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Abstract

Obsessive compulsive (OC) symptoms involve excessive information gathering (e.g.,

checking, reassurance-seeking), and uncertainty about possible, often catastrophic, future

events. Here we propose that these phenomena are the result of excessive uncertainty

regarding state transitions (transition uncertainty): a computational impairment in Bayesian

inference leading to a reduced ability to use the past to predict the present and future, and to

oversensitivity to feedback (i.e. prediction errors). Using a computational model of Bayesian

learning under uncertainty in a reversal learning task, we investigate the relationship

between OC symptoms and transition uncertainty. Individuals high and low in OC symptoms

performed a task in which they had to detect shifts (i.e. transitions) in cue-outcome contin-

gencies. Modeling subjects’ choices was used to estimate each individual participant’s tran-

sition uncertainty and associated responses to feedback. We examined both an optimal

observer model and an approximate Bayesian model in which participants were assumed to

attend (and learn about) only one of several cues on each trial. Results suggested the partic-

ipants were more likely to distribute attention across cues, in accordance with the optimal

observer model. As hypothesized, participants with higher OC symptoms exhibited

increased transition uncertainty, as well as a pattern of behavior potentially indicative of a

difficulty in relying on learned contingencies, with no evidence for perseverative behavior.

Increased transition uncertainty compromised these individuals’ ability to predict ensuing

feedback, rendering them more surprised by expected outcomes. However, no evidence for

excessive belief updating was found. These results highlight a potential computational basis

for OC symptoms and obsessive compulsive disorder (OCD). The fact the OC symptoms

predicted a decreased reliance on the past rather than perseveration challenges preconcep-

tions of OCD as a disorder of inflexibility. Our results have implications for the understanding

of the neurocognitive processes leading to excessive uncertainty and distrust of past experi-

ences in OCD.
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Author summary

Obsessive compulsive (OC) symptoms involve excessive information gathering (e.g.,

checking, reassurance seeking), and excessive uncertainty about possible future events.

Normally, people can use prior experience to predict present and future events. Here we

suggest that OC symptoms can be traced back to an impairment in this prediction mecha-

nism. In Bayesian models of learning and decision making the relative weight given to

prior experience depends on the estimation of uncertainty. Particularly, when one believes

that past states cannot predict the future with certainty, the optimal behavior is to assign a

higher weight to current feedback at the expense of prior experience. We examined this

mechanism, using a task that required participants to learn cue-outcome contingencies

from feedback, while considering the possibility that occasional changes in the contingen-

cies render past experience irrelevant. A computational analysis of participants’ behavior

showed that participants with higher OC symptoms indeed assigned lower weight to prior

experience, leading to over-exploratory behavior. These results have implications for the

understanding of the neurocognitive processes leading to excessive uncertainty and dis-

trust of past experiences in obsessive compulsive disorder.

Introduction

Imagine that you place your wallet into your bag. Normally this behavior, often automatic,

would allow you feel confident that your wallet is there. However, if you happen to know that

your bag has a hole in it, you will be uncertain that your wallet will stay in your bag because

the wallet’s past state (i.e., in bag) cannot reliably predict its present state. Therefore, you will

be more likely to worry about your wallet falling out, trying to prevent this from happening or

constantly checking that your wallet is still there.

Obsessive compulsive (OC) symptoms often involve such preemptive actions and checking

behavior. Patients and subclinical populations with elevated OC symptoms exhibit similar

behavior even in experimental contexts that do not activate OC-related fears, suggesting that a

basic cognitive function might be impaired. Indeed, obsessive compulsive disorder (OCD) and

OC symptoms have been associated with longer search times and more fixations in visual

search tasks [1,2], and more repetitive checking behavior in change detection tasks [3,4],

potentially implying decreased utilization of previously accumulated information. More spe-

cific evidence comes from a recent study using a complex probabilistic learning task which

showed that OCD patients failed to make full use of previously accumulated knowledge about

the environment, such that their behavior excessively reflected the most recent observations

[5]. Indeed, patients’ difficulty in trusting their own memory [6], and tendency to repeatedly

doubt and re-examine what they should already know (e.g., that the stove is already off; that

one’s hands are already clean) might be related to a cognitive impairment in relying upon

accumulated knowledge.

Conversely, numerous studies have pursued the idea that OCD is characterized by cognitive

inflexibility and perseveration: a difficulty in forsaking learned contingencies or responses [7–

9]. This is often examined in reversal learning tasks, wherein participants are required to adapt

to changes in task contingencies. Notably, this idea stands in stark contrast to the idea of

decreased reliance on previous knowledge in OCD, articulated above. However, a recent

meta-analysis of flexibility in OCD showed that patients’ behavior in such tasks does not evi-

dence a specific pattern of perseveration, but instead is best characterized as non-specific

underperformance [7]. Most behavioral indices used in such tasks are likely governed by a
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complex interaction of different cognitive processes, which might lead to the appearance of

global underperformance. In the current study we use a computational modeling approach

designed to uncover the specific cognitive processes (rather than global behavioral measures)

that correlate with OC symptoms in a reversal learning task.

Reversal learning tasks require participants to use feedback to learn which of several cues is

currently advantageous. Before a shift in contingencies occurs, participants can rely on previ-

ously accumulated knowledge, and ignore current feedback. However, because participants do

not know a-priori when such a shift will occur, they must consider both current feedback and

previous knowledge. Furthermore, if outcomes are determined probabilistically (i.e., feedback

is not fully reliable), as in probabilistic reversal learning tasks, participants are required to

decide whether unexpected feedback is misleading or indicates a real contingency shift.

In line with the influential idea that the brain implements some sort of Bayesian inference

[10,11], this intuitive process can be formalized in a Bayesian state-space model that aims to

infer the current state of the environment [12]. In the context of reversal learning this corre-

sponds to inferring which cue is currently advantageous. Bayesian inference provides a princi-

pled way of integrating prior knowledge and current evidence by weighting each by its relative

uncertainty [10,13–15]. In particular, learning is governed by the balance between two types of

uncertainty: uncertainty regarding state transitions (i.e., transition uncertainty) and observa-

tion uncertainty. The former (inversely) reflects the belief that past evidence (i.e. state at t-1) is

predictive of the current state (at time t; e.g., the expectation that my wallet is in my bag if it

was there before; the expectation that the previously advantageous cue is still advantageous).

The latter reflects the belief that current feedback faithfully reflects the current state (e.g., can

sensory feedback indicate the location of my wallet? How reliable is the current feedback with

regards to which cue is advantageous?), and is especially relevant in probabilistic reversal

learning. Similar uncertainty-related processes are involved in models postulating that the

brain is only approximating Bayesian inference [13].

The use of this computational formalization allows us to test hypotheses regarding the cog-

nitive processes underlying readily apparent behavioral manifestation such as perseveration or

poor performance. Thus, perseveration (i.e., disregard of feedback indicating a contingency

shift) can result from at least two processes: overreliance on previous knowledge (i.e., underes-

timation of transition uncertainty), or under-reliance on current feedback (i.e., overestimation

of observation uncertainty). However, as suggested above, it is also possible that OC symptoms

are actually rooted in excessive transition uncertainty–leading to disregard of previous knowl-

edge, and inducing repetitive seeking of new information (manifesting as checking, reassur-

ance seeking, etc.) that is then given excessive (but short-lived) weight in shaping one’s beliefs.

Indeed, a recent computational account of OCD suggests that obsessive compulsive pathology

can be traced back to excessive transition uncertainty [12]. Modeling can arbitrate between

these possibilities, while also examining the possibility that poor performance reflects non-spe-

cific random responding [7] due to a more trivial cause such as inattention or a lack of motiva-

tion. We examine these questions using an adapted version of the reversal learning task

proposed by Yu and Dayan [13], which allows to independently quantify subjects’ transition

uncertainty, observation uncertainty, and the likelihood of random responding. Since this is

the first empirical investigation of this task, we also examined whether the approximate Bayes-

ian learning model suggested by Yu and Dayan [13] accounts better for participants’ perfor-

mance than an optimal Bayesian model.

Interestingly, in a recent meta-analysis, a distinct pattern of results was reported in deter-

ministic and probabilistic contexts: In the former, OCD patients showed non-specific impair-

ments, whereas in the latter preliminary evidence for overly flexible behavior was found [7].

This might suggest that distinct processes govern patients’ behavior in accordance with
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whether feedback is reliable or noisy [12]. However, hitherto no study has directly compared

the two types of tasks. Thus, the secondary goal of this study is to examine whether a different

pattern of results emerges for these two types of tasks.

Results

Learning task

58 participants recruited from the general population, with a wide range of OC symptoms

(~40% participants scored above the clinical cutoff), performed a modified spatial cueing task

(see Fig 1), previously used to substantiate an influential model of approximate Bayesian learn-

ing in the brain [13]. On each trial, participants were presented with three arrow cues pointing

either left or right. Participants were told that one of these cues predicts the location of the

Fig 1. Illustration of the reversal learning task, and the parameters of the Bayesian generative models used for the computational analysis. h–transition

uncertainty; γ–cue validity (with 1- γ representing observation uncertainty).

https://doi.org/10.1371/journal.pcbi.1007634.g001
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subsequent target (black circle), and that once in a while a contingency shift (hereafter “shift”)

will occur–the hitherto predictive cue became irrelevant and a different cue became predictive.

Participants’ task was to predict the location of the target by pressing the left or right arrow

keys (before it appears). The task included two main conditions, a deterministic condition
where all trials were valid (i.e. the relevant cue always predicted the location of the target), and

a probabilistic condition, with 75% cue validity. Each condition included 88 trials, with a single

shift occurring after either 40 or 48 trials (counterbalanced across participants and

conditions).

Preliminary behavioral analysis

Prior to examining the data through the lens of a theory-based computational model, which is

the focus of the current work, we present the basic behavioral findings. As a crude single-trial

measure of accuracy, we first examined whether the participant’s response matched the orien-

tation of the relevant cue. Overall, participants’ mean accuracy in the deterministic condition

was 0.94 pre-shift and 0.93 post-shift. Mean accuracy in the probabilistic condition was 0.79

pre-shift and 0.78 post-shift. As depicted in Fig 2, participants reached an asymptote (of ~0.97)

quickly in the deterministic condition, with performance dropping immediately after the shift.

Conversely, in the probabilistic condition, participants’ mean performance was more unstable

pre-shift, with decreases likely reflecting incorrectly interpreting probabilistic errors as real

contingency shifts. A more stable increase in performance was observed post-shift, likely

reflecting a belief that a shift has already occurred, such that accumulated knowledge appeared

more reliable.

Next, we used logistic multilevel regressions [16] to examine the effects of OC symptoms as

measured by the Obsessive Compulsive Inventory-Revised (OCI-R [17]) on performance. A

marginally significant effect was found for OCI-R (total) scores in the probabilistic condition

(β = -0.009, Z = -1.89, p = .058) but not in the deterministic condition (β = -0.008, Z = -1.22,

p = .222). A more specific measure can be obtained by focusing on trials in which participants’

responses matched only one of the three cues (henceforth disambiguating trials). Accuracy in

these trials reveals whether the correct cue was chosen. Using this cleaner measure resulted in

a significant effect of OCI-R in the probabilistic condition (β = -0.015, Z = -2.12, p = .027).

Comparing participants’ pre- vs. post-shift performance in the probabilistic condition showed

that in both types of analyses, high OCI-R scores predicted inferior performance post-shift (all

trials: β = -0.013, Z = -2.16, p = .031; disambiguating trials: β = -0.022, Z = -2.42, p = .015) but

not pre-shift (all trials: β = -0.005, Z = -0.70, p = .485; disambiguating trials: β = -0.007, Z =

-0.09, p = .41) although the interaction was not significant (p’s� .23).

On the surface, these data seem to suggest that high OC participants’ inferior performance

is due to perseveration, naturally evident only after the shift, thus challenging our hypothesis.

However, inspecting participants’ choices in disambiguating trials revealed that the proportion

of errors that can be attributed to perseverative selection of the cue that was relevant pre-shift

did not increase (and in fact was non-significantly lower) for participants with high OCI-R

scores (β = -0.006, SE = 0.012, Z = -0.47, p = .63). Moreover, inspecting how participants’ per-

formance changed within blocks revealed a trend associating higher OCI-R scores with infe-

rior performance at later stages of the pre-shift block (see Fig 3A; trial x OCI-R interaction: β =

-0.0008, Z = -1.72, p = .085). Together, this pattern might suggest that high OC participants’

inferior performance at later stages of the task did not result from perseveration. Rather, it

potentially reflects either premature attempts to seek a new relevant cue before the relevant

cue actually changed, or a difficulty establishing the new cue. Interestingly, this effect was

found only for the probabilistic condition, where the discrimination of real contingency shifts
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from noise is more challenging. However, accuracy is only a crude measure of the cognitive

processes governing participants’ behavior. Therefore, we use modeling to determine the pro-

cesses responsible for this underperformance, and to examine our main hypothesis.

Bayesian learning computational models

First, we aimed to determine which of two classes of Bayesian learning models best describes

participants’ behavior: an optimal Bayesian change-point (BCP) model that simultaneously

Fig 2. Mean performance over time pre- and post-shift, in the deterministic and probabilistic conditions. Error bars represent individual differences (±1SD).

https://doi.org/10.1371/journal.pcbi.1007634.g002
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learns about all three arrow cues, or a selective attention (SA) model that focuses on a single

arrow on each trial. In both models, transition uncertainty was formalized as a participant’s

estimate of the probability that the previously accumulated knowledge is no longer relevant, as

determined by the free parameter h. Estimated cue validity was determined by the parameter

γ, and observation uncertainty was correspondingly defined as 1-γ. The probability for ran-

dom responding was parameterized by ε (very low values of this parameter can also be used to

indicate random performance, which justifies exclusion). These models were compared with

two simple benchmark models where knowledge was not accumulated over trials. This stage is

crucial for determining whether participants actually follow a Bayesian model when solving

the task.

Bayesian change-point (BCP) model

The agent tracks the probability of each cue being the relevant cue given all previous observa-

tions. Information observed before the last shift is not useful for determining the relevant cue,

and thus the agent must infer how long ago the relevant cue has last changed (i.e. run-length).

The agent estimates the likely run-lengths on a given trial using a Bayesian change-point detec-

tion algorithm [18,19]; see Eqs 1–8). This algorithm weights evidence accumulated on previous

trials by the probability that a shift did not occur yet (as given by the run-length distribution).

So, for example if there is a high estimated probability that a shift occurred on the last trial (t-

Fig 3. Performance (accuracy) as a function of OCI-R scores, and trial number. The surface plot depicts the results (predicted scores) of a logistic multilevel regression.

Dots represent the actual accuracy, binned in intervals of 5 trials, and 10 percentiles on the OCI-R (percentile binning was used because of the skewed distribution of the

OCI-R). The figure shows that higher OCI-R scores correlated with a decrease in performance in the late stages of the pre-shift block (A), as well as in the entire post-shift

block (B).

https://doi.org/10.1371/journal.pcbi.1007634.g003
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1), evidence that preceded it is disregarded. Conversely, if there is a high probability that a

shift occurred x trials ago, evidence accumulated during these x trials is given a higher weight

than evidence accumulated before trial t-x. After an estimated shift the distribution over cues

is simply the uniform distribution, reflecting the belief that once the previous knowledge is no

longer relevant, learning starts anew.

The run-length distribution itself is also updated by integrating: a) evidence for a shift on

trial t (e.g., a consistent mismatch between the actual location of the target, and its expected

location as given by the different cues, each weighted by its estimated probability), and b) the

prior probability that a relevant cue on trial t-1 is no longer relevant on trial t (i.e. transition

uncertainty). We examined both a model where this prior probability is assumed to be con-

stant across trials, and a model in which it increases as a function of the run-length (indicating

a belief that shifts become more likely over time), following a previously used simple exponen-

tial function [20] (see Eq 2).

When learning from feedback, the model takes into account the possibility that (particularly

under probabilistic contingencies) the relevant cue does not always point to the right direction.

This is reflected by the estimated cue validity parameter (γ, which is the complement of the

observation uncertainty). We make the simplifying assumption that γ remains constant across

trials, although it is likely learned during the task. This common simplification [19] allows us

to use an analytical solution for the recursive update, which facilitates model fitting. Finally,

response probabilities on trial t+1 are determined by the orientation of all cues, weighted by

their estimated probabilities, and a fixed probability of responding randomly (ε; see Eq 6).

Selective attention (SA) model

On each trial, the agent focuses on a single cue (rather than learning about all three cues). The

agent then decides whether to stick with this cue or not, based on the agent’s confidence that

this cue is indeed the relevant one (λ). Yu and Dayan [13] have shown that λt can be computed

recursively as a function of three factors: Prior confidence (λt-1); transition uncertainty (h),

such that greater transition uncertainty implies that the cue is no longer relevant, reducing the

relevance of prior confidence in this cue; and estimated cue validity (γ), which amplifies learn-

ing from feedback at trial t at the expense of relying on prior confidence. The equations gov-

erning this learning process (Eqs 11–16) can be also found in Yu and Dayan [13].

Following each trial, the agent switches attention with probability 1- λt. Whereas in Yu and

Dayan [13] this relationship is deterministic (i.e. switches occur when λt < .5), here we assume

a probabilistic relationship, to deal with fitting issues described below [19]. Participants are

assumed to follow an ε-greedy policy, responding in accordance with the attended cue with a

probability of 1-ε, and responding randomly with a probability of ε.

A major obstacle in fitting this model is the fact that the experimenter has no definite

knowledge of which cue the participant attends to on a given trial (because participants

respond with the right/left keys with no explicit selection of cue). Therefore, we were unable to

use the full model suggested by Yu and Dayan (where γ is learned over trials) to fit participants’

data. However, following the approach suggested by Wilson and Niv [19], we can infer a distri-
bution over attended cues given the history of participants’ actual responses, observed cues

and targets. This is done by applying the change-point algorithm to infer the run-length since

the last time the participant switched their attention to a different cue, where the prior proba-

bility of such a switch is 1- λt. This distribution is then used to obtain response probabilities

(Eq 24). A detailed description of this algorithm can be found in Eqs 17–24.
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Win-stay lose-shift (WSLS) model

In this simple benchmark model, the agent is assumed to focus on a single cue on each trial.

After feedback is obtained, the agent sticks with this cue in case of an expected outcome (i.e.

when the target’s location matches the orientation of this cue) with probability pstay, and

switches to a different cue in the case of an unexpected outcome with probability pshift. It is a

simple selective attention model that does not require complex Bayesian learning. Since this

model shares that same problem of estimating participant’s attended cue as the SA model

above, a similar solution was used [19].

No learning model

This model was designed as an even simpler baseline for examining the absolute fit of the

learning models. Here, response probabilities were based only on the proportion of arrow cues

pointing at a specific direction, with no learning.

Model comparison

Model parameters were estimated in a hierarchical Bayesian framework that regularizes indi-

vidual participants’ parameters using group-level parameter distributions, and which typically

produces more reliable estimates [21]. Models were compared by using the Widely Applicable

Information Criterion (WAIC), and an approximation of the leave-one-out validation (PSI-

S-LOO), which are state-of-the-art measures of out-of-sample predictive accuracy of Bayesian

models [22]. To support the interpretation of these results, these values were used to approxi-

mate the relative likelihood of each model being the best model by calculating models’ weights

(Akaike weights for the WAIC, and pseudo-BMA weights for the PSIS-LOO [23]). In addition,

we examined each model’s absolute fit by using the entire posterior distribution of partici-

pants’ parameters to generate a distribution of simulated responses (per-participant), and cal-

culating the average match between the participant’s actual data and these simulated

responses.

As depicted in Fig 4A and 4B, The BCP models had a better fit (lower WAIC and PSIS-LOO

values) than both the SA models, and the WSLS models in both conditions. BCP models with

constant h (transition uncertainty) were equivalent to changing-h models in the probabilistic

condition, but outperformed them in the deterministic condition. Surprisingly, in the deter-

ministic condition, models allowing cue validity (γ; equal to 1 by definition) to be free per-

formed better. Nonetheless, estimated γ in that condition was close to 1 for most participants

(inter-quartile range = 0.9904–0.9982). Together, these results led us to focus on the BCP mod-

els with constant h and free γ for the analyses below. Results of the changing-h model were

similar and are reported in the Supporting information (S1 Table).

For most participants, the best-fitting models performed better than chance (0.5), and bet-

ter than a no-learning model (see Fig 4C and 4D). The prediction of the responses of one par-

ticipant (colored in red) was close to chance-level in both conditions. The fitted values of � for

this participant were also high (e.g., 0.65 in the probabilistic conditions), implying random

responding. This participant was excluded from all analyses, although this exclusion did not

significantly alter the results.

Transition uncertainty and OC symptoms

To obtain a point estimate of the computational parameters of interest, the medians of partici-

pants’ posterior distributions were used. In accordance with our main hypothesis, OCI-R

scores were positively correlated (using a non-parametric permutation test due to the violation
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of normality) with transition uncertainty (h) in the probabilistic condition (r = .31, p = .017;

Fig 5A), whereas the effect in the deterministic condition was only marginally significant (r =

.24, p = .062; Fig 5B). OCI-R scores did not correlate with observation uncertainty (1-γ) in the

probabilistic (r = .15, p = .259) or deterministic (r = -.06, p = .704) conditions. Likewise,

OCI-R scores also did not correlate with random responding (ε) in the probabilistic (r = .05,

p = .732) or deterministic (r = .06, p = .639) conditions. These results show that underperfor-

mance related with OC symptoms is indeed the result of under-weighing accumulated knowl-

edge, and not of perseveration or non-specific stochasticity in the response process.

OC symptoms and sensitivity to feedback

As outlined above, transition uncertainty and observation uncertainty interact in determin-

ing the weight given to feedback (i.e. prediction errors). Thus, this computational setup

allowed us to use participants’ best fitted parameter values to estimate two trial-level mea-

sures of the processing of feedback in the probabilistic condition. First, we examined how

unexpected each outcome was to participants (using a measure of surprisal; see Eq 9). For

example, the case in which all three cues point to one direction but the target appears at the

other direction is highly unexpected. Second, we examined the degree to which each out-

come made the participants change their beliefs about the relevant cue (using the KL-diver-

gence; see Eq 10). Crucially, not all unexpected feedback leads to learning. Indeed, in the

example given above, the unexpected target provides no new information regarding the rel-

evant cue. More generally, high transition uncertainty increases both measures, whereas

observation uncertainty increases surprisal but decreases model updating. At the extreme

case wherein γ = .5, feedback is always unpredictable, yet is completely uninformative about

the relevant cue. Thus, examining the feedback processing measures can help better under-

stand the interaction between the two uncertainty parameters in high OC participants. Fur-

thermore, these two, partially dissociated types of prediction error [24] have different

neural markers [24–28].

Higher OCI-R scores predicted higher surprisal in valid trials (β = 0.001, t = 2.10, p = .040)

and lower surprisal in invalid trials (β = -0.002, t = -2.07, p = .043; the interaction was signifi-

cant: p = .031), suggesting that transition uncertainty decreased high OC participants’ confi-

dence in their predictions. Indeed, OCI-R scores were positively correlated with trial-level

uncertainty (i.e. entropy) regarding the target’s predicted location (β = 0.0004, t = 2.09, p =

.042).

In contrast, OCI-R scores were not correlated with model updating in valid (β = 0.00036,

t = 1.86, p = .067) or invalid trials (β = 0.00035, t = 1.23, p = .22). This might reflect the fact

that although OCI-R was not significantly correlated with observation uncertainty, the direc-

tion of this relationship was positive (see S1 Table). Recall that transition and observation

uncertainty impact model updating in opposite directions, and thus even slightly elevated

observation uncertainty may have counteracted the effect of high transition uncertainty on

model updating.

Fig 4. Model comparison results for the most competitive models (less competitive variations of these models are presented in S2 Table and S2 Text in the

Supporting information). Panels A and B present the relative fit indices (the widely applicable information criteria; WAIC, and an approximation of the leave-one-

out validation; PSIS-LOO), with lower values representing better fit. The size of the triangles represent the relative weights (i.e. approximation of the relative

likelihood) of the different models. Panels C and D present the distributions (over participants) of the absolute fit, computed as the proportion of correct predictions

(i.e. match between model-based simulated responses and actual responses) for each model. The green, vertical, dashed line represents the average absolute fit. The

red (outlying) bar represents a participant excluded from all analyses due to this and additional evidence for negligent, chance-level performance. BCP–Bayesian

change point model; SA–selective attention model; h–a free parameter determining transition uncertainty; γ–a free (or fixed at 1, in some models) parameter

determining the complement of observation uncertainty.

https://doi.org/10.1371/journal.pcbi.1007634.g004
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Specificity to OC symptoms

Finally, we sought to examine whether transition uncertainty is related specifically to OC

symptoms, or whether this relationship can be accounted for by general distress, anxiety or

depression. Transition uncertainty was not significantly correlated with anxious arousal (prob-

abilistic: r = .12, p = .378, deterministic: r = .06, p = .643), depressive symptoms (probabilistic:

r = .22, p = .10; deterministic: r = .20, p = .140) or stress (probabilistic: r = -.02, p = .894, deter-

ministic: r = .16, p = .238). Nonetheless, the effect size for depressive symptoms was close to

that of OCI-R scores. Examining partial correlations showed that the effect of OCI-R control-

ling for depressive symptoms was no longer significant (r = .24, p = .075), although it was

stronger than the effect of depressive symptoms controlling for OCI-R scores (r = .07, p =

.608). Thus, whereas OC symptoms seem to play a larger role here, evidence for specificity is

limited, and examination with larger studies is required.

Discussion

The current paper examines the hypothesis that OC symptoms are related with excessive tran-

sition uncertainty: an impaired ability to rely on past states when estimating the present and

predicting the future [12]. Supporting this hypothesis, participants with high OC symptoms

exhibited a tendency to distrust what they have learned in previous trials, rendering them con-

stantly uncertain, indecisive and exploratory. Increased transition uncertainty can explain

excessive information gathering (e.g., checking, reassurance seeking) in OCD [1–5] as the rea-

sonable (Bayes-optimal) thing to do when previous knowledge is discounted [14].

These results challenge the common preconception that OCD is characterized by inflexibil-

ity [8,29]. A previous meta-analysis showed that there is no robust evidence for a specific

Fig 5. Scatterplots depicting the association between OCI-R scores and transition uncertainty fitted values (medians and 95% Bayesian high density intervals), for the

probabilistic (A) and deterministic (B) conditions.

https://doi.org/10.1371/journal.pcbi.1007634.g005
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flexibility impairment in OCD [7]. The use of computational modeling in the current study

allowed for a more specific and somewhat counterintuitive conclusion–rather than inflexibil-

ity, OC symptoms correlated with ’over-flexibility’ [30,31], especially under probabilistic con-

tingencies. In contrast to that meta-analysis, no robust underperformance was found under

deterministic contingencies. This is likely related to the fact that contingency shifts are easier

to detect when feedback is deterministic.

It is important to note that these results do not imply that OCD patients (or individuals

with high OC symptoms) necessarily have an explicit belief that the environment is unstable.

Indeed, in a recent study only patients’ behavior, but not their meta-cognitive beliefs, reflected

increased reliance on most recent outcomes [5]. Furthermore, increased reliance on recent

outcomes might also result, for instance, from poor memory recall or a lack of confidence in

memory. Whereas evidence for poor recall in OCD is scarce [32], distrust in memory has been

relatively robust [6,32–34]. However, transition uncertainty might be a mechanism that leads

to distrust in memory in OCD: if past states are irrelevant, then predictions based on memory

should be regarded as unreliable. Further research is needed to determine to what degree tran-

sition uncertainty and memory distrust overlap.

Another important consideration concerns the distinction between heightened (transition)

uncertainty and an excessive need to resolve uncertainty (i.e. intolerance of uncertainty [35]),

as both can give rise to excessive information gathering [35–37]. Intolerance of uncertainty

seems to be supported by a recent study that linked OC symptoms and anxiety to increased

information seeking even in a task in which this information had no effect on actual control or

performance [37]. Future studies should attempt to dissociate the relative contribution of

these interacting processes to patients’ performance and symptoms.

Using a BCP model to estimate participants’ internal responses to feedback (prediction

errors) indicated that OC symptoms made expected feedback more surprising, and unex-

pected feedback less surprising (see also [38,39]). However, OC symptoms did not correlate

with a measure of model updating, suggesting that exploration in this case does not involve

over-learning from feedback. Recently, these measures of prediction error were associated

with two different electrophysiological subcomponents–the P3a with the surprisal and the P3b

with model updating [25]. Consistent with our results, in two studies, only the P3a was

increased in OCD [40,41]. OCD research integrating computational modeling with these

direct measures of surprisal and updating is required.

Excessive transition uncertainty is expected to affect not only reliance on the past, but also

goal-directed behavior. Specifically, if the past and present cannot predict the future, predicting

and planning the future consequences of behavior becomes very complicated [12]. Prominent

models of OCD focus on impairments in goal-directed control and overreliance on habits [42].

An interesting question for future research is whether these impairments in goal-directed con-

trol are the result of increased transition uncertainty. Indeed, previous theories have suggested

that when the consequences of goal-directed strategies are unpredictable, compensatory, habit-

ual behavior is likely to emerge [12,43]. Notably, for habits to emerge, an opportunity to learn

habits (i.e., over trained S-R mapping) is necessary. One possibility is that no perseveration was

found in the current study because habit learning is relatively unlikely in the current task, which

includes many possible S-R combinations (i.e. 8 combinations of arrows X 2 responses) to be

learned over less than 50 trials–leaving an insufficient amount of training per contingency.

Methodological implications

Despite the widespread theoretical influence of the model suggested in Yu and Dayan [13], the

current study is the first to empirically examine the modified spatial cueing task used to
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instantiate this model. This task differs from classic reversal learning tasks in several ways. As

delineated below, these differences could make the task and the models developed here useful

for research in other contexts.

First, objective feedback does not depend on participants’ behavior, allowing participants to

concurrently learn about all cues. Indeed, in contrast to the selective attention model originally

proposed by Yu and Dayan [13], our results suggest that participants distribute attention across

all cues. This was the case under both probabilistic and deterministic contingencies. However,

attentional constrains are expected to have a greater role as the number of cues increase (e.g., 5

cues instead of 3). In addition, this characteristic can be important when one is interested in

focusing specifically on uncertainty regarding action-independent transitions (i.e. predictions

regarding the evolution of states). This can be contrasted with uncertainty regarding action-

dependent transitions (i.e. predictions regarding the consequences of one’s actions), which is

likely to play a larger role in tasks in which feedback depends on behavior [12].

Second, whereas we developed an alternative-forced-choice version of the task, examining

participants predictions, the original paradigm was designed to capture the attentional processes

involved in responding to a cued target (see also [44]). The models developed here can be readily

used (when combined with a response model appropriate for the prediction of response times) to

investigate the Bayesian processes involved in spatial cueing under uncertainty (see S1 Text).

Conclusions and future directions

The current study has shown that high OC symptoms are related with a reduced reliance on

past knowledge, which can explain the OC phenomenology of excessive uncertainty and

doubt, and the ensuing need to repeatedly verify what should have been already known [12].

This stands in stark contrast to the idea that OCD is characterized by inflexible, perseverative

behavior, corresponding with over-reliance on past knowledge.

It is important to replicate these findings in additional non-clinical and clinical samples.

Relatedly, the current study was underpowered to robustly examine the specificity of the effects

for OC symptoms (vs. general anxiety or depression). Future studies would benefit from using

a large sample allowing to better characterize the contribution of transition uncertainty to dif-

ferent types of symptoms by extracting independent dimensions of psychopathology (e.g.,

using factor analysis with multiple scales; see [42]).

It should also be noted that the results of this study depend on the validity of the chosen BCP

model, and on the assumption that people use some sort of Bayesian inference in this task. We

examined several different Bayesian and non-Bayesian computational models. Nevertheless,

other models can of course be developed. The behavioral pattern of increased reliance on more

recent feedback can obtain a different theoretical meaning in computational models that make

different assumptions (e.g., a reinforcement learning model with a ’forgetting’ parameter [45]).

Finally, the next step is to develop a more ecological design, examining the role transition

uncertainty plays in clinically relevant contexts. This requires the addition of the real-life fac-

tors that likely play a moderating role in OCD–such as inducing a potential for harm, using

patient-tailored anxiogenic stimuli, manipulating motivations, etc. This has the potential to

allow for the development of ecological, individualized computational models of real clinical

symptoms, potentially leading to the development of novel, personal interventions.

Methods and materials

Participants

We recruited 58 participants from the general population. The use of non-patient samples for

OCD research is common and recommended [46], and has the advantage of allowing to
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measure the specificity of the results to OC symptoms (vs. non-specific anxiety or depression)

using the same sample. One outlying participant was excluded due to strong evidence for ran-

dom responding (see Fig 4). The final sample included 36 (63.18%) women, and participants

were on average 24.21 years old (SD = 3.05) with 13.88 years of education (SD = 1.47). All par-

ticipants had normal or corrected to normal vision.

Ethics statement

The study was approved by the research ethics committee of the social science faculty of the

Hebrew University of Jerusalem. All participants provided written informed consent prior to

participation.

Reversal learning task

On each trial, participants were presented with three arrow cues pointing either left or right.

Participants were told that one of these cues predicts the location of the subsequent target

(black circle). Participants’ task was to predict the location of the target by pressing the left or

right arrow keys. The target appeared immediately after a response, or after 900ms at the

absence of a response. Participants had to learn from experience which cue predicts the target’s

location.

The task included two main conditions, a deterministic condition where all trials were valid

(i.e. the relevant cue always predicted the location of the target), and a probabilistic condition,

with 75% cue validity. In the latter condition, participants were told that the arrow will predict

the location of the target in most but not all trials, but the exact rate (i.e., cue validity) had to be

estimated. After a random number of either 40 or 48 trials (counterbalanced, such that for half

the participants the probabilistic condition included 40 trials before the shift and the determin-

istic condition included 48 trials before the shift, whereas for the other half of participants this

was flipped), a contingency shift occurred–the hitherto predictive cue became irrelevant and a

different cue became predictive. Participants were explicitly told that the relevant cue will

change at some point. Participants first performed a short deterministic training run (consist-

ing of 32 trials before the shift and 10 trials after). Then, participants performed two blocks of

trials, one deterministic and then one probabilistic, each including 88 trials. We fixed the

order of the conditions because a pilot study indicated that the probabilistic condition is diffi-

cult to understand without proper experience with a simpler, deterministic, block.

The task included a second part (an attentional cueing task), in which participants were

asked to press the space bar when they detected the target. Participants’ response times in this

part were intended as an additional measure of the processing of feedback. Whereas these

additional results (see S1 Text in the Supporting information section) were consistent with the

results reported here, they should be taken with caution because participants’ response times

were only weakly related to the orientation of the relevant cue. The data and code for the

computational models can be found in: http://doi.org/10.17605/OSF.IO/D6B3M. The full

study protocol can be found also in: https://doi.org/10.17504/protocols.io.97nh9me

Bayesian learning computational models

As described above, we compared the performance of two classes of Bayesian learning models:

an optimal Bayesian change-point (BCP) model that simultaneously learns about all three

arrow cues, or a selective attention (SA) model that focuses on a single arrow on each trial.
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BCP model

In this optimal observer model, the agent tracks the probability of each cue being the relevant

cue given all previous observations (p(c|D1:t), where c2{top,middle,bottom}). Because the task

includes unsignaled shifts (of the relevant cue), and information observed before the last shift

is not useful for determining the relevant cue, the agent must infer how long ago the relevant

cue has last changed (i.e. run-length). Following the approach of Wilson and Niv [19], we used

the Bayesian change-point algorithm developed by Adams and McKay [18], where participants

track the run-length distribution (p(lt)). The run length increases by one following each trial

and resets to zero at each change-point. Since change points are only probabilistically known,

the likely run length at each trial is represented by a (categorical) distribution. Then, prior to

responding (on trial t+1), the agent must integrate previous experience (regarding the relevant

cue) accounting for the probability that this experience is still/no longer relevant (i.e., in case

of a change-point):

pðcjD1:tÞ ¼
X

ltþ1

pðcjltþ1;D1:tÞ
X

lt

pðltþ1jlt;D1:tÞpðltjD1:tÞ ð1Þ

where p(lt+1|lt,D1:t) reflects the prior probability that the relevant cue changes on trial t+1. We

examined both a model where this prior probability is assumed to be constant across trials

(i.e., p(lt+1 = 0|lt,D1:t) = h), and a mod el where it increases as a function of the run-length, fol-

lowing a previously used simple exponential function [20]:

pðltþ1 ¼ 0jlt;D1:tÞ ¼ 1 � eð� hltÞ ð2Þ

The distribution over cues following a switch (p(c|lt+1 = 0,D1:t)) is simply a discrete uniform

distribution. Note that whereas in the model a switch is followed by a uniform distribution

over all three cues, in the task the same cue is never resampled after a switch. The reason for

defining h this way is that we focused on the uncertainty regarding state transitions rather

than the probability for a change in contingencies (i.e. volatility). Thus, for example, h = 1 cor-

responds with completely discounting previous knowledge (whereas in a completely volatile

environment previous knowledge can be used to infer which cue is irrelevant).
When the relevant cue persists, this distribution is estimated recursively, by integrating the

previous estimate with the current outcome (St):

pðcjltþ1 ¼ lt þ 1;D1:tÞ / pðStjcÞpðcjlt;D1:t� 1Þ ð3Þ

where the relationship between outcome and relevant cue reflects cue validity (free parameter

γ):

pðStjcÞ �
g if St ¼ ðcÞ

1 � g if St 6¼ ðcÞ
ð4Þ

(

where (c) represents the direction to which each arrow cue points.

For a complete model, one must recursively update also the run-length distribution, which

is given by:

pðltjD1:tÞ /
X

c

pðStjcÞpðcjlt;D1:t� 1Þ
X

lt� 1

pðltjlt� 1;D1:t� 1Þpðlt� 1jD1:t� 1Þ ð5Þ

where the first term on the right side of Eq 5 is obtained by marginalizing over Eq 3, and the

second term is similar to p(lt+1|lt,D1:t) above.
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Finally, in the response model reported above, response probabilities on trial t+1 (defined

as P(Rt+1), where R2{left,right}) were determined by the probability distribution over c and a

fixed probability of responding randomly (free parameter �):

pðRtþ1Þ ¼ ð1 � �Þ
X

c

pðRtþ1jcÞpðcjD1:tÞ þ 0:5� ð6Þ

where p(Rt+1|c) is simply an identity matrix mapping right-key responses to right-pointing

arrows.

We examined two additional response model. First, a matching response model where cue

validity (γ) also influenced the response probability. In this model, response probability was

assumed to track the probability of the target appearing at specific location:

pðRtþ1Þ ¼ ð1 � �Þ
X

c

pðStþ1 ¼ ðcÞjcÞpðcjD1:tÞ þ 0:5� ð7Þ

To illustrate, in such a matching response model, when γ = 0.5 (i.e. maximal observation

uncertainty, where the target location is assumed to be unrelated to any of the cues) partici-

pants will always respond randomly.

Second, we sought to examine a maximizing response model, where despite learning about

all three cues, the agent responds only in accordance with the most likely cue (rather than aver-

aging across cues). However, introducing an argmax statement impeded the convergence of

the model, most likely because such terms often obstruct the smoothness of the posterior.

Thus, we took a different approach by introducing an additional ’inverse temperature’ parame-

ter β, which controlled the overweighing of the most likely cue in a continuous manner. Specif-

ically, Eq 6 was replaced with:

pðRtþ1Þ ¼ ð1 � �Þ
X

c

pðRtþ1jcÞ
pðcjD1:tÞ

b

P
c pðcjD1:tÞ

b
þ 0:5� ð8Þ

Thus, higher β values result in a more maximizing response style, where values close to 1 indi-

cate no overweighting of the most likely cue. Importantly, β had a lower bound at 1, because

we did not want this additional parameter to control random or ’no-learning’ responding

(which was already accounted for by the other parameters). For brevity, we report only models

with the first response model (Eq 6) in Fig 4 above, whereas the performance of these two alter-

native response models is reported in the Supporting information section (S2 Table and S2

Text).

Finally, information-theoretic measures of feedback processing were calculated as follows.

First, surprisal indicates how unpredictable the outcome (St) was, and is calculated as:

It ¼ � log
X

c

pðStjcÞpðcjDt� 1Þ
� �

ð9Þ

The second measure, KL divergence, indicates the degree to which the outcome made the par-

ticipant change their beliefs about the relevant cue:

KLt ¼
X

c

ðcjD1:tÞlog
pðcjD1:tÞ

pðcjD1:t� 1Þ

� �

ð10Þ

Trial-level uncertainty (entropy) was calculated as the expectation of Eq 9.
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SA model

This model follows the original model suggested by Yu and Dayan [13] with several modifica-

tions. On each trial, the agent focuses on a single cue, denoted by c�t . The agent then decides

whether to stick with this cue or switch to another cue, based on its confidence that the current

cue is indeed the relevant one, defined as λ. Following each trial, the agent is assumed to switch

attention with a probability 1-λt.

After observing the outcome on trial t (denoted by St), the agent computes the probability

that the currently attended cue was in-fact the relevant cue as:

lt � pðc�t jDtÞ ¼
pðc�t ; StjDt� 1Þ

pðc�t ; StjDt� 1Þ þ pð:c�t ; StjDt� 1Þ
ð11Þ

Eq 11 comprises the joint probability of observing the outcome while the attended cue is

correct and that of observing the outcome while the attended cue is incorrect. The former

joint probability (brackets in Eq 12) considers two events: either this cue was correct on t-1
and no shift has occurred, or a different cue was correct on t-1, but a shift has occurred (and

now the attended cue became relevant, the probability of which is equal to 0.5h):

pðc�t ; StjDt� 1Þ ¼ pðStjc
�

t Þ½ð1 � hÞlt� 1 þ 0:5hð1 � lt� 1Þ� ð12Þ

while:

pðStjc
�

t Þ ¼
g if St ¼ ðc�t Þ

1 � g if St 6¼ ðc�t Þ
ð13Þ

(

The latter joint probability can be approximated by:

pð:c�t ; StjDt� 1Þ � 0:5½hlt� 1 þ ð1 � hÞð1 � lt� 1Þ� ð14Þ

where 0.5 reflects the fact that an irrelevant cue has a 50% chance of predicting the target’s

location. The term in the brackets considers two events: either this cue was correct on t-1 but a

shift has occurred, or this cue was incorrect on t-1 and a shift did not occur.

Finally, on the first trial of each new context (i.e. on t = 1 and after a switch), before observ-

ing feedback, the agent’s prior confidence in the attended cue is given by the parameter λ0, and

Eqs 12 and 14 are replaced with:

pðc�t ; StjDt� 1Þ ¼ pðStjc
�

t Þl0 ð15Þ

and:

pð:c�t ; StjDt� 1Þ ¼ 0:5ð1 � l0Þ ð16Þ

Whereas in the models reported above (Fig 4) λ0 was a free parameter, we also examined

the fit of SA models in which λ0 was fixed at 0.5. This corresponds with the original model of

Yu and Dayan [13], in which when λ0 < 0.5 the agent switches its attention to a different cue.

Thus, to start attending to a cue (even if arbitrarily), the agent must believe that this cue is at

least as likely to be correct as it is to be incorrect. For brevity, we report only models with a free

λ0 in the results section because these models consistently had a better fit (see S2 Table, models

5–6 vs. models 10–12).

A major obstacle for fitting this model (as well as the model of Yu and Dayan [13]) to data

is the fact that we have no definite way of knowing which cue the participant attends to on a

given trial (because participants respond with the right/left keys with no explicit selection of

cue). To overcome this issue we followed the approach suggested in Wilson and Niv [19], in
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which the agent’s attended cue is estimated within the model. That is, although we cannot be

confident that the agent attended to a specific cue on trial t, we can use the history of cues and

targets presented to the agent, as well as the history of the agent’s actual responses to estimate

the probability that the agent attended to this cue. Moreover, the learning model presented

above (Eqs 11–16) provides us with a probability for an attentional switch at trial t (which is 1-

λt), which we can use as the prior probability for a change-point in the distribution over

attended cues.

Specifically, we define p(cA|D1:t) as the distribution over the participant’s potential foci of

attention after observing feedback on trial t. That is, instead of reflecting the distribution over

cues from the agent’s perspective (as in the BCP model above) we now model the distribution

over the agent’s attended cue. We use a modified change-point algorithm, where pðlAt jD1:tÞ is a

distribution that reflects our posterior estimate of the number of trials (i.e run-length) since

the last attentional switch (to recap: in this model, change-points reflect the agent’s switches in

attention, rather than the dynamics of the task, as in the BCP model above). The distribution

of cA is then given by:

pðcAjD1:tÞ ¼
X

lAt

pðcAjlAt ;D1:tÞpðl
A
t jD1:tÞ ð17Þ

The first part of Eq 17 can be computed recursively via:

pðcAjlAt ;D1:tÞ / pðRtjc
AÞpðcAjlAt ;D1:t� 1Þ ð18Þ

Note that Eq 18 is parallel to Eq 3, with the exception that the likelihood now corresponds

with the participant’s response on trial t (rather than the feedback on trial t). Stated otherwise,

the participant’s response on trial t is treated as data in the model inferring the cue the partici-

pant has most likely attended to on that trial. Thus, the first part of Eq 18 is computed in accor-

dance with the respective response model. In the simple response model (used in Fig 4) it is

equal to:

pðRtjc
AÞ ¼

ð1 � �Þ þ 0:5� if Rt ¼ ðcAÞ

0:5� if Rt 6¼ ðcAÞ
ð19Þ

(

Whereas in the case of a matching response model (not reported in the results section, due

to inferior fit; see S2 Table, model 5 vs. model 6) it is equal to:

pðRtjc
AÞ ¼

ð1 � �Þgþ 0:5� if Rt ¼ ðcAÞ

ð1 � �Þð1 � gÞ þ 0:5� if Rt 6¼ ðcAÞ
ð20Þ

(

The second part of Eq 18 is given by:

pðcAjlAt ;D1:t� 1Þ ¼

1

3
if lAt ¼ 0

pðcAjlAt� 1
;D1:t� 1Þ otherwise

ð21Þ

8
<

:

where 3 is the number of arrows (corresponding with a uniform distribution).

The second part of Eq 17 is also computed recursively via:

pðlAt jD1:tÞ /
X

cAt

pðcAjlAt ;D1:tÞ
X

lAt� 1

pðlAt jl
A
t� 1
;D1:t� 1Þpðl

A
t� 1
jD1:t� 1Þ ð22Þ
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, where

pðlAt jl
A
t� 1
;D1:t� 1Þ ¼

X

cAt� 1

pðswitchtjl
A
t� 1
; cA

t� 1
ÞpðcA

t� 1
jlAt� 1
Þ ð23Þ

Eq 23 corresponds to the (experimenter’s) estimate of the probability that the agent has

switched attention on trial t (resulting in a lAt ¼ 0). It shows that the probability with which the

agent (from its own perspective) switches (p(switcht) = 1−λt) is in fact computed for each pos-

sible attended cue (cA
t� 1

, given by Eq 17) and possible run-length ðlAt� 1
Þ.

Whereas Eqs 19 and 20 defined the response probabilities required for the estimation of the

likelihood of the actual response at trial t given an attended cue (to infer the attended cue),

they are also used to predict the participant’s response on trial t+1. This requires the computa-

tion of the marginal probability for a specific response. Thus, the probability that the partici-

pant responds with the right arrow key at trial t+1 is given by:

pðRtþ1¼
0right0Þ ¼

X

cA
pðRtþ1¼

0right0jcAÞpðcAÞ ð24Þ

where p(cA) is derived from Eq 17.

Finally, note that in this model, there is a slight inconsistency in the interpretation of con-

tingency shifts between the agent’s learning model, and the (experimenter-level) model used

to estimate the agent’s attended cue. That is, in the agent’s learning model, h corresponds with

the probability that a different cue is now relevant. Thus, for example, if the agent was

completely certain of a cue on trial t-1 (λt-1 = 1), but estimates that h = 1, their confidence in

this cue at trial t (derived from Eq 11) becomes zero. In contrast, Eq 21 shows that in the case

of an attentional switch, the agent transfers to a uniform distribution over the three cues

(including the cue attention was just switched from). This inconsistency is inherent to Yu and

Dayan’s [13] original model, where switches of attention lead to exploration in which all cues

are equally likely to be sampled. Because we wanted to preserve the original model proposed

by Yu and Dayan’s [13] we used their learning equations despite the resulting inconsistency.

However, we also examined the sensitivity of our results to using an alternative learning

model, where all three cues are assumed to be equally probable following shifts (i.e. a uniform

distribution). This required a slight change in Eqs 12 and 14. Particularly, the joint probability

of observing the outcome while the attended cue is correct becomes:

pðc�t ; StjDt� 1Þ ¼ pðStjc
�Þ 1 � hþ

h
3

� �

lt� 1 þ
h
3
ð1 � lt� 1Þ

� �

ð25Þ

Where the first h/3 reflects the probability that a shift has occurred but then the attended

cue became relevant again, and the second h/3 has replaced the previous 0.5h, due to the

assumption that in this model, the probability for a shift from a different cue to the attended

cue is only one third.

The joint probability of observing the outcome while the attended cue is incorrect becomes:

pð:c�t ; StjDt� 1Þ � 0:5
2

3
hlt� 1 þ ð1 � hÞð1 � lt� 1Þ

� �

ð26Þ

Where 2/3 comes from the idea that if the attended cue was correct on trial t-1 and a shift

has occurred, there is still a 1/3 chance that the attended cue will become relevant again. Criti-

cally, these modifications did not alter the model comparison results (for example in the best

fitting SA model–model 5 in S2 Table–this change led to a WAIC of 3910 and a LOO of

3911.6, which are almost identical to the original values).
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Note also that the same uniform distribution is used in the BCP model. In both models, the

choice of a uniform distribution (used also by Wilson & Niv [19]) is not coincidental. It is used

to define h as transition uncertainty rather than volatility. That is, when h = 1, the agent

ignores previous knowledge completely, learning anew on each trial, rather than being certain

that the previous cue is no longer relevant.

Model fitting procedure

Model parameters were estimated in a hierarchical Bayesian framework using Stan [47,48]

which implements Hamiltonian Markov Chain Monte Carlo sampling. The free parameters of

the model (h, γ, ε) are parameterized as probabilities (h and ε range from 0 to 1, whereas γ
ranges from 0.5 to 1), which in Stan are commonly modeled using an inverse-probit transfor-

mation (or an approximation thereof using the Stan Phi_approx function [47]) of normally

distributed numbers. Moreover, in Stan it is usually recommended to parameterize hierarchi-

cal models using a non-centered parameterization, which improves the sampling process, by

sampling from independent standardized normal distributions, and transforming the sampled

parameters to construct the hierarchy (instead of sampling participant-level parameters

directly from the group-level distribution; [47,49]). A graphical representation depicting the

dependencies between the different parameters of the hierarchical model used for estimation

can be found in Fig 6.

In Fig 6 and below, parameters with an s subscript correspond with participant-level

parameters. Parameters ending with 0 correspond with the continuous, normally distributed

parameters which were (inverse-probit) transformed to create the uncertainty parameters

used in the learning models above.

The following set of equations defined the relationship between the different parameters

and auxiliary parameters:

hs ¼ �ðsh0h0s þ mh0Þ ð27Þ

gs ¼
�ðsg0g0s þ mg0Þ

2
þ 0:5 ð28Þ

where the division by 2 and addition of 0.5 limits γs from 0.5 to 1, instead of 0 to 1, and:

�s ¼ �ðs�0�0s þ m�0Þ ð29Þ

In such a non-centered parameterization, the standard normal distribution was used as a

prior for all auxiliary participant-level parameters (h0,γ0,�0). In addition, we used the standard

normal distribution as a hyperprior for group-means (μh0,μγ0,μ�0). Due to the probit transfor-

mation, this is mathematically equivalent to setting a uniform (thus, non-informative) prior

on h, γ and ε at the group level. Finally, for hyperpriors on the group standard deviations (σh0,

σγ0,σ�0) we used the half-t distribution with a mean of 0, a standard deviation of 0.2, and a v
parameter of 50. This produces a uniform prior for individual-level parameters (as similar

prior was implemented, probably due to similar reasons, in the hBayesDM package [50]), yet

the use of a half-t distribution (instead of a half-normal distribution) allows for some variation

between participants even in the case in which group-level parameters are extreme (e.g., close

to 1).

For each model, the MCMC was run in three chains, with 1000 samples in total, 400 of

which were used during warmup to calibrate the Hamiltonian parameters, and were discarded

(each of the models required several days to run, and therefore increasing the MCMC samples

to considerably larger numbers was impractical). To ensure unbiased sampling, for models in
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which divergent transitions were detected (typically 1 or 2 transitions), the MCMC acceptance

rate parameter (adapt_delta) was gradually increased (up to a maximum of 0.99)–which elimi-

nated all divergent transitions. All models converged as indicated by R̂ values the did not

exceed 1.1. To improve the accuracy of individual-level parameters for the examination of the

main hypotheses, the best-fitting models were run again for a larger number of iterations

(1500 samples per chain, with 500 warmup samples).

Questionnaires

Obsessive-compulsive inventory-revised [17]. The OCI-R is an 18-item self-report mea-

sure of OCD symptoms. It has demonstrated sound psychometric properties in clinical and

student populations [51,52]. OCI-R scores in our sample ranged from 0 to 50, with ~40% of

participants scoring above 21, which is a common clinical cutoff [17], and ~18% scoring

above 30.

Fig 6. Graphical representation of the hierarchical Bayesian model used for the estimation of parameters in the BCP models. A similar model was used for the SA

models, with the addition of the λ0 parameter. Shaded circles denote observed variables (cues and responses), blank circles denote latent variables, and double-circles

represent variables that have deterministic relationships to other variables in the model. Nodes inside the rectangular plate are modeled for each individual participant

or trial within participants.

https://doi.org/10.1371/journal.pcbi.1007634.g006
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Depression anxiety and stress scale-21 [53]. The DASS-21 is a reliable and valid measure

of anxious arousal (range in our sample = 0–18), stress (range = 0–20) and negative affect

(range = 0–19). These scales were used as controls to test the specificity of our findings to

OCD symptoms.

Statistical models for data analysis

Logistic multilevel models (using the lme4 package [16]) were used to investigate the variables

affecting accuracy. The models included several trial-level variables (e.g., block, trial) and

OCI-R score as a participant-level variable. All models included a random intercept and a ran-

dom slope when relevant (i.e. analyses including trial-level variables). In models examining an

interaction effect (e.g., the interaction of OCI-R and block) all variables were centered before

analysis. Analyses were run separately for the probabilistic and deterministic blocks. All mod-

els converged.

Analyses involving the prediction of information-theoretic measures of prediction errors

(i.e. surprisal and KL divergence) involved linear multilevel models, with random intercept

and random slopes for all trial-level variables (all models converged, here approximate p-val-

ues were calculated by using the lmerTest package [54]). Finally, correlations between fitted

parameters (taking the median of each posterior distribution) and participants’ scores on the

OCI-R and the DASS-21 were tested by using a permutation test, due to the violation of the

normality assumption for most variables [55].
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