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Abstract

Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of
secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are
synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones.
These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis,
maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid
hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure
the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for
steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the
mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma
lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-Bl-mediated selective uptake;
and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent
insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol,
events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol
transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and
function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for

steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner
mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to

pregnenolone (the common steroid precursor) takes place.

Introduction

Cholesterol is a starting material for the biosynthesis of
steroid hormones; these fat soluble, low molecular weight
substances play diverse and important physiological
functions (Table 1). There are five major classes of steroid
hormones: testosterone (androgen), estradiol (estrogen),
progesterone (progestin), cortisol/corticosterone (gluco-
corticoid), and aldosterone (mineralocorticoids). Testos-
terone and its more potent metabolite
dihydrotestosterone (DHT), progesterone and estradiol
are classified as sex-steroids, whereas cortisol/corticos-
terone and aldosterone are collectively referred to as cor-
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ticosteroids [1-3]. All these steroid hormones are
synthesized from cholesterol through a common precur-
sor steroid, pregnenolone [1-3], which is formed by the
enzymatic cleavage of a 6-carbon side-chain of the 27-
carbon cholesterol molecule, a reaction catalyzed by the
cytochrome P450 side-chain cleavage enzyme (P450scc,
CYP11A1) (Fig. 1) [4-6]. The adrenal gland produces
both corticosteroids and androgens (dihydroepiandoster-
one [DHEA], and androstenedione); aldosterone is
mainly produced by the cells of the zona glomerulosa
layer, cortisol/corticosterone is principally produced by
the adrenocortical cells of the zona fasciculata layer and
adrenal DHEA whereas androstenedione is synthesized
by cells of the zona reticularis layer (Table 1) [1,7-9]. The
ovarian granulosa cells mainly secrete progesterone (and
its metabolite 20a-hydroxyprogesterone) and estradiol;
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Table 1: Major steroids and their physiological functions
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Steroidogenic Tissues Trophic Hormone Steroids(s) Physiological Functions

Ovary

Granulosa cells FSH Estradiol Estrogen, a principal female sex steroid, required for growth and
ovulation, responsible for secondary female sex characteristics, regulator
of cardiovascular physiology, bone integrity and neuronal growth

Luteinized Granulosa/  LH Progesterone A progestin, required for follicular growth and ovulation, responsible for

luteal Cells changes associated with luteal phase of the menstrual cycle, essential for
the establishment and maintenance of early pregnancy

Theca-interstitial Cells  LH Testosterone Androgens, precursors for estrogens, transported into granulosa cells,

Androstenedione where they are converted into estardiol and other estrogens by

aromatase (CYP19A1) enzyme

Testis

Leydig cells LH Testosterone The most prevalent male sex hormone (androgen); testosterone and its
biologically active form, dihydrotestosterone (DHT) are necessary for
normal spermatogenesis and development, responsible for secondary
sex characteristics, responsible for increased muscle mass, sexual
function, body hair and decreased risk of osteoporosis

Adrenal gland

Z.glomerulosa Cells ACTH, K+ Aldosterone The principal mineralocorticoid, raises blood pressure and fluid volume,

Angiotensin Il enhances sodium reabsorption in the kidney, sweat gland, stomach and

salivary gland and also enhances excretion of potassium and hydrogen
ions from the kidney.

Z.glomerulosa Cells ACTH Cortisol The dominant glucocorticoid in humans (in rodents, the major

Z. reticularis Cells ACTH POC-derived  Androstenedione

peptide Other DHEA DHEA-sulfate
factors

Placenta Peptide growth Progesterone
Factors, cAMP Estrogens

Brain

Neurons, Glial cells Neurotransmitters ~ Progesterone

Purkinje cells Neuropeptides Estradiol, DHEA,

ALLO, THDOC

glucocorticoid is corticosterone), elevates blood pressure and Na*
uptake, involved in stress adaptation, regulates carbohydrate, protein
and lipid metabolism nearly opposite to that of insulin, influences
inflammatory reactions and numerous effects on the immune system.

The function of adrenal androgens is not well understood, except that
they contribute to the maintenance of secondary sex characteristics, may
also be involved in the regulation of bone mineral density, muscle mass
and may beneficial actions against type 2 diabetes and obesity

Maintenance of pregnancy

Neurosteroids are implicated in various processes such as proliferation,
differentiation, activity and survival of nerve cells and a variety of
neuronal functions including control and behavior, neuroendocrine and
metabolic processes.

ovarian theca cells predominantly synthesize androgens,
and ovarian luteal cells secrete progesterone (and its
metabolite 20a-hydroxyprogesterone), while testicular
Leydig cells are the site of testosterone production (Table
1) [1,7-9]. Progesterone is also synthesized by the corpus
luteum during the first 6-8 weeks of gestation, but during
pregnancy the main source of progesterone is the pla-
centa [10,11]. The brain also synthesizes steroids de novo
from cholesterol through mechanisms that are at least
partly independent of peripheral steroidogenic cells [[12-
14] and references there in]. Such de novo synthesized
brain steroids are commonly referred to as neurosteroids
[12-14].

Although adrenal, ovarian and testicular steroidogene-
sis is primarily under the control of tissue-specific tropic
hormones (discussed below); the availability of adequate
cholesterol substrate is also a critical requirement for the
optimal steroid hormone production. The steroidogenic
tissues and cells have the potential to obtain cholesterol
for steroid synthesis from at least four potential sources
(Fig. 2): a) cholesterol synthesized de novo from acetate;
b) cholesterol obtained from plasma low-density lipopro-
tein (LDL) and high-density lipoprotein (HDL); c) choles-
terol-derived from the hydrolysis of stored cholesterol
esters in the form of lipid droplets; and d) cholesterol
interiorized from the plasma membrane. Although all
three major steroidogenic organs (adrenal, testis and
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Figure 1 Principal steps involved in the biosynthesis of various steroid hormones. Modified from Payne and Hales and website [1,305]
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ovary) can synthesize cholesterol de novo under the
influence of the tropic hormone, the adrenal and ovary
preferentially utilize cholesterol supplied from plasma
LDL and HDL via the LDL-receptor mediated endocytic
pathway and SR-Bl-mediated selective pathway, respec-
tively [9,15-20]. The use of LDL or HDL as the source of
cholesterol for steroidogenesis appears to be species
dependent; rodents preferentially utilize the SR-Bl/selec-
tive pathway while humans, pigs and cattle primarily
employ the LDL/LDL-receptor endocytic pathway to
meet their cholesterol need for steroid synthesis. In con-
trast, testicular Leydig cells under normal physiological
conditions rely heavily on the use of endogenously syn-
thesized cholesterol for androgen (testosterone) biosyn-
thesis [9,20].

This review is focused on the role of cholesterol in the
regulation of steroidogenesis. We first present an over-
view of various enzymatic pathways involved in the con-
version of cholesterol to tissue-specific steroid hormones.
Next, we summarize our current understanding about

the molecules and processes that participate in the
uptake of plasma lipoprotein-derived cholesterol with
particular emphasis on the SR-Bl/selective cholesterol
transport pathway, events connected with the intracellu-
lar processing and trafficking of cholesterol and key pro-
teins which facilitate the transport of cholesterol to and
within the mitochondria for steroid synthesis.

Biosynthesis of steroid hormones--an overview

The overall rate of steroidogenesis (i.e., steroid hormone
production) is controlled by tropic (peptide) hormones
[21-26]. The type of steroid hormone that can be synthe-
sized by a particular cell type is dictated by its comple-
ment of peptide hormone receptor, its response to
peptide hormone stimulation and its genetically
expressed complement of steroiodgenic enzymes (Fig. 1).
Thus, adrenocorticotropic hormone (ACTH) stimulates
cortisol/corticosterone in adrenocortical fasciculata-
reticularis cells, angiotensin II (AII) and potassium regu-
late aldosterone synthesis in adrenal glomerulosa cells,
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follicle-stimulating hormone (FSH) controls the proges-
terone and estrogen synthesis in ovarian granulosa cells,
whereas luteinizing hormone (LH) regulates progester-
one synthesis in luteinized ovarian granulosa-luteal cells,
androgen production in ovarian theca-interstitial cells
and testosterone synthesis in testicular Leydig cells (Table
1) [27-38]. The adrenal gland is also responsible for the
synthesis of adrenal androgens [39,40]. Tropic hormones
(LH, FSH or ACTH) induce adrenocortical and gonadal
steroidogenesis by binding to their respective G protein-
coupled receptors, leading to activation of adenylate
cyclase, which generates cAMP and activates cAMP-
dependent protein kinase (PKA) [21-25]. Stimulation of
the cAMP-PKA signaling cascade exerts both acute and
chronic effects on the regulation of steroid hormone pro-
duction. The acute steroidogenic response, which occurs
on the order of minutes, is characterized by a rapid mobi-
lization of lipid droplet stored CEs and increased delivery
of cholesterol to the mitochondrial cytochrome P450
cholesterol side-chain cleavage (P450scc) enzyme

(encoded by CYP11A1) followed by rapid synthesis of
new steroids. More chronic, long-term regulation of ste-
roidogenesis also occurs at the level of the transcription
of the genes for the steroidogenic enzymes to enhance,
which results in the enhanced synthetic capacity of the
cell [41-45]. Note: angiotensin (AIl) stimulation of aldos-
terone biosynthesis in adrenal glomerulosa cells is pri-
marily mediated by the protein kinase C signaling
cascade, whereas potassium stimulation of aldosterone
production also involves Ca%*-calmodulin-dependent
kinase [26].

Although the final steroid product differs for these sev-
eral cell types (described above), the first committed
reaction in the biosynthetic pathway is the same, i.e., the
conversion of cholesterol to pregnenolone by the cyto-
chrome P450 cholesterol side-chain cleavage (P450scc)
enzyme (CYP11A1). P450scc is an enzyme complex con-
sisting of a flavoprotein (NADH-adrenodoxin reductase),
a ferredox (adrenodoxin) and a cytochrome P450 local-
ized on an inner mitochondrial membrane [3,7]. P450scc
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catalyzes three distinct reactions: 20a-hydroxylation, 22-
hydroxylation and scission of 20, 22 carbon-carbon bond,
thus converting cholesterol to pregnenolone [3,7]. This
initial step in steroid hormone (pregnenolone) synthesis
also represents a rate limiting step. The rate limiting
nature of this step does not result from a limitation of the
P450scc activity itself (conversion of cholesterol to preg-
nenolone) but from limitation of access of cholesterol to
the substrate site of P450scc, i.e., delivery of substrate
cholesterol from an outer to an inner mitochondrial
membrane where P450scc resides [46-50].

The pregnenolone produced in the rate-limiting step is
further exposed to endoplasmic reticulum and mitochon-
dria for further modifications [1,2,7,51]. It is first con-
verted to progesterone by the enzyme A5-3f
hydroxysteroid dehydrogenase isomerase (3fHSD),
which is also one of the main steroids produced by the
steroidogenic cells of the ovary. In zona fasciculata cells
of the adrenal cortex, progesterone is hydroxylated to
17a-hydroxyprogesterone by P450c17 (CYP17), which is
subsequently metabolized to 11-deoxycortisol (or deoxy-
corticosterone) by P450c21 (CYP21A2). The final step in
cortisol biosynthesis takes place in the mitochondria and
involves the conversion of 11-deoxcortisol (deoxycorti-
costerone) to cortisol or to corticosterone in rodents by
the enzyme P450c11 (CYP11B1). The next two steps in
aldosterone biosynthesis are catalyzed by aldosterone
synthase (CYP11B2), which converts 11-deoxycorticos-
terone to corticosterone and subsequently to aldosterone.
In testicular Leydig cells, pregnenolone is converted to
testosterone via two pathways known as the A% and A5
pathways. The relative activities of the two pathways are
known to vary according to species [1]. The A% involves
sequential conversion of pregnenolone to progesterone to
17a-hydroxyprogesterone to androstenedione to testos-
terone, while in the A5 pathway pregnenolone is con-
verted to 17a-hydroxypregnenolone to
dehydroepiandrosterone to testosterone through either
androstenediol or androstenedione. In the ovary, testos-
terone is further metabolized to estradiol, a reaction cata-
lyzed by aromatase (CYP19A1). In addition, estradiol can
also be formed through combined actions of aromatase
(CYP19A1) and 17-hydroxysteroid dehydrogenase
(17HSD1) (Fig. 1).

De novo cholesterol synthesis

Like many tissues, all steroid producing tissues and cells
are capable of synthesizing cholesterol de novo [9,15-
18,20]. Biosynthesis of 27-carbon skeleton of cholesterol
involves the conversion of acetate (acetyl CoA) through a
series of complex enzymatic steps requiring the partici-
pation of numerous enzymes [52]. Among the major
steps, mevalonate is formed by the condensation of 3
molecules of acetyl-CoA, a reaction catalyzed by the rate
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limiting enzyme HMG-CoA-reductase, which is con-
verted to squalene, a 30-carbon linear structure followed
by cyclization to vyield lanosterol and subsequently
removal of 3 carbons to produce cholesterol. The endo-
plasmic reticulum (ER)-associated integral membrane
protein complex, SCAP/SREBP, transcriptionally controls
the expression of the genes of many enzymes involved in
cholesterol biosynthesis including the rate-limiting
enzyme, HMG-CoA reductase [52,53]. In steroidogenic
cells, the de novo cholesterol biosynthesis is also under
the control of tropic hormone [15-18]. Indeed, adrenal,
ovarian and testicular Leydig cell cholesterol biosynthesis
as well as HMG-CoA reductase is rapidly stimulated
upon exposure to tropic hormone [15-18]. Newly synthe-
sized cholesterol primarily moves initially from the ER to
the plasma membrane (PM) [54-57]. This energy depen-
dent and predominantly nonvesicular trafficking process
appears to require the participation of cholesterol-rich,
sphingolipid-rich domains (i.e., lipid rafts/caveolae) and
proteins such as caveolin, heat shock proteins and possi-
bly other soluble sterol carrier candidate proteins such as
OSBP, ORPs, SCP2, START domain containing proteins
and phosphoinositides but not NCP1 [58-66]. After
endogenously synthesized cholesterol is transported to
the PM, its immediate fate is not well understood at pres-
ent. While newly synthesized cholesterol is preferentially
translocated to the PM, excess cellular cholesterol from
other cellular organelles including PM is transported
back to ER for esterification. The PM reverse cholesterol
transport to ER is suggested to involve at least two path-
ways: a) a vesicular route via an endosome and/or Golgi;
and b) a nonvesicular alternative route [55,66]. It should
also be mentioned that retrograde transport of cellular
cholesterol to ER and translocation of newly synthesized
ER cholesterol to PM follow different itineraries [55,66].
Cholesterol esterification is primarily catalyzed by ER-
localized ACAT1 and newly formed CEs are stored along
with triglycerides in the core of cytoplasmic lipid droplets
[66-68]. Little is known about the mechanisms that con-
trol the biogenesis of lipid droplets, but it is clear that
they are synthesized at and bud off from ER [69-71]. In
steroidogenic cells of adrenal, ovary and testis, both the
formation and depletion of lipid droplets is hormonally
regulated. As noted before, the lipid droplet-associated
cholesterol serves as a source of substrate for steroid hor-
mone synthesis in response to acute hormonal stimula-
tion [72-81].

Receptor-mediated uptake and internalization of
plasma lipoprotein-derived cholesterol

(a) LDL(B/E)-receptor-mediated endocytic uptake of LDL-
cholesterol

Although cellular de novo cholesterol synthesis and cho-
lesteryl esters stored in lipid droplets can potentially sup-
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ply adequate amounts of cholesterol substrate to support
steroidogenesis, the overwhelming evidence now sug-
gests that the adrenal and ovary (and testicular Leydig
cells under certain conditions) preferentially utilize
plasma lipoprotein-derived cholesterol for steroid syn-
thesis [9,20]. One pathway by which steroid producing
cells acquire cholesterol is from plasma LDL, or other
apolipoprotein B- (apoB) or apoE-containing lipoproteins
via the LDL (B/E) receptor-mediated endocytic pathway
(Fig. 3) [19]. LDL or other relevant apoB/apoE lipopro-
teins bind to the LDL receptor initially localized at the
plasma membrane (PM), which subsequently translocate
to specialized regions of the plasma membrane, called the
coated pits. The coated pits, made of clathrin protein, and
some other accessory, invaginate, and pinch off from the
PM in the form of coated vesicles [19,66]. These coated
vesicles in the cell interior fuse with early endosomes,
shed off their clathrin coat, and fuse with each other to
form larger vesicles, called endosomes. At this stage, the
LDL-receptor complex rapidly dissociates as the endo-
somal pH falls, and the released, but fully intact LDL-
receptors are delivered to the endocytic recycling com-
partments (ERC) for their return itinerary to the PM [66].
The LDL cholesteryl esters (CEs) are hydrolyzed in a
unique acid lipase-enriched compartment of early endo-
somes, the released cholesterol accumulates in the late
endosomes/lysosomes, and subsequently through some
unknown mechanisms is transported to PM as a mem-
brane constituent, ER for esterification by the resident ER
enzyme acyl-coenzyme A:cholesterol acyltransferase I
(ACAT1) and storage in lipid droplets, or mitochondria
for the synthesis of steroid hormones [67-71,82-85].

A pair of proteins called Nieman-Pick type C1 and C2
(NPC1 and NPC2, respectively) appear to be important
in the movement of unesterified cholesterol out of the
late endosomes and lysomes [66,86-89]. NPC1 is a poly-
topic, sterol-sensing protein of 1,278 amino acids located
in the membranes of late endosomes and lysosomes that,
along with NPC2, a cholesterol binding soluble protein of
131 amino acids located within lysosomes, facilitates the
movement of cholesterol to various organelles by mecha-
nisms not yet understood [66,88,89]. NPC1 appears to be
important in trafficking LDL-cholesterol, particularly
under conditions in which the substrate for steroidogene-
sis is primarily supported by LDL-cholesterol, but does
not appear to be involved in other pathways for choles-
terol delivery for steroidogenesis [90,91]. Additional pro-
teins are also involved in this process such as MLN64
which facilitates the movement of lysosomal cholesterol
to mitochondria for steroidogenesis [92,93]. MLN64
(StarD3) is a polytopic protein that is also found localized
to late endosomes along with NPC1 and is a member of
the StAR-related lipid transfer (START) domain super-
family that possesses cholesterol binding and transport
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activity [94]. However, targeted mutation of MLN64 in
mice caused only minor alterations in sterol metabolism
in vivo, but defects in cholesterol utilization for steroido-
genesis were still seen in vitro, consistent with the exis-
tence of multiple mechanisms for cholesterol delivery for
steroidogenesis. In addition, considerable evidence now
indicates that transport of late endosomal/lysosomal
LDL-cholesterol to other cellular destinations including
mitochondria may also involve an endosomal-specific
Rab 9 GTPase-dependent vesicular trafficking mecha-
nism [66,95-97].

(b) SR-Bl-mediated 'selective' uptake of HDL-cholesterol

(i) Molecular characteristics and the functional expression of
SR-BI

Whereas LDL-receptor-mediated uptake of cholesterol
allows for its efficient delivery, steroidogenic cells can
process exceptionally large quantities of lipoprotein-
derived cholesteryl esters through a specialized pathway
known as the "selective" cholesteryl ester uptake pathway
(Fig. 3) [98-100]. In fact, the "selective" cholesterol uptake
pathway is quantitatively the most important source for
cholesterol delivery for steroidogenesis in the tropic-hor-
mone stimulated rodent adrenal and ovary [9,20,99-102].
The term "selective" cholesterol uptake is used when cell
surface bound cholesterol-rich lipoproteins (HDL or
LDL, regardless of lipoprotein composition) release cho-
lesteryl esters without the parallel uptake and lysosomal
degradation of the lipoprotein particle itself [72,73,98-
100,103]. Tropic hormone (ACTH or LH)-stimulated
rodent adrenal and ovary (and under certain conditions
testicular Leydig cells) rely heavily on selective choles-
teryl ester uptake to fulfill their cholesterol needs for ste-
roid synthesis [9,20,72,73,99-102]. The pathway is also
functional in humans, in rodent liver and a variety of cul-
tured cells such as isolated primary hepatocytes and
hepatic cell lines, fibroblasts, adipocytes, and mac-
rophages, although it may be quantitatively less impor-
tant in humans [9,20].

Scavenger receptor class B, type I (SR-BI) is a physio-
logically relevant cell surface receptor responsible for
"selective" uptake of lipoprotein-derived cholesteryl
esters [104]. SR-BI is a member of the class B scavenger
receptor family that also includes CD36, LIMPII, and SR-
BII (an isoform of SR-BI with an alternate C-terminal
cytoplasmic tail) [9,20,105]. SR-BI, like the other family
members, contains two transmembrane domains, two
cytoplasmic domains (the amino- and carboxyl terminal
domains), as well as a large extracellular domain (ECD)
containing a cysteine-rich region and multiple sites for
N-linked glycosylation [9,20,105]. Cells, which have high
levels of SR-BI, efficiently utilize the selective pathway in
delivering cholesteryl esters for use in steroid hormones
or product synthesis [9,20]. In rodents, SR-BI is abun-
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fied from Chang et al, Rone et al, and Farese and Walther [68,288,306].

dantly expressed in the liver, but also in steroidogenic
cells of the adrenal gland, ovary, and testis where SR-BI
levels are regulated by tropic hormones and influence the
selective uptake of HDL-CE, and ultimately, steroidogen-
esis in these organs [74,75,106-110].

It is also of interest that steroiodogenic tissues, which
express high levels of SR-BI in vivo, are endowed with an
intricate microvillar system for the trapping of lipopro-
teins [111,112]. This general region of steroidogenic cells
is referred to as the microvillar compartment, and the
specialized space created between adjacent microvilli are
called microvillar channels; these are specialized domains
that form by staking of microvilli or the juxtaposition of
microvilli with the plasma membrane. It is the microvillar
channels where the various lipoproteins are trapped prior
to the selective uptake of CEs into cells [111-113]. Elec-
tron microscopic immunocytochemical techniques

reveal heavy labeling for SR-BI specifically in these
regions (corresponding to such microvilli and microvillar
channels) and at present, there is no doubt that issues
with microvillar compartments expressing high levels of
SR-BI are also active in selective CE uptake [74,75,108-
110,114-117]. The formation of these specialized
microvillar channels appear to be dependent on the pres-
ence of SR-BI since these microvillar are quantitatively
reduced in adrenals from SR-BI null mice [118]. Con-
versely, overexpression of SR-BI promotes microvillar
channel formation in both steroidogenic and non-ste-
roidogenic cells in vitro [114,116,117]. Additionally, SR-
BI has been functionally associated with caveolae/lipid
rafts, although this has not always been the case [74,119-
124]. SR-BI does show specificity for apolipoproteins, but
interacts promiscuously with HDL, LDL, amino acid
modified LDL, phospholipids and a variety of other
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ligands [9,20,105,125,126]. Hormone treatment or other
factors which increase the demand for cholesterol also
increase the expression of SR-BI and the influx of lipo-
protein cholesteryl esters [74,75,108-110,127]. Deletion
of the SR-BI gene in mice resulted in increased circulat-
ing levels of HDL-cholesterol, substantially reduced
stored tissue cholesterol [128,129], and inhibited the
selective uptake, storage, and utilization of cholesterol by
steroid-hormone producing cells.

(ii) SR-Bl-mediated selective transport of lipoprotein-derived
cholesteryl esters

The mechanism by which SR-BI mediates selective trans-
fer of CE from the cell surface to cell interior is not clearly
defined, but may require participation of accessory pro-
teins and lipids, alterations in physicochemical character-
istics of the plasma membrane and the physical forms of
SR-BI itself. The entire process of "selective" cholesterol
ester delivery and its subsequent utilization for steroid
synthesis can be broadly divided into three distinct steps,
each of which may involve multiple complex processes.
The first step in the selective CE uptake is the transfer of
lipoprotein-associated CE to the plasma membrane, the
second step entails the translocation of CE from the
plasma membrane to lipid droplets within the interior of
the cell; and the third step in the process is the movement
of cholesterol from intracellular lipid droplets to mito-
chondria for steroid hormone synthesis.

Events connected with the SR-Bl-mediated transfer of
lipoprotein cholesteryl esters to the cell surface--The initial
step in the transfer of lipoprotein-cholesteryl esters to the
plasma membrane is the binding of cholesterol-rich lipo-
proteins to the cell surface/microvilli-associated SR-BI
followed by release of lipoprotein-cholesteryl esters to
the plasma membrane. While SR-BI-lipoprotein interac-
tion is important, it is not sufficient to promote selective
transfer of cholesteryl esters to the plasma membrane.
This assertion is based on several observations including
the fact that mutations of certain glycosylation sites do
not affect binding but inhibit selective cholesteryl ester
uptake [130]. It has been proposed that SR-BI forms a
hydrophobic "channel" through which the cholesteryl
esters in SR-Bl-associated lipoprotein move down in a
concentration gradient manner, and thus, any changes in
the structure of the receptor might alter the "channel"
without impacting the binding of the lipoprotein [130].
Moreover, it has been suggested that the localization of
SR-BI within microvilli or the association of SR-BI with
caveolae contributes to the movement of cholesteryl
esters into these specialized regions of the plasma mem-
brane.Furthermore, these specialized microvilli/microvil-
lar channel regions and/or caveolae could increase
functional efficiency of the transfer process through
increased availability of donor particles [111-113]. Lim-
ited studies have also suggested the involvement of C-ter-
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minal and extracellular domain (ECD) domains of SR-BI
in the selective cholesterol uptake process [131-134].
Finally, evidence is accumulating suggesting that acces-
sory proteins (see below) and lipids, in addition to SR-BI,
contribute to the selective uptake process [135-145].

SR-BI interacting accessory proteins--other significant
progress in the area of SR-BI structure and function is the
realization that accessory proteins may interact function-
ally with SR-BI and facilitate the dimerization process,
enhance selective HDL-CE uptake and promote cell sur-
face architectural changes. In recent years, one such pro-
tein, the PDZ domain containing protein called CLAMP,
has been identified with SR-BI mediated selective CE
uptake [127]. (The name PDZ is derived from the first
three proteins in which these domains were found: PSD-
95 Dlg, and ZO1; these domains range 70-90 amino acids
in length and recognize 3-5 residue motifs that occur at
the C-terminus of target proteins or structurally related
internal peptide motifs [146-152]). CLAMP was purified
from rat liver extracts by affinity chromatography using
the last 15 amino acids of the carboxyl terminus of SR-BI,
and co-expression of CLAMP, (which is identical to and
now referred to as PDZK1 or NHERF3 [127,141,153,154])
and SR-BI in CHO cells led to a two-fold increase in
selective CE uptake. More recently, Silver by using trans-
genic animals expressing SR-BI with a mutated PDZK1
interacting domain provided evidence that PDZK1 inter-
acting domain of SR-BI is essential for cell surface expres-
sion of hepatic SR-BI in vivo [136]. Also, an endogenous
regulator of PDZK1, termed small PDZK1-associated
protein (SAP, DD96/MAP17) has been characterized,
which when overexpressed in the liver causes increased
degradation of PDZK]1, resulting in hepatic SR-BI defi-
ciency and markedly increased plasma HDL cholesterol
[137].

Krieger and colleagues further demonstrated that tar-
geted disruption of the PDZK1 gene induced hypercho-
lesterolemia, and resulted in substantial reduction of
hepatic and intestinal SR-BI, without affecting SR-BI or
cholesteryl ester stores in steroidogenic organs [138]. The
latter observations are in agreement with the results
showing that adrenal and gonads express very low levels
of PDZK1 as compared to the liver and strongly suggest
the possibility that different types of PDZ-domain con-
taining proteins impact SR-Bl in a tissue-specific manner.
Interestingly, hepatic expression of SR-BII, a variant with
an alternate C-terminal domain, is not affected in PDZK1
knockout mice, suggesting that PDZK1 specifically regu-
lates SR-BI expression and function in the liver. Further
studies demonstrated that overexpressing full-length
PDZK1 in PDZK1 null mice restored normal hepatic SR-
BI protein levels [155]. Likewise, hepatic overexpression
of wild-type SR-BI restored near or greater than normal
levels of functional, cell surface SR-BI protein levels in the
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livers of SR-BI(-/-)/PDZK1(-/-) double knock-out mice
and such genetic manipulation restored normal lipopro-
tein metabolism in the absence of PDZK1 [156]. From
these studies, it is concluded that PDZK1 is important for
maintaining adequate steady state levels of SR-BI in the
liver but is not essential for cell surface expression or
function of hepatic SR-BI [155,156]. More recent studies
indicate that hormone (glucagon)-mediated phosphory-
lation of the C-terminal region of PDZK1 as well as the
presence of all four PDZ domains in PDZK1 is required
for normal abundance, localization and, therefore, func-
tion of hepatic SR-BI [157,158]. More recently, Komori et
al, using a transgenic mouse model coexpressing both
CLA-1 (human homolog of SR-BI), and human PDZK1
provided evidence that PDZK1 is also an important
enhancer of CLA-1 expression in the liver [159]. Besides
the liver, a role for PDZK1 is indicated in HDL/SR-BI sig-
naling in endothelium and in the maintenance of
endothelial monolayer integrity [142].

Given that PDZK1 is not expressed in steroid produc-
ing tissues, coupled with the demonstration that PDZK1
null mice show normal expression of SR-BI in the adrenal
gland and ovary, we considered the possibility that addi-
tional PDZ domains with specificity for other PDZ pro-
teins may be involved in the regulation of SR-BI function
in steroidogenic tissues. We searched for and identified
additional Class I, II and III PDZ interacting domains in
the C-terminal cytoplasmic tail of SR-BI (Table 2) using a
simple modular architecture research tool http://
SMART.embl-heidelberg.de. To a large extent these PDZ
domains are well conserved among various mammalian
species (i.e., mouse, rat, hamster, pig, bovine and human
SR-BI), and the Class II PDZ-domain (PDZKI1 site)
described above is simply the final extreme end site on
the SR-BI, which is not well conserved. The function of
the other sites is as yet unknown, but it is of interest that
the C-terminal domain of SR-BII (the alternative spliced
form of SR-BI) lacks terminal PDZ domain and contains
entirely different sets of PDZ interacting domains while
another family member, CD36 contains no PDZ sites.
Interestingly both SR-BII and CD36 are less efficient in
mediating selective HDL-CE uptake as compared to SR-
BI [131,132]. We believe these SR-BI PDZ-domain bind-
ing motifs may, in fact, be important for steroidogenic tis-
sues--in that they permit binding to a variety of PDZ-
containing proteins [146-151]. Indeed, our preliminary
Protein Array analysis indicated significant interaction
between hCLA-1/SR-BI and PDZ-domain(s) of RGS12,
CLP36 (also called hCLIM1 or elfin), RIL, PSD-95, and
Mint-3-proteins [160-172]. Among these, RGS12 and
RIL, PSD-95 PDZ proteins are known to be highly
expressed in steroidogenic proteins [160,163,170]. In
addition, PDZ-RhoGEF, a novel guanine nucleotide
exchange factor (GEF) for Rho-like proteins, contains a
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Table 2: Potential Consensus PDZ Domain Binding
Sequences in SR-BI, SR-BIl and CD36

Mouse SR-BI: QLRSQEKCFLFWSGSKKGSQDKEA

IQAYSESLMSPAAKGTVLQEAKL
QLRSQEKCFLFWSGSKKGSQDKEA
IQAYSESLMSPAAKGTVLQEAKL
Rat SR-BI: QLRSQEKCFLFWSGSKKGSQDKEA
MOAYSWSLMSPAAKGTVLQEAKL
QLRSQEKCFLFWSGSKKGSQDKEA
MOAYSWSLMSPAAKGTVLQEAKL
Hamster SR-BI: QLRSQEKCFLFWSGSKKGSQDKEA
IQAYAESLMSPAAKGTVLQEAKL
QLRSQEKCFLFWSGSKKGSQDKEA
IQAYAESLMSPAAKGTVLQEAKL
Rabbit SR-BI: QVRSQEKCYLFWSGSKKGSKDKEA
IQAYSESLMTPDPKGTVLQEARL
QVRSQEKCYLFWSGSKKGSKDKEA

IQAYSESLMTPDPKGTVLQEARL

Pig SR-BI: QIRSQEKCYLFWSSSKKGSKDKEA
IQAYSESLMTPAPKGTVLQEARL

QIRSQEKCYLFWSSSKKGSKDKEA
IQAYSESLMTPAPKGTVLQEARL

Cow SR-BI: QIRSQEKCYLFWISFKKGSKDKEA

VOAYSEFLMTSPPKGTVLQEARL

QIRSQEKCYLFWISFKKGSKDKEA
VOAYSEFLMTSPPKGTVLQEARL

Human SR-BI: QIRSQEKCYLFWSSSKKGSKDKEA

IQAYSESLMTSAPKGSVLQEAKL

QIRSQEKCYLFWSSSKKGSKDKEAI -
QAYSESLMTSAPKGSVLQEAKL

Mouse SR-BII: QLRSQGPEDTISPPNLIAWSDQPP

SPYTPLLEDSLSGQPTSAMA

QLRSQGPEDTISPPNLIAWSDQPPS
PYTPLLEDSLSGQPTSAMA

Rat CD36:

PDZ Domain-Class I: S or T-X-I, V, L or M; PDZ Domain-Class II: -
X-y; PDZ Domain-Class lll: D or E -X-y. The C-terminal residue
is referred to as Po residue; subsequent residues towards the N-
terminus are termed P-1, P-2, P-3 etc. X denotes any amino acid
(no specificity defined at this position for this class). ¢ denotes a
hydrophobic amino acid usually V, | or L. The sequences of C-
terminal domain of SR-BI, SR-BIl and CD36 are presented in
duplicates to accomodate 3 letter overlapping combinations of
putative PDZ binding sites. The putative PDZ domain binding
sequences (three letters) are shown as bold letters.

RSKNGK-None

PDZ domain which shows high affinity for the actin
cytoskeleton, and is also highly expressed in various ste-
roidogenic tissues [173,174].

Additionally, using a transient overexpression strategy,
we directly examined the effect of a number of PDZ
domain containing proteins on SR-BI-mediated selective
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HDL-CE uptake in representative steroidogenic (MLTC,
mouse testicular Leydig cells) and hepatic (HepG2,
human hepatoma cells) cell lines. Co-transfection with
PDZ proteins, DLG3, DLG5, or PDLIM1 plus SR-BI sig-
nificantly increased selective HDL-CE uptake in both
HepG2 and MLTC cells as compared to cells transfected
with SR-BI alone. Moreover, several additional PDZ pro-
teins such as GOPC, HTRA2, INADAL, LIN7B, MAG12,
MAG13, MAST2 and PARDG6B variably, but significantly
enhanced selective HDL-CE uptake. In contrast, expres-
sion of other PDZ domains containing proteins including
DVL1, DLV3, LIN7C, MPP2, DLG2, DLG3, or GRIP1
showed no demonstratable effect on SR-Bl-mediated
selective HDL-CE uptake. These data led us to conclude
that steroidogenic cells, like hepatocytes, require the par-
ticipation of PDZ type proteins for the maximal func-
tional efficiency of SR-BI, but show a wide specificity
towards PDZ proteins. However, at present, a number of
important questions remain unanswered. For example, it
is unclear how these various proteins regulate SR-BI
function, whether they are expressed in steroidogenic
cells, and their expression, like SR-BI, is regulated by
tropic hormones and whether different PDZ proteins dif-
ferentially impact SR-BI function in different steroido-
genic cell types (i.e., adrenal, ovarian and testicular cells).

SR-Bl-mediated alterations in the lipid composition of
plasma membranes--It has been suggested that SR-BI
may alter the composition of lipid domains of plasma
membranes which then leads to changes in free choles-
terol flux, changes in membrane cholesterol content,
changes in plasma membrane phosphatidylcholine sub-
species or in altered physical/chemical properties of the
membrane [143,144]. In another study, Chen et al.
reported that expression of SR-BI in RAW macrophages
markedly reduced ABCA1l-mediated cholesterol efflux to
apolipoprotein Al presumably by sequestering choles-
terol that is normally available to ABCA1 for efflux [145].
On the other hand, it is demonstrated that sphingomyelin
and ceramide in the lipoproteins and the cell membranes
regulate the SR-BI-mediated selective uptake of CE in SR-
BI transfected CHO cells, hepatocytes (HepG2) and adre-
nocortical cells (Y1BS1), possibly by interacting with the
sterol ring or with SR-BI itself [140]. Our recent studies
suggest that SR-BI may also be involved in the regulation
of cell surface expression of microvillar channel forma-
tion, a function that may increase the functional effi-
ciency of the selective CE uptake process through
increased trapping and binding of HDL at the cell surface
[114,116,117].

SR-BI dimerization--the physical form of SR-BI may
also play an important role in its ability to mediate selec-
tive CE transport. Indeed, it is becoming increasingly
clear that hormone-induced changes in tissues--which
alter the expression of SR-BI, alter selective CE uptake in
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the same tissues, and correspondingly produce architec-
tural changes in the cell surface of affected cells--also
show changes in 'dimerization’ of SR-BI in cell or tissue
samples (for simplicity, we use the term dimerization
here to include the multiple forms of the SR-BI protein;
i.e., dimers, and higher order oligomers). In one of the
earliest direct demonstrations of protein-protein interac-
tion involving SR-BI, our laboratory demonstrated (by
SDS PAGE-Western blotting) that SR-BI exists as
homodimers in 17a-ethinyl estradiol (17a-E,) primed
and microvilli-enriched rat adrenal plasma membrane
[109]. In subsequent studies, we were able to demonstrate
that SR-BI exists in dimeric and high order oligomeric
forms in all cells and tissue which are active in 'selective'
uptake of HDL-CEs (e.g., hormone activated steroido-
genic tissues such as mouse adrenal, testis, and ovary; ste-
roidogenic cells such as rat ovarian luteal cells, Y1-BS1
mouse adrenocortical cells, R2C rat Leydig cells, and
MLTC mouse Leydig cells; liver from SR-BI transgenic
mice; SR-BI overexpressing non-steroidogenic cells such
as HEK 293, Y1-BS1, CHO and COS cells; Sf9 insect cells
programmed to express rat SR-BI [114,116,117]. Early
functional evidence for SR-BI dimerization came from
the observation that in normal rat adrenal tissue, SR-BI
exists primarily in the monomeric form with some dimer
formation. ACTH stimulation increased the dimerization
of SR-BI in this tissue along with increased selective CE
uptake, and dexamethasone-induced loss of ACTH led
dramatically to the loss of SR-BI, SR-BI dimers and selec-
tive HDL-CE uptake [109,116]. These results are coupled
with striking architectural changes of the microvillar
compartment at the adrenocortical cell surface, and sug-
gest that SR-BI dimers may, in a very basic way, be associ-
ated with SR-BI sites of action and function.

Additional functional evidence came from our labora-
tory showing a strong correlation from the levels of SR-BI
dimers and increased selective HDL-CE uptake in cells
and tissues (Fig. 4), and from co-immunoprecipitation
studies of epitope-tagged SR-BIs (SR-BI-cMyc and SR-BI-
V5) used to demonstrate that SR-BI can exist as homodi-
mers [116]. The use of cross-linking agents further con-
firmed that SR-BI forms dimers in native steroidogenic
cell lines (endogenous), as well as in a heterologous insect
cell expression system [114]. Also, analysis of cellular
extracts from SR-BI transfected HEK-293 cells or ACTH-
treated Y1-BS1 cells by size-exclusion chromatography
and sucrose density centrifugation demonstrated that a
significant portion of SR-BI exists in dimeric and oligo-
meric forms. As an independent measure, we have uti-
lized immunoelectron microscopy which further
provides convincing evidence for the formation of SR-
BI:SR-BI homodimers. We showed that when double
tagged-SR-BI proteins (SR-BI-cMyc and SR-BI-V5) are
co-expressed in HEK-293 cells and the different proteins
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are subsequently immunostained and identified with two
differently stained gold particles, there is mixing and
clustering of gold particles suggesting 1) that the proteins
travel to the same cell location, and 2) that many of the
gold particles are in exceedingly close physical contact,
i.e., within the distance accepted for protein dimers by
fluorescent resonance energy transfer (FRET) technique
[116,117]. Similar results were obtained when Y1-BS1
mouse adrenocortical cells were transfected with V5 and/
or cMyc tagged-SR-BI proteins. Interestingly, SR-BI
transfected Y1-BS1 demonstrated major architectural
changes along with the formation of double membranes
in flower like arrangements. Gold-labeled secondary
antibodies against V5 or cMyc antibody localized SR-BI
to these sites, and revealed substantial dimer formation of
this protein--shown by close contact between gold parti-
cles [116,117].

From the above discussion it is apparent that while the
understanding of the functional significance of SR-BI
dimerization in steroidogenic tissues and cell lines which
utilize the selective pathway for cholesterol transport is
improving, the structural basis of the intramolecular
interactions involved in SR-BI dimerization and function
is not completely understood. In particular, the informa-
tion about the contribution of the extracellular domain
(ECD) of SR-BI either independently or in cooperation
with the C-terminal domain on SR-BI dimerization, SR-
Bl-induced microvillar channel formation, and selective
HDL-CE uptake remains sketchy. In an effort to further
expand our understanding about the structure-function
relationships and dynamics of SR-BI activity, we recently
carried out studies aimed at determining the structural
and functional contributions of cysteine residues within
the SR-BI. We focused our efforts on cysteine residues
because: (a) cysteine residues are integral for inducing
and maintaining the three-dimensional confirmation in
proteins by forming critical inter- and intra-molecular
disulfide bond linkages; (b) sulthydryl (SH) side chains of
cysteins are polar similar to that of the hydroxyl group
(OH) of serines and can participate in hydrogen bonding
interactions and facilitate protein-protein interactions;
(c) cysteine side-chains are preferred sites for various bio-
logical coupling and conjugation reactions such as palmi-
toylation, isoprenylation, disulfide cross-linking, and
thiol-disulfide exchange which are known to play critical
roles in intracellular protein trafficking, stability and/or
activity; and (d) the SR-BI contains several cysteine resi-
dues that are highly conserved across the species and
uniquely distributed within the different domains of the
SR-BI molecule and as such are highly likely to contribute
towards SR-BI structure and function [175-179].

We chose to study the rat SR-BI because it contains
more conserved cysteine sequences than SR-BI from any
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other species. Its sequence contains a total of eight
cysteine (C) residues (C21, C251, C280, C321, C323,
C334, C384, and C470). With the exception of C21, the
remaining seven residues are highly conserved in other
species including the mouse, hamster, rabbit, pig, cow,
dog, tree shrew and human. Five residues (C280, C321,
C323, C334, and C384) are clustered in the C-terminal
half of the putative extracellular domain (ECD). The
remaining three cysteine residues are equally distributed
in the N-terminal transmembrane domain (C21), N-ter-
minal half of the ECD (C251), and the C-terminal domain
(C470). Given that the extracellular domain contains six
conserved cysteine residues, these could form up to three
disulfide bonds, which in turn could help to stabilize the
confirmation of SR-BI or participate in its dimerization.
We replaced these cysteine residues with serine (S) singly
or in pairs, expressed the mutated SR-BI constructs in
CHO or COS-7 cells and examined the impact of these
mutations on SR-BI expression and function. Overall,
these studies indicated that C280S, C321S, C323S and
C334S residues of the extracellular domain (ECD) are
necessary for preserving normal SR-B (HDL) binding
activity, selective CE uptake, and/or cell surface expres-
sion. Interestingly, mutation of any of these four cysteine
residues to serine resulted in a robust induction of SR-BI
dimer formation, but they are rendered non-functional
because these residues are most likely also essential for
the optimal HDL binding and hence, the selective CE
uptake.

(i) Translocation of cholesteryl esters/cholesterol from cell
surface (plasma membrane) to lipid droplets

Although selective uptake of cholesteryl esters for all
practical purposes is considered to be non-endocytic, at
least from the point of view of uptake of the intact lipo-
protein particle, there are controversies regarding
cholestryl ester movement to lipid droplets. However,
there are some suggestions that HDL-cholesteryl esters
are delivered to the cell interior by the retero-endocyto-
sis, where the receptor-bound HDL particle analogous to
the transferrin receptor system is internalized, traverses
an intracellular pathway during which cholesteryl esters
are transferred to the cell interior and the HDL particle is
recycled back to the plasma membrane where the lipid
depleted HDL is now released [180-185]. This possibility
appears to be weak given the overwhelming morphologi-
cal evidence both at the light- and electron microscopic
evidence showing that in vivo and in vitro HDL-choles-
teryl ester delivery to adrenal and ovarian luteal tissues
and cultured cells, respectively, does not involve internal-
ization of the intact HDL particle itself,
[73,90,100,101,103,186,187]. It is possible that a small
amount of HDL internalization in cultured cells reported
by some investigators was in fact due to non-specific
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endocytosis of the HDL particle; indeed, there is consid-  the formation of complexes with caveolin, annexin and
erable in vitro evidence that cultured cells can internalize  cyclophilins [192]. In this regard, it is noteworthy that
a variety of receptor ligands in a non-specific manner caveolin is a component of several intracellular vesicle
[188-191]. It has also been suggested that HDL- choles-  populations, caveolin-1 is required for lipid droplets for-

teryl esters are delivered to intracellular membranes via
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mation, and all forms of caveolins (i.e. caveolin-1, -2 and -
3) can associate with lipid droplets [193-197].

Lipid droplets are associated with proteins involved in
vesicle-vesicle targeting and the fusion process in the
cells including N-ethylmaleimide (NEM)-sensitive factor
(NSF), soluble NSF attachment protein (alpha-SNAP),
and the SNAP receptors (SNAREs), synaptosomal-associ-
ated protein of 23 kDa (SNAP23), syntaxin-5 and vesicle-
associated membrane protein 4 (VAMP4), a chaperone
protein that participates in [198]. In this context our own
studies have shown that treatment of steroidogenic cells
with NEM, an inhibitor of NSF, results in a total block of
HDL-derived selective cholesteryl ester uptake [72,73].
Thus, intracellular transport of cholesteryl esters to lipid
droplets might involve active participation of carrier-
and/or vesicle-mediated cholesterol transport processes.
On the other hand, ~75% of SR-BI delivered HDL-choles-
teryl esters were reported to be hydrolyzed by non-lyso-
somal neutral cholesteryl ester hydrolases (nCEHs)
suggesting that freshly delivered cholesteryl esters could
also be transported in the form of free cholesterol to vari-
ous cellular destinations [199]. Existing literature also
supports this possibility given that fatty acid composition
of cholesteryl esters in the rodent adrenal and ovary is
significantly different from that of plasma or HDL, i.e.,
this could only occur if internalized plasma lipoprotein-
derived cholesterol esters were at first hydrolyzed and
then ensuing free cholesterol re-esterified with fatty acids
to a defined fatty acid composition that is unique and
specific for each of the steroidogenic tissues [200-203]. A
combination of vesicular and non-vesicular transport
processes most likely facilitates the transport of the newly
released free cholesterol to the ER for its esterification
and subsequent storage in lipid droplets [55,57,66,204].
Depending on cellular needs, free cholesterol could also
be redirected to the plasma membrane or mitochondria
(for steroid synthesis), again possibly via vesicular and/or
non-vesicular transport pathways [55,57,66,204].

Intracellular cholesterol processing and its transport to
mitochondria for the initiation of steroid synthesis

Steroid producing cells through the use of multiple cho-
lesterol supply sources discussed above maintain ade-
quate cholesterol reserves primarily in the form of lipid
droplets that enable them to quickly respond to tropic
hormone stimulation with the rapid mobilization of cel-
lular cholesterol reserves and ensuing transport to mito-
chonderia for steroidogenesis. In adrenal and ovarian cells,
cellular stores of cholesterol esters are constantly replen-
ished by the delivery of plasma cholesterol through endo-
cytic or selective pathway (depending on species and
lipoprotein type), whereas this chore in Leydig cells,
under normal physiological conditions, is mainly
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achieved through increased de novo cholesterol synthesis.
During acute hormonal stimulation, these endogenously
stored cholesterol esters are rapidly mobilized (hydro-
lyzed) and released free-cholesterol is efficiently trans-
ported to and within the mitochondria for its conversion
to pregnenolone, the precursor of all steroid hormones.
This entire process involving the intracellular cholesterol
mobilization, processing and transport to the appropriate
site within the mitochondria for side-chain cleavage and
pregnenolone production can be broadly divided into two
separate, but equally important segments: a) mobilization
of cholesterol from intracellular stores, particularly from
lipid droplets; b) transport of mobilized cholesterol to the
outer mitochondrial membrane; and c), transfer of this
cholesterol from the outer to the inner mitochondrial
membrane. In the following sections, we will discuss
characteristics of these three segments of intracellular
cholesterol transport and also summarize current under-
standing about the functional roles of key proteins and
factors involved in the mobilization of cellular cholesteryl
esters, intracellular transport of newly released choles-
terol to the outer mitochondrial membrane and its subse-
quent translocation to the inner mitochondrial
membrane for the initiation of steroidogenesis.

(a) Mobilization of cellular cholesterol reserves in response
to acute hormonal stimulation

It is well known that adrenal, ovarian and testicular Ley-
dig cells' cholesteryl esters are rapidly depleted following
tropic hormone (ACTH, LH/hCG) treatment supporting
the notion that mobilization of lipid droplets (LD) stored
cholesteryl esters provides cholesterol for acute hor-
monal stimulation of steroid synthesis [205-207]. This
mobilization of substrate cholesterol occurs through
tropic hormone-mediated increased formation of second
messenger, CAMP followed by activation of PKA, and
PKA-mediated phosphorylation (activation) of neutral
cholesteryl ester hydrolase (nCEH), resulting in rapid
hydrolysis of cholesteryl esters [21-24,24,78-80,205-210].
We reported that hormone-sensitive lipase (HSL) is
responsible for the vast majority, if not all, of nCEH activ-
ity in the adrenal [208]. This was based on the observa-
tion that inactivation of HSL resulted in the loss of >98%
of nCEH [208]. Moreover, we reported that adrenocorti-
cal cells isolated from HSL null mice show almost com-
plete inhibition of ACTH stimulated and HDL-supported
corticosterone secretion (>99%) as compared to cells iso-
lated from control mice, further demonstrating the
importance of HSL in adrenal steroidogenesis; HSL null
mice also show an increased lipid accumulation in the
adrenals and a blunted corticosterone secretion in vivo
[209,210]. Current evidence also suggests that HSL is
likely to function as a cholesteryl ester hydrolase in the
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ovary [211-213]. There is also a testis-specific isoform of
HSL with a molecular mass of 120 kDa [80-82]. This iso-
form differs from a more common isoform of HSL, which
is expressed in adipose tissue and adrenal, ovary and
other tissues/cells, by containing some additional 300
amino acids [213-215]. This 120 kDa isoform is predomi-
nantly expressed in germ cells of the testis and its expres-
sion is hormonally regulated [216]. However, the identity
and expression of HSL in testosterone producing testicu-
lar Leydig cells has yet to be established.

(b) Transport of mobilized cholesterol to the outer
mitochondrial membrane

The newly released cholesterol is transported to the outer
mitochondrial membrane (OMM) for the production of
steroid hormones. Because cholesterol is a hydrophobic
molecule and diffuses poorly in an aqueous environment,
it can traverse from the cytoplasmic locations to the
OMM by several potential mechanisms [54-57,66]. Cho-
lesterol can be transported via the vesicular transport
mechanism, i.e., it can be incorporated into the vesicular
structures involved in cellular trafficking (e.g., transport
vesicles, endosomes, and secondary lysosomes) which
then fuse either directly or indirectly (through other
intermediary membranes) fuses with mitochondria and
deliver their cargo to the OMM. However, this pathway
appears to play a minor role [55,84]. Cholesterol may also
be delivered to OMM via protein-protein interactions
between the lipid droplets and mitochondria. As early as
in 1975, electron microscopic observations provided evi-
dence suggesting that lipid droplets become juxtaposed
during stimulation by tropic hormone [217]. In the last
few years, additional evidence has emerged showing
potential interactions between lipid droplets and cellular
organelles including mitochondria in several cell systems
[69,218-220]. More recently, Bostrom et al reported the
presence of some constituent proteins of the SNARE
complexes on the lipid droplets [198]. (SNARE complexes
facilitate fusion between transport vesicles and target
membranes during protein trafficking) [221-223]. These
proteins include, NSF, a-SNAP, and SNAREs, SNAP23,
syntaxin-5, and VAMP4. The authors of this report also
provide evidence that VAMP4, syntaxin5 and SNAP23
are required for lipid droplet fusion [198]. More recently,
another report provided direct evidence showing that the
SNAP23 protein promotes interaction between lipid
droplets and mitochondria [224]. Other reports suggest
that steroidogenic cells express high-levels of some mem-
bers of SNARE proteins such as Syntaxin-17 SNAP23,
and SNAP25, and that expression of the neuronal type of
SNAP25 is hormonally regulated in ovarian granulosa
cells [225-229]. These various observations strongly sug-
gest that SNARE proteins may mediate the transport of
cholesterol substrate from lipid droplets to steroidogenic
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mitochondria, most likely by promoting the functional
interaction between lipid droplets and mitochondria.

A second potential mechanism by which mobilized
cholesterol from lipid droplets may be delivered to the
mitochondrial for steroid synthesis is through a non-
vesicular transport process involving high-affinity choles-
terol binding proteins [55,57,66,84,230]. Earlier studies
indicated that sterol carrier protein, (SCP,), a nonspecific
lipid transfer protein, mediates cholesterol transport to
steroidogenic mitochondria and also stimulates steroid
hormone biosynthesis [230-232]. Contrary to these find-
ings, more recent metabolic and genetic evidence sug-
gests that SCP, mainly functions as a carrier for fatty acyl
CoAs, facilitates branched-chain fatty acid oxidation and
regulates the distribution of key lipid signaling molecules
(e.g., FA, fatty acyl CoAs, LPA, PI and sphingolipids)
between lipid rafts/caveolae and intracellular sites, while
it appears to play a minor role in cellular cholesterol traf-
ficking primarily because of its very low affinity for cho-
lesterol [233,234]. More recently, Breslow's laboratory has
identified a subfamily of lipid binding proteins referred to
as StarD4, StarD5 and StarD6 (StarD4 subfamily)
[235,236], which are structurally related to steroidogenic
acute regulatory protein (StarD1/StAR), a prototype of
the steroidogenic acute regulatory-related lipid transfer
(START) domain containing a superfamily of proteins
[84,235-238]. StarD4 and StarD5 are widely expressed in
steroid producing cells, while StarD6 expression appears
to be mostly restricted to the testicular germ cells
[239,240]. In contrast to StarD1 and StarD3/MLN64,
StarD4, StarD5 and StarD6 lack any signal peptides, and
thus, they are not targeted to any specific cellular organ-
elles. Therefore, they are considered to be a cytosolic pro-
tein like StarD2/PCTP [238,239]. Interestingly, StarD6
despite lacking any N-terminal target sequences that
should direct this protein to mitochondria is reported to
have physicochemical properties and biological activity
(stimulation of steroidogenesis) similar to that of StarD1/
StAR, while StarD4 and StarD5 exhibit low levels of
StarD1/StAR-like activity [240]. Both StarD4 and StarD5,
however, bind free cholesterol with high-affinity and
specificity, facilitate cholesterol transport through an
aqueous environment and have been shown to play
important roles in the maintenance of cellular cholesterol
homeostasis [241,242]. The ability and specificity of
StarD4 and StarD5 to bind cholesterol, coupled with their
high levels of expression in steroidogenic tissues, raises
the strong possibility that StarD4 and StarD5 facilitate
cholesterol transport to the outer mitochondrial mem-
brane. However, confirmation of this possibility must
await the relevant experimental evidence.

Extensive but mostly circumstantial evidence suggests
that cellular architecture and cytoskeletal elements, in
particular, vimentin-intermediate filaments (IF, Type III)
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may also be involved in facilitating cholesterol transport
to mitochondria [8,243,244]. Vimentin-intermediate fila-
ment constitutes part of the network of the cytoskeleton
[245]. It is expressed in many cell types including adrenal,
ovarian and testicular Leydig cells [245-250]. Several dif-
ferent reports of proteomic analyses of lipid droplets iso-
lated from cells have consistently identified vimentin as a
lipid droplet associated protein [251-253]. Vimentin has
been shown to interact with several different proteins,
including some motor-like propertiesand sterol binding
properties [254-256]. Using a proteomics approach,
vimentin was identified as an interacting partner of ago-
nist stimulated B;-adrenergic receptors and this interac-
tion was shown to be important for activation of ERK and
stimulation of lipolysis, providing the additional involve-
ment of vimentin in lipid droplet metabolism [257]. The
overexpression of ORP4, which interacts with vimentin
and causes its aggregation, results in a defect in choles-
terol esterification [254]. Likewise, adrenal cells lacking
vimentin display a defect in the re-esterification of LDL
cholesterol without any alterations in LDL-receptor-
mediated endocytosis [258]. Hall and colleagues reported
a close association of both functional mitochondria and
cholesterol-enriched lipid droplets with the intermediate
filaments in Y1 adrenal tumor cells, and testicular Leydig
cells and suggested the possibility that such binding may
facilitate the transport of cholesterol to mitochondria for
steroid synthesis [248-250]. Furthermore, binding of lipid
droplets and mitochondria to vimentin-intermediate fila-
ments may also provide an ideal platform for docking of
lipid droplets to the mitochondria and secondarily
increased cholesterol transport to mitochondria. Besides
morphological evidence, a number of biochemical studies
employing pharmacological inhibitors raised the possibil-
ity that cytoskeletal elements including vimentin may
contribute to the cholesterol transport to mitochondria
and the regulation of steroidogenesis although conflicting
results have been generated [243]. Also, it is important to
realize that agents which were previously used in many of
these studies to disrupt microfilaments, e.g., nocadazole,
cytochalasin, and cyclohexamide, affect tubulin and
actin, but have no effects on vimentin [259]. Obviously,
more experimental work is needed to clearly define the
role of cytoskeletal elements/structures including vimen-
tin intermediate filaments in cholesterol transport to
mitochondria and regulation of steroidogenesis.

(c) Translocation of cholesterol from the outer
mitochondrial membrane to the inner mitochondrial
P450scc site

The second critical step in steroid hormone biosynthesis
is delivery of the cholesterol substrate to the inner mito-
chondrial membrane (IMM) sites, where cholesterol side-
chain cleavage P450scc is located, and the enzyme that
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catalyzes the conversion of cholesterol to pregnenolone
takes place [3-6,8]. This step is rate-limiting because the
hydrophobic cholesterol cannot freely diffuse through the
aqueous intermembrane space of the mitochondria to
support acute steroid synthesis and requires the partici-
pation of a de movo synthesized labile protein [8,47-
50,260-264]. This putative labile protein evaded detection
for almost twenty years until 1983 when Orme-Johnson's
laboratory first demonstrated that acute ACTH stimula-
tion of adrenocortical cell steroidogenesis was accompa-
nied by a rapid induction of 37 kDa phosphoprotein
[265]. Subsequent studies from her laboratory provided
further characterization of this phosphoprotein in the
adrenal and also demonstrated its presence and hor-
monal induction in corpus luteum and testicular Leydig
cells [266-272]. Stocco and colleagues confirmed these
observations in MA-10 Leydig tumor cells, and subse-
quently cloned this protein and named it steroidogenic
acute regulatory protein (StAR) [273,274]. StAR has been
cloned from many species and is highly conserved across
the species [275]. StAR protein possesses all of the neces-
sary characteristics of the acute regulator of steroid syn-
thesis in steroidogenic cells i.e., its synthesis is specifically
induced in steroidogenic cells of the adrenal and gonads
in response to tropic hormone, is highly labile, and is sen-
sitive to the protein synthesis inhibitor, cycloheximide
[8,23,84,264-273].

The role of StAR protein in the regulation of acute hor-
monal steroidogenesis was supported by three lines of
evidence. First, transfection of a model testicular Leydig
cell line (MA-10 cells) with a StAR plasmid stimulated
steroid production to the same extent as that seen with a
maximum stimulating dose of cAMP analog [274]. Sec-
ond, co-transfection of StAR plus a fusion protein com-
plex of P450scc plasmids in a heterologous cell system
produced several-fold more pregnenolone (steroid) as
compared to cells transfected with P450scc fusion com-
plex alone [276,277]. Third, the most compelling evi-
dence for a role of StAR in steroiodogenesis was provided
by demonstrating that mutations in the StAR gene cause
a fatal condition in newborns, the congenital lipoid adre-
nal hyperplasia (lipoid CAH), characterized by severe
impairment of steroiodogenesis, hypertrophied adrenals
containing high levels of cholesterol esters and free cho-
lesterol and increased amounts of neutral lipids in the
testicular Leydig cells [276,278]. Depletion of the murine
StAR gene by homologous recombination yielded an
identical phenotype of impaired steroidogenesis and lipid
accumulation in the adrenal and gonads [279,280].

In accordance with its role in the acute regulation of
steroidogenesis, StAR is expressed mainly in the adrenal
cortex, steroid producing cells of the ovary and testicular
Leydig cells [277,281]. Significant expression of StAR is
also reported in the rodent brain cell type that parallels
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the expression of P450scc and other steroidogenic
enzymes, but its potential role in neurosteroidogenesis is
not yet established [84]. In contrast, StAR expression is
not detected in another major steroidogenic tissue, the
placenta, which secretes progesterone constitutively
[277,281]. StAR is synthesized as a short-lived cytoplas-
mic 37-kDa protein with a mitochondrial targeting pep-
tide that is cleaved upon mitochondrial import to yield
the long-lived intramitochondrial 30-kDa form
[84,269,273]. StAR functions as a sterol transfer protein,
binds cholesterol, mediates the acute steroidogenic
response by moving cholesterol OMM to IMM, acts on
the OMM, and requires structural change previously
described as a pH-dependent molten globule [282-287].
StAR is also a prototype of a family of proteins that con-
tain StAR-related lipid transfer (START) domains (StarD
proteins), of which StarD3/MLN64, StarD4, 5 and 6
exhibit steroidogenic potential [235,236,238,240,282-
287].

Given that StAR (StarD1) acts on the outer membrane
in mediating the transfer of cholesterol from the OMM to
the IMM, and raises the possibility that it may be a com-
ponent of a multi-protein complex [84,284-289]. Several
lines of evidence indicate that peripheral-type benzodiaz-
epine receptor (PBR) is also involved in mitochondrial
import of cholesterol substrate [290,291]. PBR, which is
now referred to as translocator protein (18 kDa, TSPO) is
a high-affinity drug- and cholesterol-binding mitochon-
drial protein, with a cytoplasmic domain containing a
cholesterol recognition amino acid consensus (CRAC)
domain [292]. TSPO is expressed ubiquitously in the
OMM, but is more abundant in the adrenal gland and ste-
roidogenic cells of gonads [288,289,291-296]. TSPO
ligands stimulate steroid synthesis and promote translo-
cation of cholesterol from OMM to the IMM in testicular
Leydig cells, ovarian granulosa cells, and adrenocortical
cells [290,291,293-298]. Mutagenesis of the CRAC
domain interferes with cholesterol binding and transfer
of cholesterol to IMM [299,300]. Targeted deletion of the
TSPO gene in a Leydig cell line (TSPO-deficient R2C
cells) blocked cholesterol transport into the mitochon-
dria and dramatically reduced steroid production,
whereas reintroduction of TSPO in the deficient cell line
restored the steroidogenic capacity [301]. TSPO is a com-
ponent of a 140-200 kDa multi-protein complex consist-
ing of 18-kDa TSPO itself (and its polymorphic form), the
34-kDa voltage-dependent anion channel (VDAC), the
30-kDa adenine nucleotide translocator (ANC), a 10-kDa
protein (pk 10), TSPO-associated protein-1 (PRAX-1),
and the TSPO and protein kinase A (PKA) regulatory
subunit Rla-associated protein (PAP7) [288].

Increasing evidence now suggests that TSPO and StAR
interact functionally in mediating the transfer of choles-
terol from the outer mitochondrial membrane to the
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inner mitochondrial membrane. For example, FRET mea-
surements indicated that StAR and TSPO come within
the 100 A’ of each other consistent with the possibility
that StAR and TSPO may interact with each other [302].
However, using a complementary bioluminescence reso-
nance energy transfer, the same laboratory was unable to
provide evidence for protein-protein interaction between
TSPO and StAR [303]. Hauet et al provided evidence that
isolated mitochondria from Tom20/StAR overexpressing
MA-10 Leydig cells produced steroids at a maximal level,
but these cells lose their steroidogenic capacity if exposed
to TSPO-antisense oligonucleotide [304]. Interestingly,
re-introduction of recombinant TSPO into the mito-
chondrial environment in vitro restored the steroidogen-
esis [304]. The current thinking is that functional
cooperation between proteins such as the cAMP-depen-
dent protein kinase regulatory subunita (PKA-RIa) and
the PKA-RIa- and TSPO-associated acyl-coenzyme a
binding domain containing 3 (ACBD3) proteins, PAP7,
cholesterol is transferred to and docked at the OMM
[288]. The TSPO-dependent import of StAR into mito-
chondria, StAR interaction with VDACI, and phosphate
carrier protein (PCP) on the OMM, and the association
of TSPO with the outer/inner mitochondrial membrane
contact sites, drives the intramitochondrial cholesterol
transfer and subsequent steroid formation [288].

Conclusions

Steroid producing cells have a dual requirement for cho-
lesterol: they need cholesterol for membrane biogenesis
and cell signaling as well as starting material for the mito-
chondrial synthesis of pregnenolone, the precursor ste-
roid required for the formation of glucocorticoids,
mineralocorticoids, and sex-steroids. For steroid hor-
mone production to proceed normally, adequate choles-
terol must be available and supplied to the mitochondria.
Under most physiological conditions, the supply of cho-
lesterol is not rate-limiting, because there are multiple
pathways that can fulfill the cholesterol needs of the cell.
Although cellular de novo cholesterol synthesis and cho-
lesteryl esters stored in lipid droplets can potentially sup-
ply adequate amounts of cholesterol substrate to support
steroidogenesis, adrenal and ovary (and testicular Leydig
cells under certain conditions), they however, preferen-
tially utilize plasma lipoprotein-derived cholesterol for
steroid synthesis. All steroidogenic cells irrespective of
species have the capability to acquire cholesterol from
plasma LDL, or other apolipoprotein B- (apoB) or apoE-
containing lipoproteins via the well-characterized LDL
(B/E) receptor-mediated endocytic pathway. Its func-
tional efficiency, however, is dictated by the physiological
status of the steroidogenic cell, the species and the type
and composition of circulating lipoproteins. Steroido-
genic cells can also process exceptionally large quantities
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of lipoprotein-derived cholesteryl esters through the
"selective" cholesteryl ester uptake pathway. Indeed, the
"selective”" cholesterol uptake pathway is quantitatively
the most important source for cholesterol delivery for
steroidogenesis in the tropic-hormone stimulated rodent
adrenal and ovary. The "selective" cholesterol uptake
pathway involves internalization of cholesteryl esters
from cell surface bound cholesterol-rich lipoproteins
(HDL or LDL, regardless of lipoprotein composition)
without the parallel uptake and lysosomal degradation of
the lipoprotein particle itself. Hormone regulatable scav-
enger receptor class B, type I (SR-BI) is a physiologically
relevant cell surface receptor responsible for "selective"
uptake of lipoprotein-derived cholesteryl esters. The
mechanisms by which plasma-lipoprotein cholesterol is
delivered to steroidogenic cells via the SR-BI mediated
"selective" uptake pathway has been extensively studied,
but remains incompletely understood. Based on the cur-
rent evidence, it appears that selective transfer of choles-
terol esters to plasma membrane and their subsequent
delivery to the cell interior by SR-BI requires the partici-
pation of accessory proteins, alterations in physicochemi-
cal characteristics of the plasma membrane (e.g.,
microvillar channel formation, caveolae/membrane lipid
raft, lipid domain) and the specific physical form of SR-BI
itself (dimerization, oligomerization).

The second step in cholesterol utilization for steroid
hormone synthesis is intracellular cholesterol mobiliza-
tion and processing and transport to the appropriate site
within the mitochondria for side-chain cleavage and
pregnenolone production. This process can be broadly
divided into three separate, but equally important seg-
ments: a) tropic hormone-induced mobilization of cho-
lesterol from intracellular stores, particularly from lipid
droplets, transport of newly released free cholesterol to
the outer mitochondrial membrane; and b) transfer of
this cholesterol from the outer to the inner mitochondrial
membrane for steroid (pregnenolone) production. Tropic
hormone-mediated increased formation of the second
messenger, CAMP, stimulates cAMP-PKA resulting in
activation of cholesteryl ester hydrolase, and rapid hydro-
lysis of cholesteryl esters. The newly released cholesterol
is transported to the outer mitochondrial membrane,
although the actual underlying mechanism is not defined.
Based on the currently available information, it appears
that transport of hydrophobic cholesterol from the aque-
ous environment to OMM is primarily facilitated by the
non-vesicular cholesterol transport mechanism involving
StarD proteins such as the StarD4 and StarD5 family,
which avidly bind cholesterol. In addition, cytoskeletal
components/structures, particularly vimentin intermedi-
ate filaments, and direct interaction of lipid droplets to
cellular organelles (e.g., mitochondria) and other cytoso-
lic factors, steroidogenesis activator polypeptide (SAP)
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and changes in cellular architecture could also contribute
to cholesterol transport to OMM.

The next step in cholesterol transport to mitochondria
is the transfer from the outer to the inner mitochondrial
membrane; this is considered as a rate-limiting step in
hormone-induced steroid formation. Two proteins,
translocator protein (18 kDa, TSPO) and steroidogenic
acute regulatory (StAR) protein, which presumably work
in concert, mediate this transfer. TSPO, previously
known as the peripheral-type benzodiazepine receptor, is
a high-affinity drug- and cholesterol-binding mitochon-
drial protein. StAR is a hormone-induced mitochondria-
targeted protein that has been shown to initiate choles-
terol transfer into mitochondria. The current thinking is
that functional cooperation between TSPO and proteins
such as the cAMP-dependent protein kinase regulatory
subunita (PKA-RIa) and the PKA-RIa- and TSPO-asso-
ciated acyl-coenzyme A binding domain containing 3
(ACBD3) protein, PAP7, cholesterol is transferred to and
docked at the OMM. The TSPO-dependent import of
StAR into mitochondria, StAR interaction with VDACI,
and phosphate carrier protein (PCP) on the OMM, and
the association of TSPO with the outer/inner mitochon-
drial membrane contact sites, drives the intramitochon-
drial cholesterol transfer and subsequent steroid
formation.
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