontigs that
fall into this category.

Application of plasmidSPAdes* and metaplasmidSPAdes to
various data sets revealed that many plasmids remain undetected
during genomic and metagenomic studies. Moreover, this analysis
revealed the enormous variability of plasmids: A large fraction of
the found plasmids did not match to any known ones. Even in
the already completed sequencing projects (ISOLATES data set),
we found 1166 putative plasmidic cyclocontigs with <90% similar-
ity to known ones and without significant hits to viruses or bacte-
rial chromosomes. Ninety-one of these putative plasmids contain
ARGs, 246 contain carbohydrate-active enzymes (CAZymes), and
54 contain adhesion-related genes (possibly contributing to hori-
zontal gene transfer). Expansion of the set of known plasmids
can help classify them and reflects the evolutionary relationships
between plasmids. One can compare plasmid phylogeny with
host phylogeny and phenotypic traits and analyze the relation-
ships between resistance type, plasmid replication type, and host
type. This information would also be relevant for epidemiological
studies. For example, it remains unclear whether resistance dissem-
ination involves a diverse set of plasmids or a single dominant ep-
idemic type. It may correlate with the host range and the type of
the ARG (Mathers et al. 2015). metaplasmidSPAdes will help gen-
erate a comprehensive data set of plasmids to help address these
questions.

Methods

metaplasmidSPAdes workflow

metaplasmidSPAdes uses the default values cov, ;= 5x and covy, e =
1.3. The plasmidVerify module checks whether a cyclocontig or a
connected component in the assembly graph originated from a
plasmid using a naive Bayesian classifier. To avoid time-consum-
ing read alignments at each iteration, metaplasmidSPAdes aligns
paired-end reads against the assembly graph only once and up-
dates the information about the read alignments during the graph

modifications. metaplasmidSPAdes pseudocode can be presented
as follows:

metaplasmidSPAdes(Reads, coVaaq, COVipyr)
Plasmids < empty set
Graph < assembly graph of Reads constructed by metaSPAdes
align paired-end reads to Graph and compute coverage of each edge
by reads
COVinax < Maximum coverage of an edge in Graph
cove0
while cov < cov,,ay
Contigs < the set of all paths (contigs) in Graph generated by
exSPAnder
for each cyclocontig Cycle in Contigs
add Cycle to the set Plasmids
for each small plasmid-like connected components Component
in Graph
if Component contains edges that do not belong to cyclocon-
tigs in Plasmids
add Component to the set Plasmids and remove it from Graph
€OV — Max{cov+ Cadq, COV* Crppie}
remove edges with coverage below cov from the assembly graph
iteratively remove dead-end edges from Graph (Antipov et al.
2016)
replace each nonbranching path in Graph with a single edge and
recompute its coverage
for each cyclocontig or connected component C in Plasmids
If plasmidVerify(C)=0
remove C from Plasmids
return Plasmids

plasmidVerify workflow

We predicted genes with Prodigal v2.6.3 (Hyatt et al. 2010) and ran
hmmsearch (part of HMMER 3.1b2, http://hmmer.org/) using
Pfam-A database v. 30.0 (Finn et al. 2016) on the training data
sets from both PlasmidDatabase and nonPlasmidDatabase (7550
plasmids and 242,681 “contigs,” respectively). For each of the
two runs and for each HMM, we counted the frequencies of match-
es (with the bit-score cutoff set to the “noise” level from the Pfam-
A database) to PlasmidDatabase and nonPlasmidDatabase, respec-
tively. These frequencies were used to train a naive Bayesian classi-
fier (Friedman et al. 2001). Supplemental Table S8 lists the HMM
frequencies in the training data set. Given a cyclocontig,
plasmidVerify predicts genes in this contig using Prodigal in the
metagenomic mode, runs hmmsearch on the predicted proteins,
and classifies the contig as plasmidic or chromosomal by applying
the naive Bayesian classifier.

plasmidVerify classified 1%-2% of contigs in the analyzed
metagenomic assemblies as plasmidic (Supplemental Table S9).
However, because plasmidVerify incorrectly classified a number
of chromosomal contigs as plasmidic, plasmidVerify (and other
plasmid verification tools) by itself is unable to accurately classify
plasmids and thus has to be combined with metaplasmidSPAdes
for increased accuracy.

Plasmid-like connected components

We define the size of a connected component in the assembly
graph as the total length of its edges. The connected component
is called small if its size does not exceed size,,,, (default value
200 kb). For each connected component, we compute its median
coverage by reads (cov,,.q) as described by Antipov et al. (2016).
An edge in a connected component is called medial if its cover-
age exceeds covy.qa/a and does not exceed covy,.;* a (the default
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value o=1.3). A connected component is called uniform if the total
length of its medial edges exceeds 80% of the size of this compo-
nent. We classify a small uniform connected component as plas-
mid-like if its size exceeds 1 kb and if it contains at most two
dead-end edges.

Data access

metaplasmidSPAdes results on all mentioned data sets from
this study are available at http://data.cab.spbu.ru/index.php/s/
tz7mCqDipgbcsbW and as Supplemental File S1. Source code is
available at https://github.com/ablab/spades/tree/metaplasmid_3
.13.0 and as Supplemental File S2.
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