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Abstract: Women have been reported to be more vulnerable to the development, prognosis and
mortality of cardiovascular diseases, yet the understanding of the underlying mechanisms and strate-
gies to overcome them are still relatively undeveloped. Studies show that women’s brains are more
sensitive to factors affecting mental health such as depression and stress than men’s brains. In women,
poor mental health increases the risk of cardiovascular disease, and conversely, cardiovascular dis-
ease increases the incidence of mental illness such as depression. In connection with mental health
and cardiovascular health, the presence of gender differences in brain activation, cortisol secretion,
autonomic nervous system, vascular health and inflammatory response has been observed. This
connection suggests that strategies to manage women’s mental health can contribute to preventing
cardiovascular disease. Mind–body interventions, such as meditation, yoga and qigong are forms of
exercise that strive to actively manage both mind and body. They can provide beneficial effects on
stress reduction and mental health. They are also seen as structurally and functionally changing the
brain, as well as affecting cortisol secretion, blood pressure, heart rate variability, immune reactions
and reducing menopausal symptoms, thus positively affecting women’s cardiovascular health. In
this review, we investigate the link between mental health, brain activation, HPA axis, autonomic
nervous system, blood pressure and immune system associated with cardiovascular health in women
and discuss the effects of mind–body intervention in modulating these factors.
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1. Susceptibility of Women to Cardiovascular Disease
1.1. Gender Differences in Mortality from Cardiovascular Disease

Accumulated research has shown more negative clinical outcomes from cardiovascular
disease (CVD) in women compared to men. Epidemiological studies show that the CVD
mortality rate in women exceeds that found in men [1–3]. In patients with acute coronary
syndrome (ACS) who undergo primary percutaneous coronary intervention, the mortality
rate is higher in women compared with men of similar age [4,5]. Moreover, after myocardial
infarction, younger women have a higher mortality rate than men of the same age or older
women during hospitalization [6]. Coronary microvascular dysfunction (CMVD) which
is associated with hyperactivation of the sympathetic nervous system is more frequently
observed in women than in men, which increases the event-free mortality rate in women,
but not in men [7–9].

1.2. Stress and Cardiovascular Disease

A large-scale prospective follow-up data analysis in adults has shown that stress
is associated with CVD [10–13]. Adulthood stress plays an important role as a disease
stimulator for individuals who already have a high burden of arteriosclerosis plaque.
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It correlates with increased risk of negative clinical outcomes for those suffering from
preexisting conventional cardiovascular/cerebrovascular diseases [12]. According to a
meta-analysis of stress as a predictor of CVD and mortality [12], while the link between
adulthood stress, cardiovascular and cerebrovascular events is moderate in the general
public, strong links are found in high-risk groups experiencing partner bereavement, anger
and emotional instability [14–17], and stressors are strongly associated with recurrent
cardiovascular events and mortality in patients with CVD [18–22]. Thus, adulthood stress
plays an important role in the progression and outcome of CVD [12].

1.3. Relationship between Mental Health and Cardiovascular Health and Its Gender Differences

Persistent stress reactions are related to the onset and maintenance of mental health
problems such as anxiety and depression [23–25]. Chronic stress and exposure to adverse
conditions during early development have been found to be highly correlated with the
onset of depression [26]. Depression is twice as common in women as in men [27,28], the
frequency of which starts to diverge from mid-puberty and is maintained into later life [29].
Depression is associated with the development of CVD [30], and women are more prone
to develop depression-related CVD [31]. There is growing evidence that patients with
depressive disorder (DD) are more likely to develop acute myocardial infarction, heart
failure or stroke [32,33]. In a 16-year follow-up study, women with depression were more
likely to develop myocardial infarction or stroke [34]. Anxiety, one of the risk factors of
CVD, is more likely to occur in women than in men throughout their lives, with a male to
female ratio of 1:1.7 [35], and is related with major cardiac events in patients with coronary
heart disease (CHD) [36].

In takotsubo cardiomyopathy which results in temporary left ventricular dysfunc-
tion as a result of severe psychological stress, the hypoconnectivity of brain structures
related to autonomic nervous system control is observed in patients [37]. The decrease
in estrogen levels in postmenopausal women increases the susceptibility of takotsubo
cardiomyopathy [38], and women over 55 years of age are almost five times more likely
to develop takotsubo cardiomyopathy than women under 55 years of age [39]. After
mental stress, women exhibited more negative and fewer positive feelings than men and
higher platelet aggregation and developed more cases of myocardial ischemia caused by
mental stress [40]. In the Women’s Health Initiative which involved 93,676 postmenopausal
women for four years, depression was found to be an independent risk factor for CVD
death and all-cause mortality after adjusting for other existing risk factors such as age, race,
diabetes, hypertension, smoking, high cholesterol, etc. among women with no history of
CVD [41].

Conversely, CVD affects mental health, especially in women. Compared to men,
women experience twice the prevalence of major depressive disorder (MDD) after stroke [42].
After myocardial infarction, young women are twice as likely to develop mental stress-
induced myocardial ischemia as men of the same age [43].

1.4. Effects of Menopause on Women’s Cardiovascular Health

Unlike men, women experience dramatic changes in the secretion of sex hormones dur-
ing menopause, thus experiencing physiological and psychological changes. Middle-aged
women experience a decrease in estradiol levels as they pass menopause, and the pattern of
decline varies slightly from woman to woman and also changes dynamically [44]. Estradiol
has been shown to exert protective effects against cardiovascular disease [45], but ongoing
studies have reported contradictory results in the effect of estradiol patterns on arterioscle-
rosis in women during menopausal transition [46]. The level of the follicle-stimulating
hormone (FSH) starts to increase six years before the final menstrual period [47,48], but
the pattern of hormone dynamics depends on various factors such as race/ethnicity and
premenopausal body mass index (BMI) [44]. While not all studies show connections be-
tween the FSH and subclinical CVDs, significant associations have been consistently found.
In middle-aged women, higher level of FSH correlated with thicker carotid intima media
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thickness (cIMT) [49], lower brachial artery flow-mediated dilatation (FMD) [50] and a
greater number of aortic plaques [51].

In addition, a number of risk factors for CVD increase with respect to the onset
of menopause in women. In the middle age around menopause, the levels of total
cholesterol, triglycerides, apolipoprotein B and low-density lipoprotein cholesterol in-
crease significantly [52–54], which correlates with the presence of the carotid plaque after
menopause [55]. Menopause transition is also associated with adverse vascular remodeling
which accompanies changes in carotid intima media thickness and carotid adventitial
diameter [56–58]. Blood pressure of women is generally lower than that of men before
menopause, but prevalence of hypertension, a major risk factor for cardiovascular disease,
is higher than that of men after menopause [59].

Type 2 diabetes mellitus is an established risk factor for CVD [60]. In a population-
based cross-sectional study which investigated the association between menopause and
type 2 diabetes among 8191 middle-aged women (median age, 56), the postmenopausal
status was found to be the most important risk factor for type 2 diabetes in women [61].

Meta-analysis of menopausal initiation and CVD risk has consistently shown that
early menopause initiation increases the CVD risk [62–65]. In a 2015 meta-analysis study
which involved 297,496 women with early menopause onset in 31 studies, early menopause
onset was associated with a higher risk of overall coronary heart disease (CHD), fatal CHD,
CVD mortality and all-cause mortality [63]. In another 2019 meta-analysis which included
301,438 women in 15 studies, premature menopause (<40 years) or early menopause
(40–44 years) were related with a higher CVD risk compared to women with normal
menopause (50–51 years). On the other hand, women who reached menopause at age
>51 years had a significantly reduced CVD risk [65].

2. Link between the Brain and Cardiovascular Health

When the brain is stressed, changes occur in the stress response neural circuit [66]. The
sympathetic nervous system and hypothalamus–pituitary–adrenal cortex (HPA) axis are
activated, which increases the levels of epinephrine, norepinephrine and cortisol, inducing
elevation of heart rate and blood pressure [67]. Chronic exposure to stress reduces activity
of the medial prefrontal cortex, resulting in overactivation of the amygdala. This induces
continuous activation of the noradrenaline-producing locus coeruleus as well as chronic
activation of the sympathetic nervous system [68]. Subsequently, this aggravates the
inflammatory process which is called sterile inflammation (inflammation induced in the
absence of pathogens) [69] and promotes endothelial dysfunction and arteriosclerosis [70]
(Figure 1). This neural circuit–inflammatory–vascular link differs between women and
men and disproportionately contributes to cardiovascular risk [71].
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Figure 1. Potential mechanism of reduction in cardiovascular disease risks by mind–body interven-
tion in women. Unlike in men, significant associations between amygdala activity and physiological
responses have been reported specifically in women [72–75]. Poor mental health (red), such as
chronic persistence of depression and stress, reduces functional connectivity between the prefrontal
cortex and the amygdala, decreases activity of the medial prefrontal cortex and increases activity of
the amygdala, which is controlled by the prefrontal cortex. Subsequently, the sympathetic nervous
system is activated to increase the heart rate and blood pressure, while the HPA axis is activated
to increase cortisol secretion, and the chronic activation of these states induces inflammation. The
above states represent increased risks for cardiovascular disease. On the other hand, the application
of mind–body intervention (green) helps improve mental health by reducing perceived stress and
depression. The functional connectivity between the prefrontal cortex and the amygdala increases,
and the activity of the medial frontal cortex also increases, thereby reducing the activity of the
amygdala. Mind–body intervention activates the parasympathetic nervous system, thereby reducing
sympathetic nerve activity, as well as reducing HPA axial activity as stress decreases. As a result,
heart rate, blood pressure and cortisol secretion are reduced and inflammatory conditions are reduced.
These states mean a reduction in cardiovascular disease risk. AMYG, amygdala; mPFC, medial
prefrontal cortex; SNS, sympathetic nervous system; HPA, hypothalamus–pituitary–adrenal cortex.

2.1. Sexual Dimorphism in the Connection between the Brain and Cardiovascular Health

Several studies suggest that the amygdala is an important central nervous system struc-
ture in gender-specific CVD events. In healthy adults, resting state functional connectivity
(rsFC) of the amygdala differ in women and in men. Compared to men, women exhibit
higher left amygdala rsFC with other structures such as the hippocampus, inferior frontal
gyrus, left middle temporal gyrus and postcentral gyrus [76]. In a four-year follow-up
study of 300 participants (median age, 55 years), the higher the resting metabolic activity in
the amygdala, the higher the risk of developing cardiovascular disease was [77]. Amygdala
hyperactivity is connected to preclinical atherosclerosis [78] and major depression [79]. In
addition, overactivation of the amygdala is directly related to myocardial injury in women
but not in men [8,74,75]. Cardiac autonomic dysregulation in women with major depressive
disorders and negative emotional stimulation is associated with hypoconnectivity between
the hippocampus, amygdala, right orbitofrontal cortex and hypothalamus [72]. In the same
subgroup, hyperactivity of the right amygdala and hypothalamus was observed.
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2.2. Gender Differences in Stress-Induced HPA Axis Activation

Within minutes of exposure to stressors, the HPA axis is activated, which releases the
corticotropin-releasing hormone (CRH) from the hypothalamus into the anterior pituitary
gland [80], and the CRH stimulates the pituitary gland to release the adrenocorticotropic
hormone (ACTH) into the bloodstream. The ACTH causes the adrenal cortex to secrete
the glucocorticoid cortisol [81]. Under stress, when glucocorticoid levels increase, inflam-
matory cytokines increase [82], and these are regulated by the negative feedback of the
glucocorticoid [83]. However, chronic activation of the stress response can inhibit the
negative feedback mechanism [83] and contribute to the initiation of disease, mental illness
and poor wellbeing [23,84,85].

Since gender differences are found in stress-related diseases [86], it is estimated that
there will be gender differences in the regulation of the HPA axis by stress. Indeed, differ-
ences in the response of the HPA axis to stress are observed in humans [87]. The prevalence
of stress-related diseases (e.g., major depressive disorders, affective disorders) developed
after puberty is higher in women [86,88,89], while physiological stress responses before
puberty are comparable between the genders [90]. However, from adolescence into adult-
hood, studies on sex differences in HPA axis responses are less consistent [86]. For example,
there are studies in which adult women have higher HPA responses to acute stressors
compared to men, while others exhibit no significance in the responses [86,87,91–93]. The
inconsistency is presumably because of factors including age, overall health and menstrual
cycle stage [86,91,93]. When investigating cortisol responses in women at various stages of
the menstrual cycle and men, gender differences were found in saliva cortisol responses to
psychosocial stress when women were in the low-estrogen state of the follicular phase but
not in the luteal phase [94]. Thus, estrogen and progesterone are suggested to play a role in
controlling stress reactivity across the menstrual cycle in women. There is also a gender
difference in the secretion of cortisol, a product of the HPA axis. According to a survey of
204 healthy adults (60 men), women have higher morning cortisol secretion (when adjusted
to sex hormones) than men [95]. In addition, in women, cortisol is negatively associated
with the rsFC of the amygdala with brain regions related with emotion, reward, memory
processing and action execution, compared to the positive association in men [76].

2.3. Gender Differences in Stress-Induced Changes in the Autonomous Nervous System

The amygdala has a strong projection effect to the brain stem (e.g., locus coeruleus,
pons) and produces sympathetic neural responses to threat and stress in the brain stem [96].
The sympathetic nervous system has a direct cardiostimulatory effect and a pressor effect.
The chronic imbalance of the autonomous nervous system in the form of increased sym-
pathetic tone and decreased parasympathetic tone is a strong risk factor for morbidity of
the cardiovascular system and mortality [97]. In the general population, the long-term
effects of dysfunction on both the autonomic nervous system and the HPA axis contribute
to changes that accelerate arteriosclerosis [66]. Patients with depression exhibit excessive
stimulation of the sympathetic nervous system and decreased parasympathetic tone [98].

Short sleep and fragmented rest are often seen in depressed women, which prevents
control of the autonomic nervous system and increases heart rate and blood pressure in
association with cortisol hypersecretion [99]. Several studies have suggested that DD is
associated with greater sympathetic nervous system activation and decreased regulation
of the parasympathetic nervous system of the heart rate and blood pressure [32,33]. This
phenomenon may be most relevant to women, in whom the imbalance in autonomous
functions is shown to be worse than that of men [99]. In women with CMVD, takotsubo
cardiomyopathy [100,101] and ACS [102], an increase in sympathetic tone and negative
cardiovascular outcomes were observed [103]. Heart failure and myocardial infarction
have worse prognosis in women, which is associated with upregulated cardiac sympathetic
nervous activity [104,105].
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2.4. Relation of Stress Activation of the HPA Axis and Cardiovascular Health in Women

The stress-induced autonomic nervous system and HPA axis activity affect hemostatic
factors, increasing platelet activity, fibrinogen levels, viscosity and coagulation factors [12].
In the long run, it promotes arteriosclerosis [66] and triggers the occurrence of cardio-
vascular/cerebrovascular events, which negatively affect the cardiovascular system [106].
Serotonin plays a pivotal role in platelet aggregation, and women have a higher platelet
aggregation response to the serotonin and epinephrine circulation level than men [40].
After mental stress, women experienced more cases of myocardial ischemia and exhibited
more negative feelings and fewer positive feelings and higher collagen-stimulated platelet
aggregation [40]. Depression is reported to be associated with higher endothelial damage
in adolescent females [107].

The basic structure and mechanism for the cardiovascular system is different between
genders. The epicardial coronary arteries are smaller in women than in men regardless of
adjustment of the body mass index, left ventricular size and age [108]. As the myocardial
blood flow in women is higher than that in men, the overall coronary flow reserve in
women and men is comparable [109,110]. However, this is thought to give a higher
endothelial shear stress in the coronary arteries of women [111]. Moreover, cholesterol
production and metabolism, which are important determinants of vascular health, seem
to be affected by gender differences as well [112,113]. Middle-aged women who reported
vascular motor symptoms (i.e., hot flushes or night sweats) were at an increased risk of
coronary heart disease within the subsequent 10–15 years [114,115]. A cross-sectional study
which investigated 1906 postmenopausal women indicated that vasomotor symptoms
were associated with metabolic syndrome, which is related with cardiovascular risk [116].

2.5. Gender Differences in Inflammation and Their Relation with the Cardiovascular System

Inflammation plays an important role in the development and progression of arte-
riosclerosis [117]. Increased stress-induced activity in the amygdala was related to increased
secretion of the inflammatory cytokine interleukin (IL)-6 [118]. The sympathetic nervous
system affects metabolism (promoting insulin resistance and lipolysis) and the immune
system (increasing inflammation) [119–123]. Specifically, the sympathetic nervous system
induces systemic stress-induced sterile inflammation (elevation of inflammatory proteins
in the absence of pathogens), which is passed from the circulatory system to tissues, and in-
creases inflammatory danger/damage-associated molecular patterns (DAMPs) and reduces
anti–inflammatory miRNA [69].

Chronic exposure to stressors increases cortisol secretion and inflammatory reactions
simultaneously. As a result, it contributes to stress response exhaustion, chronic low-
grade inflammation and antigen-specific immunosuppression [69]. Cortisol was originally
thought to be anti-inflammatory, but it was reported that its in vitro administration induced
increased cytokine production and activation of NF-kB in isolated macrophages [124].
When cortisol is pre-dosed to healthy individuals, production of inflammatory cytokine
IL–6 was increased in the continual endotoxin challenge response [125]. In mental illnesses
such as clinical anxiety and depression, increase in inflammatory cytokines due to stress
was observed [82,83,126,127].

Sexual dimorphism is observed in both innate and acquired immunity [128]. In-
flammation is the immune system’s response to stimulation, and gender differences in
inflammation are found across the course of life [129]. In the case of chronic inflammation,
probably due to collateral tissue damage, women have worse prognosis and higher mor-
tality than men. In detail, higher mortality is observed in women suffering from cystic
fibrosis [130], chronic obstructive pulmonary disease [131], as well as worse prognosis in
girls suffering from chronic asthma, cystic fibrosis and sickle cell anemia [132].

Inflammation can at least partially affect the development of coronary artery disease
(CAD) in depressed women. In depressed patients, increased levels of acute-phase proteins
(e.g., C-reactive protein (CRP), α-1-acid glycoprotein, α 1-antichymotrypsin, haptoglobin),
cell adhesion molecules and circulating cytokines are commonly observed [133]. Unlike
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in men, increases in the body mass index (BMI) and other CVD risk factors in women are
closely related to higher inflammation states (=higher CRP level) [134–137]. In female pa-
tients with impaired heart function, the upregulation of amygdala metabolism is positively
associated with increased inflammation. However, this connection is not found in male
patients [75]. Furthermore, the IL-6 reaction to mental stress is higher in young women
with CAD compared to men of the same age [138]. This suggests that the interaction
between psychological stress, myocardial damage and inflammation has characteristics of
sexual dimorphism.

3. Changes in the Brain and Physiological Responses by Mind–Body Intervention

Multiple lifestyle factors such as diet, physical activity, tobacco, treatment plan ad-
herence, stress and coping have complex effects on chronic disease such as cardiovascular
disease [139–142]. Mind–body interventions help reduce stress [143,144] and also produce
beneficial effects on unhealthy behaviors such as overeating and smoking that can be in-
duced by stress [145,146]. In addition, mind–body interventions themselves have also been
shown to exert positive effects on physical health [147,148]. This suggests that mind–body
interventions can have a positive effect on the increase in healthy lifestyle factors, resulting
in at least a partial contribution to the prevention of cardiovascular disease. Indeed, an
increase in the number of healthy lifestyle factors are related with a decrease in the risk of
cardiovascular disease [142]. Since previous reviews and recent meta-analysis of the effects
of lifestyle factors on cardiovascular disease are well-reported [139–142], in this section, we
limit the discussion to the scope of the effect of mind–body interventions on cardiovascular
disease. In addition, although the effects of mind–body intervention for women have been
reported only in a limited number of studies, its potential for CVD prevention is critical.
Therefore, here, we investigate the effects of mind–body interventions in women and focus
on the aspects of the brain, autonomic nervous system, HPA axis and cardiovascular and
immune systems as discussed above (Figure 1, Table 1).

3.1. Effects of Mind–Body Intervention on Cardiovascular Disease

A 2017 American Heart Association scientific statement on meditation and cardiovas-
cular risk suggested that meditation could help reduce cardiovascular risk and therefore be
considered as an addition to guidance-oriented cardiovascular risk reduction interventions.
Meditation can increase physical and mental relaxation, resulting in improved outcomes
after major cardiovascular events [149]. Meditation effects are assumed to be mainly
mediated by the hypothalamus–pituitary–adrenal axis, hypothalamus–pituitary–thyroid
axis, renin–angiotensin–aldosterone system and energy homeostasis, and changes in the
endocrine function following meditation are estimated to correspond to improvements in
mental health [150]. In studies using the 2012 and 2017 National Health Interview Survey
data with a total of 61,267 participants, the relationship between meditation and cardiovas-
cular risk in patients who reported health issues such as hypercholesterolemia, systemic
hypertension, diabetes, stroke and CAD was investigated. In this study, it was found
that meditation was independently associated with lower prevalence rates of hypercholes-
terolemia, diabetes, stroke or CAD compared to those who did not meditate after adjusting
for age, gender, BMI, race, marital status, smoking, sleep time and depression [151].
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Table 1. Changes in psychological state, heart rate, blood pressure, vasomotor state, cortisol and cytokine secretion by mind–body interventions focusing on women.

Scope Sub-Scope Reference Study Type Population (n, %
Female, Age) Intervention Control Considered

Confounders Outcome

Brain (psychological) Depression Gong et al. [152] Meta-analysis (six
RCTs)

Pregnant women
(n = 375, 100% female,
age range, 20–40)

Yoga
Usual care or any
other physical or
mental care

N/A

• Compared to the
comparison groups,
the level of
depression was
significantly reduced
in yoga groups.

Brain (psychological) PTSD Van der Kolk et al. [153] RCT

Women with chronic,
treatment-resistant
PTSD (n = 64, 100%
female, mean age, 43)

Yoga for ten weeks Health education for
ten weeks

Age, race, education,
marital status, income,
etc.

• Both groups exhibited
significant decreases
on the PTSD scale,
with a larger
reduction in the yoga
group compared to
the control group.

Brain (psychological) Depression,
stress, anxiety Haller et al. [154] Meta-analysis (ten

RCTs)

Women with breast
cancer (n = 1709, 100%
female)

MBSR, MBCT

Usual care, active
comparator
(supportive expressive
therapy, nutritional
education program)

N/A

• Compared to usual
care, there were
significant
postintervention
effects of
MBSR/MBCT for
health-related QOL,
fatigue, sleep, stress,
anxiety, and
depression.

• Compared to other
active interventions,
significant effects
were found for
anxiety and
depression.

Brain (psychological) Affect (female
vs. male) Kang et al. [155] RCT

Sixth-grade students
(n = 114, 46% female,
mean age, 12)

School-based
mindfulness training
for six weeks

Active control for six
weeks

Age, % female,
psychological state

• Female meditators
exhibited greater
increases in positive
affect compared to
females in the control
group, whereas male
meditators and
control males showed
equivalent gains.

• Increases in
self-reported
self-compassion were
associated with
improvements in
affect among females
but not males.
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Table 1. Cont.

Scope Sub-Scope Reference Study Type Population (n, %
Female, Age) Intervention Control Considered

Confounders Outcome

Brain (psychological) Affect (female
vs. male) Rojiani et al. [156] A longitudinal study

University students
(n = 77, 47% female,
mean age, 21)

Meditation for
12 weeks N/A

Age, affect,
mindfulness,
self-compassion,
placebo effect-like
confounders driven by
self-selection

• Women exhibited
greater decreases in
negative affect and
greater increases in
mindfulness and
self-compassion
compared to men.

Brain (psychological)
Anxiety, withdrawal
symptoms (female
vs. male)

Chen et al. [157] A controlled
longitudinal study

Volunteers in the
rehabilitation unit of a
residential addiction
treatment facility
(n = 207, 27% female,
mean age, 34)

Qigong meditation
(relaxation, breathing,
guided imagery,
inward attention,
mindfulness) for two
weeks

Stress management
and relaxation
training for two weeks

Race, % female,
employment,
education, social
perception (religion,
general feeling about
life, etc.), withdrawal
symptoms, etc.

• Female meditation
participants reported
a significantly higher
reduction in anxiety
and withdrawal
symptoms than did
any other group.

Brain (structure) Brain structure
(female vs. male) Luders et al. [158] A cross-sectional

study

Long-term meditators
(mean practice time,
20.2 years) vs.
meditation-naïve
individuals; mean age,
47 years; 50% female;
n = 60

N/A N/A Sex, handedness, age

• Meditation effects
differed between men
and women in
magnitude, laterality
and location on the
hippocampus surface.

Brain (psychological) Depression, anxiety Wong et al. [159] RCT

Postmenopausal
women with mild to
moderate symptoms
(n = 197, 100% female,
mean age, 52)

MBSR for eight weeks Menopause education
for eight weeks

Age, education,
occupation, marital
status, religion, family
size, income,
menopause state

• MBSR showed a
greater reduction of
psychological
symptoms of
depression and
anxiety than active
controls but did not
reduce other somatic,
urogenital and
vasomotor symptoms.

Cardiovascular Vasomotor
symptoms Chattha et al. [160] RCT

Women with
menopausal symptoms
(n = 120, 100% female,
mean age, 48)

Yoga (postures,
breathing, meditation)
for eight weeks

Exercise (walking,
stretching, rest) for
eight weeks

Age, occupation, BMI,
diet, menopause state

• Hot flushes, night
sweats and sleep
disturbance were
significantly reduced
in the yoga group
compared to the
control group.

Cardiovascular Vasomotor
symptoms Carmody et al. [161] RCT

Late perimenopausal
and early
postmenopausal
women experiencing
moderate or severe hot
flushes (including night
sweats) (n = 110, 100%
female, mean age, 53)

MBSR for three
months Waitlist

Age, race, education,
employment,
smoking, physical
activity, alcohol intake,
BMI, QOL, etc.

• Bother from hot
flushes was
significantly
decreased by the
treatment.
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Table 1. Cont.

Scope Sub-Scope Reference Study Type Population (n, %
Female, Age) Intervention Control Considered

Confounders Outcome

Cardiovascular Blood pressure Campbell et al. [162] A waitlist-controlled
longitudinal study

Female post-treatment
cancer patients (n = 70,
100% female, mean
age, 53)

MBSR for eight weeks Waitlist Age, SBP, DBP

• In the MBSR group,
women with ‘higher
BP’ at week 1 had
decreased their SBP
by week 8.

• In the MBSR group,
decreases in
rumination correlated
with decreases in SBP
and increases in
mindful attention.

ANS, cardiovascular Blood pressure, HRV Muthukrishnan
et al. [163] RCT

Pregnant Indian
women at 12 weeks
gestation (n = 74, 100%
female, mean age, 22)

Mindfulness
meditation for five
weeks

Usual obstetric care
for five weeks

SBP, DBP, RR,
perceived stress, HRV,
cold pressor SBP, cold
pressor DBP, etc.

• In the meditation
group, a significant
decrease in perceived
stress scores, a
significant decrease in
blood pressure
response to the cold
pressor test and a
significant increase
in HRV.

Cardiovascular Blood pressure Rakshani et al. [164] RCT

Pregnant women at
12 weeks gestation with
previous medical
history in pregnancy
(n = 68, 100% female,
mean age, 27)

Yoga (breathing,
meditation, yogi
postures) for 15 weeks

Standard care plus
conventional
antenatal exercises
(walking) for 15 weeks

Age, education,
income, weight,
height, BMI, SBP, DBP

• A significant
difference between
groups in the ratio of
pregnancy-induced
hypertension.

Cardiovascular Blood pressure Thornton et al. [165] RCT

Healthy
community-dwelling
women (n = 34, 100%
female, mean age, 48)

Tai chi for 12 weeks Control
Age, body weight,
body height, blood
pressure

• Both systolic and
diastolic blood
pressure were
significantly
decreased by tai chi
training.

ANS HRV Trivedi et al. [166] RCT
Healthy women (n = 36,
100% female, mean
age, 33)

Active meditation
(breathing, positive
emotions, guided
imagery) for 20 min

Control (silence
meditation—
breathing only) for
20 min

Age, HRV, affect

• In the experimental
group, HRV
(specifically, PNS)
parameters showed a
significant
improvement
compared to the
control group.

ANS HRV Praveena et al. [167] A prospective
longitudinal study

Women within five
years of menopause
(n = 67, 100% female,
age range, 45~60)

Yoga for three months Control

Age, duration of
menopause, body fat,
resting heart rate,
systolic blood
pressure, etc.

• Yoga practice
improved HRV in
early postmenopausal
women significantly.
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Table 1. Cont.

Scope Sub-Scope Reference Study Type Population (n, %
Female, Age) Intervention Control Considered

Confounders Outcome

ANS HRV Audette et al. [168] RCT
Sedentary women
(n = 27, 100% female,
mean age, 71)

Tai chi for 12 weeks
(RCT)

Brisk walking for 12
weeks (RCT),
sedentary life style for
12 weeks (a separate
group)

Age, weight, exercise
test, HRV, flexibility,
single leg balance

• In the tai chi group,
significant
improvement in
estimated VO2 max,
increase in
high-frequency power
(representing
increased
parasympathetic
activity) and decrease
in low-frequency
power (representing
decreased
sympathetic activity)
were found.

HPA Cortisol Field et al. [169] RCT

Prenatally depressed
women at 22 weeks
gestation (n = 92, 100%
female, mean age, 24)

Yoga for 12 weeks Social support for 12
weeks

Age, education, SES,
ethnicity, marital
status

• Cortisol levels
decreased for both
groups following
each session.

HPA Cortisol slope,
stress, QOL Carlson et al. [170] RCT

Distressed survivor
women of stage I to III
breast cancer (n = 271,
100% female, mean
age, 55)

MBCR for eight weeks
SET for 12 weeks,
control (one-day stress
management)

Age, cancer severity,
time since diagnosis,
alcohol, nicotine
intake, quality of
sleep, diet

• Cortisol slopes were
maintained over time
in both the SET and
MBCR groups relative
to the control group,
where the cortisol
slopes became flatter.

• The MBCR group
exhibited a significant
improvement in stress
symptoms and QOL
compared to the SET
group and the
control group.

HPA Cortisol Daubenmier et al. [171] RCT
Overweight/obese
women (n = 47, 100%
female, mean age, 41)

A four-month
mindfulness program
for stress eating

Waitlist

Age, weight, BMI,
waist circumference,
psychological state,
CAR response, eating
behavior

• The mindfulness
group exhibited
significant reductions
in the CAR and
maintained body
weight, while the
control group had a
stable CAR and
gained weight.

• Improvements in
mindfulness, chronic
stress and CAR were
associated with
reductions in
abdominal fat.
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Table 1. Cont.

Scope Sub-Scope Reference Study Type Population (n, %
Female, Age) Intervention Control Considered

Confounders Outcome

HPA, immune Cortisol, cytokine Witek–Janusek et al. [172] A longitudinal study

Women newly
diagnosed with
early-stage breast
cancer (n = 66, 100%
female, mean age, 55),
women without cancer
(mean age = 55, n = 30)

MBSR for eight weeks Non-MBSR,
cancer-free group

Age, assessment time
of the day

• Women in the MBSR
group had reduced
cortisol levels,
improved QOL and
increased coping
effectiveness
compared to the
non-MBSR group.

• The non-MBSR group
exhibited continued
reductions in NKCA
and IFN-γ
production with
increased IL-4, IL-6
and IL-10 production,
while the MBSR
group re-established
their NKCA and
cytokine
production levels.

Immune Cytokine Robins et al. [173] RCT
Women with high CVD
risk (n = 63, 100%
female, 35–50 years)

Tai chi for eight weeks Waitlist Age, waist
circumference

• The tai chi group
significantly lowered
the level of interferon
gamma, TNF, IL-8
and IL-4 compared to
the control group.

Immune Cytokine Harkess et al. [174] RCT

A subsample (n = 28,
mean age, 41) from a
population of women
reporting psychological
distress (n = 116,
100% female)

Yoga for eight weeks Waitlist Age,
weight-to-height ratio

• Reduced methylation
of the TNF region in
the yoga group
relative to the
waitlist control.

Immune Cytokine Gallegos et al. [175] A longitudinal study

Trauma-exposed
women (n = 50,
100% female, mean
age, 44)

MBSR for eight weeks N/A
Age, race,
employment
status, income

• Session attendance
was associated with
significant decreases
in IL-6 levels.

Abbreviation: RCT, randomized controlled trial; N/A, not available; PTSD, post-traumatic stress disorder; MBSR, mindfulness-based stress reduction; MBCT, mindfulness-based cognitive therapy; BMI,
body mass index; QOL, quality of life; BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; RR, respiratory rate; HRV, heart rate variability; ANS, autonomic nervous system;
PNS, parasympathetic nervous system; MBCR, mindfulness-based cancer recovery; SET, supportive–expressive group therapy; HPA, hypothalamus–pituitary–adrenal; CAR, cortisol awakening response; IL,
interleukin; TNF, tumor necrosis factor.
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3.2. Changes in Mental Health Caused by Mind–Body Intervention and Findings in Women

The application of various mind–body interventions has shown improvement in
mental health. In 23 randomized controlled trials (RCT) with 1373 participants, mind–body
intervention (meditation, yoga, mindfulness) reduced depression, anxiety and stress with
a moderate effect size [176]. When analyzed with RCTs using only active controls, the
effect size was reduced [176]. To investigate whether physical yoga exercise alleviates
depressive symptoms in people diagnosed with mental disorders, 13 RCTs investigating
the effects of yoga intervention on the symptoms of 632 adults (female, 67.7%; mean age,
37.4 years) with a recognized diagnosed mental disorder according to DSM-3, -4, -5 were
meta-analyzed. The yoga group had significantly reduced depressive symptoms compared
to the control groups. Higher frequency of yoga sessions was associated with a greater
reduction in depression [177]. In a meta-analysis study of 47 RCTs (3515 participants)
using meditation and active controls, meditation reduced anxiety and depression with
moderate effect size compared to active controls [143]. In a meta-analysis of seven studies
to investigate the effects of qigong on depressive symptoms, qigong was effective in
improving depression [178].

This application of mind–body intervention improves mental health in various pop-
ulations. In a meta-analysis of 19 studies with 1076 participants (mean age, 71.8 years;
female, 67.2%) to investigate the influence of mindfulness meditation (MM) intervention
on depression in older adults, MM (structured MM, mean 7 weeks, 1.3 sessions/week,
102 min/session; unstructured MM, 4.7 sessions/week, 24.6 min/session) significantly
improved depression compared to the control [179]. MM with guided meditation further re-
duces depression more than MM alone [179]. To investigate the effectiveness of meditative
movements (tai chi, qigong, yoga) on major depressive disorder treatment, a meta-analysis
of 15 RCTs (participants: MDD, 94.5%, female, 74.1%, mean age, 44.1 years) was performed
and the results showed a significant improvement in depression (15 RCTs, n = 830) and anx-
iety severity (5 RCTs, n = 356) [180]. To investigate the effects of mind–body intervention
on students who may be stressed due to academic demands, a meta-analysis of 34 studies
(3296 students) using meditation and cognitive behavioral programs was performed to
survey stress, depression and anxiety [181]. In a meta-analysis, mind–body intervention
significantly reduced the stress, depression and anxiety levels of the students [181].

In particular, research on women suggests that mind–body intervention helps improve
mental health of the female population of various ages and backgrounds. In a meta-analysis
of six RCTs involving 375 pregnant women aged 20 to 40 to determine validity of yoga
interventions in the management of antenatal depression, yoga interventions significantly
reduced depression levels compared to the control groups (standard prenatal care, standard
antenatal exercises, social support, etc.) [152]. Furthermore, they investigated two different
variations of yoga training: physical exercise-based yoga and integrated yoga (addition
of meditation or deep relaxation elements to physical exercises). Interestingly, significant
reductions in depression levels were observed only in the integrated yoga group [152]. In
a meta-analysis to investigate the effects of yoga on menopausal symptoms of women,
13 RCTs with 1306 menopausal women were included [182]. Regarding psychological
factors (anxiety, depression), yoga intervention showed reductions in those symptoms
compared to the control group, but the effects were comparable when compared with the
exercise group. In another meta-analysis of 16 RCTs with 930 breast cancer patients for the
investigation of effects of yoga, yoga intervention significantly reduced depression and
anxiety compared to the control [183]. In the subgroup analysis, the reduction of anxiety
was only significant when the practitioners continued practicing for more than three
months. Mindfulness-based meditation has also been researched for its effects on breast
cancer patients. In a meta-analysis which investigated the effects of mindfulness-based
stress reduction (MBSR) and mindfulness-based cognitive therapy (MBCT) on 1709 breast
cancer patients in ten studies, the intervention significantly reduced the levels of stress,
anxiety and depression [154]. After completion of the intervention, the improved state of
mind was maintained for a further six months for anxiety and 12 months for depression.
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Other studies examining gender differences on the effects of mind–body intervention
on mental health suggest that in various groups, such as adolescents, adults and drug
addicts, women gain more benefits than men from the intervention. In an RCT which
investigated whether school-based mindfulness training affects affective outcome differ-
ently depending on gender among early adolescents (sixth-grade students), participants
who practiced mindfulness meditation 4–5 times weekly for six weeks (n = 52, mean
age, 11.73 years, 44% female) and people in the active control group (n = 48, mean age,
11.85 years, 48% female) were compared and the analysis was performed according to
gender. Female meditators exhibited a greater increase in positive feelings compared
to the controls while male meditators exhibited equivalent gains with the control males.
Furthermore, this improvement in feelings in females was associated with self-reported
self-compassion, but not in males [155]. In order to see if meditation training has different
effects on negative feelings depending on gender, 77 college students (46% female, mean
age, 20.7) conducted a 12-week meditation training, which showed a greater decrease in
negative feelings and a greater increase on the mindfulness and self-compassion scales in
women compared to those in men [156]. This suggests that mind–body intervention may
have a greater effect on women. In a study to find out the possibility and efficacy of using
integrative qigong meditation as a treatment for substance abuse, 284 participants in the
adult rehabilitation unit of a residential addiction treatment facility underwent a four-week
qigong program. The results indicated that female meditation participants exhibited more
significant reductions in anxiety and withdrawal symptoms than other groups [157].

3.3. Changes in Brain Structures and Functions by Mind–Body Intervention

The fact that mental and physical intervention structurally and functionally changes
the brain is clearly demonstrated by accumulated brain imaging studies. In a meta-analysis
study on the effects of meditation on brain structure [184], 300 meditation participants and
123 brain morphology differences were analyzed through 21 neuroimaging studies. In
meditators’ brains, changes were consistently observed in the following brain function–
related regions including eight brain regions: meta-awareness (frontopolar cortex/BA10),
exteroceptive and interoceptive body awareness (sensory cortices; insula), memory con-
solidation and reconsolidation (hippocampus), self- and emotion regulation (anterior and
middle cingulate; orbitofrontal cortex) and intra– and interhemispheric communication
(superior longitudinal fasciculus; corpus callosum).

3.3.1. Structural Changes in the Prefrontal Cortex by Mind–Body Intervention

The ventromedial prefrontal cortex (vmPFC) includes BA10, 14, 25, 32, 11, 12, and
13. In alert, non-stress conditions, the vmPFC controls subcortical structures (such as the
amygdala, the nucleus accumbens, the hypothalamus), regulating emotional responses
and habits [185–187]. However, in stress conditions, the control of the prefrontal cortex
over the subcortical structure weakens, causing the amygdala to activate stress pathways
in the hypothalamus and brain stem, resulting in excess secretion of noradrenaline and
dopamine, which in turn weakens PFC control and strengthens amygdala activity, entering
a vicious cycle [188]. Accumulated evidence has shown that the performance of mind–
body interventions, including meditation, changes the structure and function of the frontal
cortex. This supports improvements in stress management by mind–body intervention at
the structural/functional level of the brain.

A meta-analysis by Fox et al. [184] showed changes in brain structures, especially
increases of the gray and white matter in the prefrontal cortex, by meditation. Specifically,
in the anterior prefrontal cortex (BA10), cortical thickness significantly increased compared
to controls [189–191]. In the orbitofrontal cortex (BA11), cortical thickness [190,191] and
white matter fiber density [190] were significantly increased in meditators compared to
those in control groups. In the dorsolateral prefrontal cortex (BA46), white matter fiber
density was significantly increased in meditators compared to controls [190]. Increase of
cortical thickness was also observed in other regions of the frontal brain [192,193].
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3.3.2. Functional Changes in the Prefrontal Cortex by Mind–Body Intervention

A meta-analysis using 78 functional neuroimaging (fMRI, PET) studies from 31 medi-
tation experiments involving 527 participants [194] investigated the effects of meditation on
brain function. In this analysis, the following meditation types were included: focused at-
tention (FA) (seven experiments [195–201]), mantra recitation (eight experiments [201–208]),
open monitoring (OM) (ten experiments [196,197,209–215]), compassion/loving–kindness
(six experiments [197,199,209,216–218]). Meta-analysis results showed that the frontal
brain regions were activated in most of the meditation types. In the meta-analysis of FA
meditation studies, the meditation group significantly activated the prefrontal cortex area
including the premotor cortex (BA6), dorsal anterior cingulate cortex (BA24), dorsolateral
prefrontal cortex (BA8/9) and left mid insula (BA13) [194]. In the meta-analysis of mantra
recitation meditation studies, the meditation group exhibited significant activity in frontal
regions including the posterior dorsolateral prefrontal cortex/left premotor cortex (BA6/8),
presupplementary motor cortex and supplementary motor cortex (BA6) compared to the
control group. In the meta-analysis of OM meditation studies, the meditation group
significantly activated frontal regions including the left inferior frontal gyrus (BA44/45),
presupplementary motor area (BA32/6), supplementary motor area (BA6) and motor cortex
(BA6) compared to those of the control group [194]. In the meta-analysis of loving–kindness
and compassion meditation studies, meditation induced significant activation in the right
anterior insula/frontal operculum (BA13) which are part of the vmPFC. This region is
related to awareness of bodily sensations and feelings [194].

3.3.3. Changes in Functional Connectivity between the Prefrontal Cortex and the
Amygdala by Mind–Body Intervention

During emotional regulation, the medial prefrontal regions directly influence the
amygdala [219], while the lateral prefrontal cortices indirectly regulate the amygdala via
the medial prefrontal and orbitofrontal system [220,221]. At rest, high anxiety negatively
correlates with functional connectivity between the amygdala and the ventral medial PFC
(mPFC), while low anxiety positively correlates with it [222]. Mind–body intervention
affects emotional control by changing the functional connectivity between these medial
prefrontal regions and the amygdala. According to a meta-analysis of 21 fMRI studies
on eight-week MBSR and MBCT programs, these mind–body interventions reduced the
functional activity of the amygdala, increased the functional connectivity between the
amygdala and the prefrontal cortex and facilitated deactivation after the exposure to emo-
tional stimuli [223], supporting the improvement of emotional regulation by mind–body
intervention. In another RCT, meditation-naïve healthy adults (n = 67) were randomized
into eight–week MBSR or a health enhancement program group. Affective pictures were
shown to participants. The results showed a significant improvement in the functional
connectivity between the amygdala and the vmPFC (emotion regulation-related regions)
from exposure to affective pictures in the MBSR group compared to the other group.
Moreover, meditation training was related with lower amygdala reactivity to positive
pictures [224]. In another study, fMRI analysis was used to compare the response of partici-
pants conditioned with two weeks of mindfulness-based attention-to-breath meditation
versus passive viewing in untrained participants. Meditation training was found to reduce
amygdala activity compared to passive viewing while increasing emotion-related func-
tional connectivity of the amygdala for the dorsal left prefrontal cortex [225]. In another
study, Sant Mat meditators (n = 21, 67% female) exhibited a stronger positive functional
connectivity between the amygdala and the ventrolateral prefrontal cortex to explicit hap-
piness compared to the control group (n = 20, 60% female) [226]. These examples suggest
that amygdala–prefrontal cortex integration is a potential neural pathway of emotional
regulation by mind–body intervention.
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3.3.4. Gender Differences in Brain Structural Changes by Mind–Body Intervention

To determine whether the meditation-induced hippocampus-specific effects are gender-
dependent, analysis of high-resolution magnetic response data of 30 long-term meditation
performers (50% female) and 30 well-matched control subjects (50% female) was conducted.
The effect of meditation between men and women was found to be different in magnitude,
laterality and location on the hippocampal surface [158]. Longitudinal studies are needed
to determine whether this is a genetic difference or one induced by mediation in the male
and female brains.

3.4. Changes in Cortisol Secretion by Mind–Body Intervention

With regard to the effects of mind–body interventions on human endocrine systems,
the HPA axis has been the most widely explored [150]. In various populations such as colon
cancer patients [227], breast cancer patients [172], prostate cancer patients [228], depressive
patients [229] and healthy people [230,231], mind–body intervention affects regulation of
the HPA axis which reflects stress levels. According to a meta-analysis of RCT studies
investigating the effectiveness of meditation on physiological stress markers compared to
active controls (seven studies, n = 212), the meditation group had significantly reduced
cortisol levels compared to the control group [232]. According to a meta-analysis study
investigating whether the effects of meditation on cortisol secretion levels vary depending
on the level of stress [233], meditation intervention showed a significant blood cortisol
reduction compared to control groups in ten independent studies (n = 336). Interestingly,
this effect was only present in at-risk samples (patients with somatic illness). Twenty-
one studies using saliva samples (n = 1063) showed significant cortisol reduction only in
groups living in stressful life situations [233]. These patterns suggest benefits of meditation
intervention, especially in at-risk populations.

In a meta-analysis of the effects of mindfulness mediation on the circadian rhythm of
cortisol secretion (nine studies, n = 699) [234], there were no changes in cortisol awakening
response (two studies [235,236]), 0 min post-awakening cortisol (one study [236]), 30 min
post-awakening cortisol (two studies [236,237]), mean diurnal cortisol (one study [238]), pre-
bedtime cortisol (two studies [236,237]) and pre-lunch cortisol (one study [237]), while there
were significant reductions in diurnal cortisol—high slope (two studies [235,236]) and diurnal
cortisol—low slope (three studies [235–237]) by meditation. According to a meta-analysis on
the effects of yoga and MBSR on cortisol secretion (eight studies, n = 614) [239], yoga inter-
vention significantly reduced waking cortisol (five studies [170,240–243]), afternoon salivary
cortisol (three studies [170,240,244]), evening cortisol (five studies [170,240–243]), while it had
no effect on salivary cortisol at 30 min post-awakening (three studies [240–242]) and 60 min
post-awakening (two studies [241,242]), mid-morning cortisol (three studies [169,243,245])
and cortisol slope (three studies [170,240,241]). Cortisol secretion, the end product of the
HPA axis activated by stress, affects vascular health and the immune system, and its chronic
secretion by prolonged activation of the HPA axis also affects brain structure and function,
affecting mental health.

Mind–body intervention also seems to significantly change the secretion of cortisol
by contributing to the regulation of the HPA axis in studies conducted only on women.
In an RCT for overweight/obese women (n = 47), a four-month mindfulness program
for stress eating significantly reduced the cortisol awakening response compared to the
waitlist [171]. In a 12-week RCT that examined the effects of yoga and social support on
92 prenatally depressed women, both groups had significantly reduced cortisol levels per
session [169]. In an RCT where 271 distressed breast cancer survivors were randomized
into a mindfulness-based cancer recovery (MBCR) group, a supportive–expressive group
therapy (SET) group or a control group (stress management seminar), the MBCR and SET
groups exhibited a more normative diurnal cortisol profile, whereas the control group
exhibited a flat cortisol slope [170].
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3.5. Changes in Blood Pressure, Heart Rate and Heart Rate Variability by Mind–Body Intervention

The stress response can initially activate both the sympathetic nervous system and
the parasympathetic nervous system simultaneously, but then, as the parasympathetic
nervous system is withdrawn, uninhibited sympathetic nerve activation maintains the
heart rate increase [246]. Furthermore, mind–body intervention seems to increase overall
heart rate variability (HRV) and decrease the blood pressure and heart rate by activating
the parasympathetic nervous system [149,247] (Figure 1).

3.5.1. Resting Systolic Blood Pressure

In a meta-analysis by Pascoe et al., meditation significantly reduced systolic blood
pressure (SBP) (11 studies, n = 582) [232]. In a sub-analysis, automatic self-transcending
(AST) meditation (three studies, n = 151 [248–250]) and FA meditation (three studies,
n = 72 [251–253]) reduced resting SBP compared to the active control, while OM medi-
tation did not reduce SBP (five studies, n = 359 [254–258]). In a meta-analysis of yoga
interventions [239], yoga interventions significantly reduced resting SBP (17 studies,
n = 1058 [242,245,252,257,259–269], while MBSR interventions did not change the resting
SBP (two studies, n = 76) [257,262]. In a meta-analysis study of the effects of yoga on patients
with coronary heart disease [270], yoga interventions of 3–6 months significantly reduced
SBP compared to usual care (three studies, n = 330 [271–273]). In a meta–analysis study of
the effectiveness of tai chi on risk factors in CVD for adults with essential hypertension [274],
the tai chi intervention significantly decreased SBP (significant for all <three months, ≥three
months, ≥six months) compared to the controls (15 studies, n = 772). In the meta–analysis
of studies investigating the effectiveness of mindfulness training for adults with CVD [275],
the mindfulness-based intervention groups had a significantly reduced SBP compared to
the control groups (seven studies, n = 509 [258,276–279]), but no significant changes were
observed in diastolic blood pressure (DBP) (six studies, n = 492 [258,276–279]).

3.5.2. Resting Diastolic Blood Pressure

In a meta-analysis for resting DBP [232], it was significantly reduced when all medita-
tion types were analyzed (11 studies, n = 582) [248–252,254–258], but it was not significant
when analyzed according to the meditation subtype (AST (three studies, n = 151) [248–250],
FA (three studies, n = 72) [251–253], OM (five studies, n = 359) [254–258] meditations). In
a meta-analysis of yoga and MBSR (16 studies, n = 887), yoga intervention significantly
reduced resting DBP compared to the active control, and there was no difference in effec-
tiveness depending on the type of yoga. When comparing MBSR and non-MBSR (yoga)
groups, both had a significantly reduced resting DBP [239]. In a meta-analysis study
of the effects of yoga on patients with coronary heart disease [270], yoga interventions
for three to six months significantly reduced DBP compared to usual care (three studies,
n = 330 [271–273]). In a meta-analysis study investigating the effectiveness of tai chi on
risk factors of CVDs [274], tai chi intervention did not change DBP in the interventions
of less than three months (three studies, n = 194), but changed DBP in the interventions
of more than three months (six studies, n = 620) or six months (six studies, n = 729). In a
meta-analysis to investigate the effectiveness of qigong [178], diastolic blood pressure was
found to be significantly decreased.

3.5.3. Ambulatory Systolic Blood Pressure

In a meta-analysis for ambulatory SBP [232], it was significantly decreased in the
total meditation analysis (five studies, n = 377) [254,280–282]. In an analysis depending
on the meditation type, OM meditation significantly decreased the ambulatory SBP (three
studies, n = 226) [254,281,282], while AST did not result in significant changes (two studies,
n = 126) [283–285]. In a meta–analysis of the effects of yoga interventions on ambulatory
SBP, yoga interventions did not significantly change the ambulatory SBP (three studies,
n = 272) [283–285].
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3.5.4. Ambulatory Diastolic Blood Pressure

In a meta-analysis for ambulatory DBP [232], it was significantly reduced in the
total meditation analysis (five studies, n = 352) [254,280–282,286], but there was no sig-
nificant change in the analysis according to the type of meditation (AST (two studies,
n = 126) [280,286], OM (three studies, n = 226) [254,281,282]). In a meta-analysis of the
effects of yoga on ambulatory DBP (24 hours) [239], there was no change by yoga interven-
tions (three studies, n = 242 [283–285]).

3.5.5. Heart Rate

In a meta-analysis for HR (nine studies, n = 345) [232], OM meditation reduced
the resting HR (five studies, n = 24), while FA meditation did not affect it. When all
meditation groups were analyzed together, the resting HR decreased significantly. However,
ambulatory HR was not changed by the intervention. In a yoga meta-analysis study
(15 studies, n = 879) [239], yoga intervention significantly reduced the resting heart rate
compared to the active control.

3.5.6. Heart Rate Variability, Respiration Rate, Arterial Pressure

In a meta-analysis for the effects of yoga (four studies, n = 367) [239], both low and high
frequencies of resting HRV were significantly changed by the yoga intervention compared
to the controls. In the study to investigate whether long-term meditators exhibit difference
in resting respiration rate compared to meditation-naïve people (n = 69), long-term mind-
fulness training exhibited a slower baseline respiration rate (RR) compared to the matched
group of non-meditators. Regardless of age and gender, longer practice experience was
associated with slower RR. This association was specific in intensive retreat practice but
not in routine daily practice [287]. In a meta-analysis of yoga studies [239], yoga interven-
tions (Iyengar yoga, hatha yoga/meditation, integrated yoga, yoga/lifestyle modification)
significantly reduced the resting mean arterial pressure (five studies, n = 315). Mind–body
intervention studies conducted only on women also showed significantly changed HRV. In
a study comparing HRV and mood of women in an active meditation group with those in
a breath-focused silence group, active meditation significantly increased HRV parameters
(n = 36) and positive feelings (n = 48) compared to the control group [166].

3.6. The Effects of Mind–Body Intervention on Lipid Profile and Blood Glucose

The following studies suggested that mind–body interventions such as tai chi, yoga
and meditation have positive effects on the lipid profile, blood glucose and insulin resis-
tance, which is estimated to have a positive effect on cardiovascular health. In a meta-
analysis to examine the effect of tai chi on cardiovascular disease risk factors for adults with
essential hypertension, tai chi practice significantly reduced total cholesterol, triglycerides,
LDL-C (five studies, n = 846), as well as blood glucose (four studies, n = 612) [274]. In a
meta-analysis that examined the effect of yoga on the lipid profile (four studies, n = 332),
yoga practice significantly reduced TG and increased HDL-C and did not change the
levels of LDL-C and TC as compared to the usual care [270]. In another meta-analysis
which examined the effects of meditation on physiological markers of stress (four studies,
n = 328), meditation significantly reduced TG but did not change the levels of HDL, LDL
and cholesterol as compared to active controls [232].

Several studies also focused specifically on investigating the effects of mind–body
interventions on blood lipids and glucose in women. In an RCT which examined the
effects of yoga therapy on glucose metabolism and blood lipids of 90 adolescent girls
with polycystic ovary syndrome (age = 15–18 years), both yoga therapy and conventional
physical exercise significantly reduced fasting blood glucose, LDL, TC, TG and increased
HDL, with more significant improvements in yoga compared to conventional physical
exercise [288]. In another RCT on 37 prediabetic females (diabetes risk score ≥ 60, mean
age, 52), the yoga group exhibited a significant decrease in plasma glucose levels after three
months of yoga compared to the non-practicing group [289].
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3.7. Changes in Inflammatory Response Levels by Mind–Body Intervention

Recent findings include inflammation to a set of existing well-known cardiovascular
disease risk factors such as high blood pressure, high cholesterol and diabetes [290,291].
The following studies suggested that mind–body interventions may partially contribute to
the prevention of cardiovascular disease also by pathways affecting the immune system in
addition to the other risk factors of cardiovascular disease discussed above. According to a
systematic review of 20 randomized controlled trials researching mindfulness meditation
(comprising more than 1600 participants), it is provisional for mindfulness meditation to
be related with inflammation (reductions in NF-kB transcription activity and CRP level);
however, the association has been shown to be replicated [292]. While acute psychological
stress activates NF-kB in peripheral blood mononuclear cells [121,293–297], the use of
mindfulness meditation reduced the expression of NF-kB in RCTs for breast cancer patients
(n = 71) [295], lonely older adults (n = 40) [296] and older adults (n = 49) [297]. In RCTs
in patients with ulcerative colitis (n = 55) [298] as well as in healthy people with inflam-
matory risk markers (n = 40 [296], n = 185 [238]), mindfulness meditation also induced a
reduction [298] or a tendency of reduction [238,296] in the level of CRP, a representative
inflammatory protein. In another meta-analysis, meditation reduced TNF-α compared to
active controls (three studies, n = 100) [232], and IL-6 was significantly decreased by yoga
or MBSR intervention when compared to active control groups (four studies, n = 128) [239].
However, a meta-analysis of MBSR only showed no significant IL-6 changes compared to
the controls (five studies, n = 125) [232].

In studies of women only, mind–body intervention has significant effects of reducing
inflammation. DNA methylation was investigated using peripheral blood samples of
116 women reporting psychological distress in an RCT setting. Eight weeks of yoga
intervention showed a significant difference in methylation in the TNF region as a whole
as compared to the waitlist control group, and no significant differences were found in
other genes. This suggests the effects of yoga interventions on the immune system at the
epigenetic level [174]. In addition, in a pilot study of the effect of the MBSR program
on inflammatory biomarkers in women with interpersonal trauma, eight-week MBSR
significantly reduced IL-6 levels (n = 50) [175].

3.8. The Effects of Mind–Body Intervention on Menopausal Symptoms Related with
Cardiovascular Health

In women, the menopause transition period is associated with an increase in CVD risk
factors as described in Section 1.4. It has been known that mind–body interventions provide
relief towards women’s overall menopausal symptoms. In a meta-analysis of 13 RCTs
involving 1306 women [182], yoga reduced total menopausal, psychological, somatic,
vasomotor and urogenital symptoms compared to the non-treatment group. Compared
to exercise controls, significant changes were observed only for vasomotor symptoms.
In an RCT which compared the effects of MBSR (n = 98) or active controls (menopause
education control, MEC, n = 99) on menopause-related symptoms for perimenopausal and
postmenopausal women at the baseline and at various time periods post-intervention [159],
both groups exhibited a reduced total Greene Climacteric Scale (GCS) score at eight months.
Compared with active controls, MBSR significantly reduced overall menopausal symptoms
as well as two sub-scales of menopausal symptoms, i.e., anxiety and depression, but not
other symptoms, i.e., somatic, urogenital and vasomotor symptoms. In another RCT in late
perimenopausal and early postmenopausal women (n =110), bother and distress from hot
flushes and night sweats were significantly reduced after three-month MBSR compared
to the waitlist control group [161]. Symptoms of menopause are reduced by mind–body
interventions, suggesting their contribution to lowering the menopause-associated cardio-
vascular disease risk in women.
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4. Conclusions

There is a gender difference in the development, prognosis and mortality of CVD, and
the underlying mechanism may include a female-specific vulnerability in stress–amygdala–
physiological response, as studies have reported the association between amygdala activity
and CVD-specific physiological response only in women [72–75]. Mind–body intervention
improves stress management skills, which lowers the level of stress that the brain perceives.
This characteristic of mind–body intervention is shown to reduce the risk of CVD by reduc-
ing the downstream mechanisms induced by stress, including activation in the amygdala,
the HPA axis and the sympathetic nervous system. Since mind–body interventions also
affect other aspects of cardiovascular disease such as hypertension, diabetes and dyslipi-
demia, synergistic effects of mind–body intervention on cardiovascular health are expected
along with improved mental health [299]. Although there is not yet enough evidence of
the specific effect of mind–body interventions on women, they are expected to be used as
a preventive strategy to reduce the risk of women’s specific vulnerability in CVD, as the
evidence has shown that it helps to reduce stress and improve stress-related cardiovascular
physiology. In the future, a robust study design is required to demonstrate the effects of
mind–body intervention customized for women in the prevention or treatment of CVDs.
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