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Although they are staple foods in cuisines globally, many commer-
cial fruit varieties have become progressively less flavorful over
time. Due to the cost and difficulty associated with flavor pheno-
typing, breeding programs have long been challenged in selecting
for this complex trait. To address this issue, we leveraged targeted
metabolomics of diverse tomato and blueberry accessions and
their corresponding consumer panel ratings to create statistical
and machine learning models that can predict sensory perceptions
of fruit flavor. Using these models, a breeding program can assess
flavor ratings for a large number of genotypes, previously limited
by the low throughput of consumer sensory panels. The ability to
predict consumer ratings of liking, sweet, sour, umami, and flavor
intensity was evaluated by a 10-fold cross-validation, and the accu-
racies of 18 different models were assessed. The prediction accura-
cies were high for most attributes and ranged from 0.87 for
sourness intensity in blueberry using XGBoost to 0.46 for overall
liking in tomato using linear regression. Further, the best-
performing models were used to infer the flavor compounds (sug-
ars, acids, and volatiles) that contribute most to each flavor attri-
bute. We found that the variance decomposition of overall liking
score estimates that 42% and 56% of the variance was explained
by volatile organic compounds in tomato and blueberry, respec-
tively. We expect that these models will enable an earlier incorpo-
ration of flavor as breeding targets and encourage selection and
release of more flavorful fruit varieties.
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lant breeders and geneticists have made continuous and sub-
stantial progress in the development of varieties that are more
resilient and higher-yielding—much to the benefit of producers
worldwide. Yet, during this extended period of progress,
consumer-oriented quality traits such as flavor have been often
neglected or treated as low-priority breeding targets, contributing
to widespread consumer dissatisfaction with modern varieties of
fruits and vegetables (1). An important reason for this low priority
is a reward system that pays growers based on crop yield, leading
to prioritization of breeding targets that are mainly producer-
oriented. However, as consumer willingness to pay premiums for
higher-quality products rises, demand for consumer-oriented traits
in food production systems is increasing (2). Accordingly, a ree-
merging interest in fruit and vegetable flavor quality creates the
need for high-yielding varieties with exceptional flavor profiles.
Fruit flavor is the product of the complex interactions
between the chemical composition of a fruit and the taste,
olfaction, and psychology of the consumer (3-5). To breed and
develop varieties with improved flavor properties, the genetic
complexities of fruit flavor must be captured and assessed. Fla-
vor is currently evaluated by consumer sensory panels or indi-
vidually by breeders. Field evaluations are generally subjective
and error-prone as they typically consist of the sensory prefer-
ences of one or few individuals. However, field evaluation has
an advantage in that many varieties can be evaluated in a given
day. In contrast, population-based sensory panels are more
objective, accurate, and well-established, but they can be costly,
time-consuming, and difficult to scale to a large breeding
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program. The difficulties associated with accurate flavor pheno-
typing have contributed to the lack of selection for fruit flavor
and thereby contributed to the widespread consumer belief that
commercial fruit flavor has declined (6, 7). Cheap and scalable
flavor selection methods would greatly benefit the breeding
process.

The main driver of fruit flavor perception is its chemical
composition. Fruits contain a diverse array of sugars, acids, and
volatiles whose concentrations are driven by genetic and envi-
ronmental effects. Sugars and acids are largely perceived by
taste receptors on the tongue and the volatiles by receptors
located in the olfactory epithelium (8). We hypothesized that
by quantifying the chemical profile of a fruit and its corre-
sponding consumer perception, models predicting consumer
flavor preferences can be created. These prediction models can
increase throughput of flavor phenotyping, allowing a breeder
to make selections for improved flavor on hundreds of geno-
types per season. This approach is analogous to the concept of
genomic selection (9), where DNA markers are used in plant
breeding programs to predict the genetic merit of individuals
for highly complex traits. Here, we propose the use of statistical
methods to model the metabolomic profile in a breeding popu-
lation and predict flavor perception. Additionally, by leveraging
the trained models for inference, specific metabolites that
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underlie consumer flavor preferences can be elucidated, identi-
fying targets for marker-assisted selection (MAS) and for the
food industry to enhance flavor in its products.

In flavor studies, the most widespread statistical modeling
approaches to date include multiple linear regression and partial
least squares (PLS) regression (10, 11). However, the process of
developing metabolomic-based prediction models can be chal-
lenging due to the large number of chemical compounds present
in a fruit and the fact that the concentrations of many of the
flavor-associated chemicals are correlated with one another due
to shared biosynthetic pathways. Fortunately, breeders and quan-
titative geneticists are already dealing with similar types of data in
the area of genomic selection to make selection of complex traits
using genomic information. With the advent of genomic selection,
for example, a variety of Bayesian linear regression models with
different priors were proposed to predict complex phenotypes
using DNA markers. These models included Bayes A and Bayes
B (9), Bayes Cr (12), Bayesian LASSO (13), and Bayesian ridge
regression (14, 15), among others. Recently, there has been
increasing interest in machine learning models applied to geno-
mic (16) and metabolomic data (11) as well as metabolomic data
applied to trait biomarker research (17-21). However, few empir-
ical studies have applied machine learning models at the metabo-
lome level, or specifically for the enhancement of fruit flavor.

Here we address the limitations in flavor phenotyping and pro-
pose an indirect phenotyping approach that has significantly
higher throughput compared to current standards. We assessed a
range of statistical and machine learning models that take the
chemical profile of a fruit and make predictions of its consumer
flavor perception. To this end, we combined information at the
metabolome and sensory panel level for two important horticul-
tural crops, tomato and blueberry, and demonstrate that metabo-
lomic prediction models can be employed in a breeding program
to make simpler and more accurate selections for flavorful varie-
ties. Additionally, we leverage the trained models to infer the
contributions of volatiles, sugars, and acids to sensory perceptions
and consumer likeability. Our results suggest that up to 56% of
the variance associated with overall consumer liking can be attrib-
uted to volatile compounds. Furthermore, we demonstrate that
machine learning approaches are generally the best predictors of
consumer flavor preferences and metabolomic selection accura-
cies are superior to genomic selection models, highlighting the
potential in breeding applications.

Results

Data. In order to study the capacity of different prediction mod-
els and the importance of different metabolites in flavor per-
ception, we performed an analysis of previously published data
(4, 5, 10, 22) combined with new data added in this study for
two fruit species: tomato (Solanum lycopersicum) and blueberry
(Vaccinium spp.). For each fruit, targeted sets of sugars, acids,
and volatiles were quantified in diverse accessions including
commercial cultivars, heirloom varieties, and germplasm selec-
tions from the University of Florida tomato and blueberry
breeding programs. The tomato population includes a greater
range of genetically diverse materials than previously analyzed,
while the blueberry population is more representative of an
elite breeding population. Consumer sensory panels rated each
accession for flavor attributes including sweetness, sourness, fla-
vor intensity, and overall liking. Additionally, sensory percep-
tions of umami were quantified solely for tomato.

Network Analysis Recapitulates Metabolic Pathways. A weighted
correlation network analysis was performed on the metabolite
concentrations across all fruit accessions for tomato and blue-
berry (Figs. 14 and 24). The results are largely consistent with
knowledge of the individual biosynthetic pathways and provide
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insights into the relationships between pathways. For example,
there are strong associations between the apocarotenoid vola-
tiles (e.g., geranial and B-cyclocitral) and the fatty acid-derived
volatiles (e.g., 1-pentanol and E-2-heptenal). Apocarotenoid
volatiles are derived from precursors localized in plastids and
their contents substantially increase during the conversion of
chloroplasts to chromoplasts (23), while the precursors of fatty-
acid-derived volatiles are membrane lipids. TomloxC is an
essential enzyme for the synthesis of five- and six-carbon fatty
acid-derived volatiles (24, 25). Recently, a potential link
between these pathways was proposed with a quantitative trait
locus (QTL) analysis that implicated a role for TomloxC in
apocarotenoid synthesis, possibly by a cooxidation mecha-
nism (26).

Contributions of Sugars, Acids, and Volatiles to Flavor Perceptions.
In order to determine if the fruit metabolome could explain varia-
tion in consumer sensory panel ratings, we partitioned the metabo-
lites into modules according to their biochemical classifications
(Figs. 1 and 2 and Datasets S1 and S2). We then separated the
consumer sensory variance into aggregated components explained
by each module (Fig. 3, SI Appendix, Fig. S1, and Dataset S3). We
further combined the individual variance components into two
main groups for analysis: sugars/acids and volatiles (Fig. 3). In
both tomato and blueberry, a large proportion of the variance was
explained by sugars/acids and volatiles, while little variance was
attributed to the residuals (Fig. 3). Furthermore, the proportion of
variance explained by sugars/acids varied across the flavor attrib-
utes and contrasted between the two species. For instance, 77% of
the tomato sourness variance was explained by the content of sug-
ars/acids, while these compounds only explained 43% of blueberry
sourness. Similarly, while sugars/acids predominantly (60%)
explained blueberry sweetness, a larger portion of the tomato phe-
notypic variance (62%) could be explained by the volatiles. As pre-
viously described (3), the results indicate the large influence that
volatile compounds can have on sensory attributes in both species,
which in turn highlights how important these compounds are to
breeding programs for improvement of fruit flavor. For example,
the variance decomposition of overall liking score estimates that
42% and 56% of the variance was explained by volatile organic
compounds in tomato and blueberry, respectively.

To further understand how the fruit chemical profile affected
consumer flavor, we analyzed the variance explained by each
metabolite module. The sugar module was a strong driver of
liking (43% in tomato and 18% in blueberry) and sweetness
(29% in tomato and 27% in blueberry), while the module rep-
resenting acids drove sourness (54% in tomato and 38% in
blueberry) in both fruits. Some volatile modules were found to
make large contributions to flavor ratings. For instance,
phenylalanine-derived and lipid-derived compounds contrib-
uted to sweetness perception (34 and 16%, respectively) and
overall liking score (16 and 13%, respectively) in tomato. Lipid-
derived volatiles and compounds grouped as carotenoid/ter-
penes explained 15 and 21% of blueberry overall liking score,
respectively. These results are consistent with previous results
that showed strong positive correlations of specific volatiles
with fruit sweetness (4, 10).

Predicting Consumer Preferences. Eighteen statistical and machine-
learning methods were employed to predict sensory traits from
sugar, acid, and volatile concentrations. Each model was evaluated
in a 10-fold cross-validation and each fold was assessed by the cor-
relation between predicted and observed consumer taste panel rat-
ings (Fig. 44, SI Appendix, Fig. S1, and Datasets S4 and S5). The
cross-validation was repeated 10 times and results were averaged
for the final prediction accuracies. We observed the highest predic-
tion accuracies from the XGBoost, gradient-boosting machines,
and random-forest models. The XGBoost model showed an
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(18) 2-methyl-1-butanol
(19) 2-methyl-2-butenal
(20) propyl acetate

(21) 2-methylbutyl acetate
(22) 2-methylbutyraldehyde
(23) isobutyl acetate

(24) prenyl acetate

(25) 3-methyl-2-butenal
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(30) 1-nitro-3-methylbutane
(31) 2-isobutylthiazole

(32) isovaleronitrile

(33) isovaleric acid

(1) glutamic acid
(2) malic acid
(3) citric:malic
(4) citric acid

(5) sugar:acid
(6) soluble solids
(7) glucose

(8) fructose

(9) benzyl alcohol

(10) methylsalicylate

(11) guaiacol

(12) salicylaldehyde

(13) 1-nitro-2-phenylethane
(14) benzyl cyanide

(15) 2-phenyl ethanol

(16) phenylacetaldehyde
(17) benzaldehyde

Fig. 1. (A) Weighted correlation network analysis of tomato metabolites and their assigned clusters based on their known biochemical classification. The

(34) heptaldehyde

(35) (E)-3-hexen-1-ol
(36) (Z2)-3-hexenal

(37) hexanal

(38) (Z2)-4-decenal

(39) (2)-3-hexen-1-ol
(40) (Z)-2-penten-1-ol
(41) 3-methyl-1-pentanol
(42) (Z2)-3-hexenyl acetate
(43) hexyl alcohol

(44) 1-penten-3-ol

(45) 1-pentanol

(46) (E)-2-hexenal

(47) 1-octen-3-one

(48) (E)-2-heptenal

(49) 3-pentanone

(50) 1-penten-3-one
(51) (E,E)-2,4-decadienal
(52) (E)-2-pentenal

(53) hexyl acetate

(54) nonyl aldehyde

I:‘ Other

(55) b-ionone

(56) b-cyclocitral

(57) geranial

(58) 6-methyl-5-hepten-2-ol
(59) neral

(60) 6-methyl-5-hepten-2-one
(61) geranylacetone

Other

(62) 2,5-dimethyl-4-hydroxy-3(2H)-furanone
(63) 4-carene

(64) methional

(65) eugenol

size of each metabolite node indicates betweenness centrality, a measure of how often a node exists on the shortest path between other nodes. The
thickness of the lines connecting metabolites is scaled relative to the correlation between the metabolites. The identity of each metabolite is denoted by
number in the legend. (B) Distribution of metabolite concentrations for each volatile group across the tomato population. Volatile concentrations are

reported in nanograms per gram fresh weight per hour (ng/gfw/h) on a log 10 scale.

average improvement of 20% over the linear regression and
11% over PLS, models traditionally used in food science appli-
cations. The accuracy for the model that, on average, per-
formed the best (XGBoost) ranged from 0.62 to 0.87 across all
traits and in both species. We found the most predictable traits
in tomato to be sweetness (0.8), flavor intensity (0.77), and
sourness (0.69) and the most predictable traits in blueberry to
be sourness (0.87) and sweetness (0.75). The improvement of
the full model that accounted for all the compounds over the
model that included only sugars and acids ranged from 3.2 to
36.7% (SI Appendix, Table S1).

To further evaluate the opportunity to use metabolomic
selection in breeding and to understand its prediction potential
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compared to genomic selection, we compiled information from
70 varieties of tomato for which we had whole-genome
sequence, chemical profile, and sensory panel data (5). Using a
10-fold cross-validation, we applied the genomic selection
gBLUP (genomic best linear unbiased prediction) method (27)
to predict the consumer sensory ratings from a subset of 79,821
single-nucleotide polymorphisms (SNPs) (Fig. 4B and Dataset
S6). We then used the metabolomic information for the same
70 varieties and the same cross-validation partitioning to pre-
dict the panel ratings. These 70 genotypes represent a subset of
the total 147 accessions. We found that metabolomic selection
outperformed genomic selection in the prediction of all these
complex traits, especially for sweetness and overall flavor liking.
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(A) Weighted correlation network analysis of blueberry metabolites and their assigned clusters based on their known biochemical classification.

The size of each metabolite node indicates betweenness centrality. The thickness of the lines connecting metabolites is scaled relative to the correlation
between the metabolites. The identity of each metabolite is denoted by number in the legend. (B) Distribution of metabolite concentrations for each
volatile group across the blueberry population. Volatile concentrations are reported in nanograms per gram fresh weight per hour (ng/gfw/h) on a log 10

scale.

For these traits, the accuracies of metabolomic selection using
70 genotypes were 0.68 and 0.45 for sweetness and overall fla-
vor liking, respectively. These traits were poorly predicted by
¢BLUP with accuracies of 0.16 and —0.11 for sweetness and
overall flavor liking, respectively. While these results are not
surprising, given the small population size and the fact that the
metabolite data are capturing both genetic and environmental
components of fruit flavor, they highlight the complexity of fla-
vor perception as a breeding target and the potential of metab-
olomic selection as a phenotyping tool to support breeding
programs compared with other available methods such as geno-
mic selection, for example.

Next, in order to test how many samples are needed to train
metabolomic selection models, we performed a subsampling
analysis in tomato. For this analysis we randomly selected 39
samples as the test set and trained the model with increasing
training set sample sizes from 50 to 170 in steps of 10. We
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repeated this process 10 times and averaged the accuracies at
each sample size (Fig. 4C and Dataset S7). We found that the
accuracies predominantly increased with increasing sample
sizes but note that the accuracies can be relatively high for cer-
tain traits using as few as 50 samples. Sourness was more accu-
rately predicted with the gBLUP and Bayes A models, while
gradient-boosting machines achieved higher accuracies when
predicting the more complex traits like overall liking.

Metabolites Associated with Desirable Flavor. In order to find sug-
ars, acids, and volatiles that enhance or suppress consumer sen-
sory perceptions of flavor, models for each fruit were trained
using all samples for which we had metabolome and sensory
panel data (209 for tomato and 244 for blueberry). Two con-
trasting modeling approaches, Bayes A and gradient-boosting
machines, were chosen for further inference analysis. In Bayes
A, the beta coefficients indicate the individual additive effect of
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that chemical free of interactions. This coefficient predicts if a
chemical is important for enhancing the flavor attribute (posi-
tive value) or decreasing the flavor attribute (negative value).
For gradient-boosting machines the variable importance repre-
sents the marginal effect of that chemical including the interac-
tion effects with other chemicals. This value is scaled between 0
and 100 where 0 is a not an important predictor and 100 is an
important predictor (Fig. 5).

For sweetness in tomato, we found glucose and fructose to
be the most important sensory perception enhancers. The
gradient boosting machines also estimated 1-penten-3-one
and 2-phenylethanol to be important for perceived sweet-
ness, while the Bayes A model highly ranked two volatiles
(E-2-pentenal and 4-carene) to be important for sweetness
enhancement. E-2-pentenal was also found to be an impor-
tant contributor to overall flavor intensity and umami (S/
Appendix, Fig. S1). In blueberry, components important for
liking included soluble solids, fructose, and glucose. Addi-
tionally, volatiles found to be important for enhancing liking
included 2-undecanone, 2-hexenyl-butyrate, and ethyl propi-
onate, while volatiles that were negative to liking included
eucalyptol and phenylacetaldehyde. Interestingly, two lipid-
derived volatiles (2-hexen-1-al and 2-pentenal) had a high
positive contribution and the highest negative contributions
to sourness in blueberry, respectively. Glutamic acid was
highly ranked by both methods as influencing umami percep-
tion for tomato, which by definition represents the taste of
the amino acid L-glutamate. Three phenylalanine-derived
compounds (benzyl cyanide, 2-phenyl ethanol, and 1-nitro-2-
phenylethane) were also highly ranked by gradient-boosting
machines as umami influencers (SI Appendix, Fig. S1). It is
important to note, however, that this targeted metabolomic
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panel is enriched for putative sugar-enhancing compounds
and may be limited in the characterization of compounds
affecting umami.

Discussion

Fruit flavor is a complex trait at the intersection between the fruit
biochemistry and the consumer sensory perception. Quantification
of sensory perception using consumer flavor panels is time- and
resource-consuming and not readily amenable to a high-
throughput assay, which has hindered plant breeders from select-
ing for fruit flavor for many years. This has contributed to the
widespread decline of consumer satisfaction of many commercial
fruit varieties (2, 7). Recently, different high-throughput pheno-
typing applications were proposed to use two-dimensional visible
light imaging as proxies for plant biomass (28), reflectance ratios
as proxies for yield (29), hyperspectral reflectance as proxies for
leaf chlorophyll and nitrogen content (30), and canopy tempera-
ture as proxies for drought response (31). Here, in order to create
higher-throughput flavor phenotyping methods, we applied statis-
tical and machine learning models that can predict consumer sen-
sory panel ratings from the chemistry of a fruit.

Chemical Profiling of a Fruit. Although flavor is a complex trait,
relatively simple metrics have historically been used to quantify
flavor preferences in most breeding programs, including titrat-
able acidity, soluble solids, firmness, and the breeder “bite
tests” (32, 33). Using two independent fruit species we showed
that volatiles play an important role in consumer flavor percep-
tion and should therefore be broadly assayed when selecting
for enhanced flavor profiles. In this case, a metabolomic
approach will achieve a higher selection accuracy by identifying
metabolites with small but nonnegligible effects.
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(A) Accuracy of predicting flavor ratings from metabolome data across a range of statistical and machine learning models for tomato and blue-

berry. Averages and model rankings are inclusive of umami accuracies depicted in S/ Appendix, Fig. S1 and Datasets S4 and S5. (B) Accuracy of predicting
perception traits for tomato using 70 individuals with genomic and metabolomic data. (C) Accuracies for tomato flavor prediction with a consistent test
set of 39 samples and increasing training set sizes ranging from 50 to 170 samples.

In recent years, the cost of targeted and untargeted metabo-
lomics has decreased (34) and the throughput for metabolite
profiling has increased. The largest cost in this system is labor
to process the fruit and to analyze the data. For the profiling
described here, we estimate an in-house cost per sample similar
to the per-sample genotyping costs used for genomic selection
in many species, which in turn can be an order of magnitude
cheaper than sensory evaluations. While these estimates
assume an in-house analysis and do not consider the capital
expenditure to acquire the instrumentation, it highlights the
per-sample cost reduction over the years and the feasibility of
its high-throughput application in plant breeding programs.

Network analysis of tomato flavor compounds demon-
strated correlations among biochemicals in the same biosyn-
thetic pathways (Fig. 1). The associations are consistent with
the postulated biochemical groupings identified by Buttery
and Ling (35), Baldwin et al. (36), and Mathieu et al. (37).
The chemistry of blueberry flavor has not been as extensively
studied as that of tomato. Our results offer insights into the
biochemical pathways for blueberry volatile synthesis. For
instance, the long chain lipid—derived volatiles (denoted in
Fig. 2 as numbers 34, 35, 36, 37, and 38) are found linked
together within the lipid-derived volatile cluster. Also, linal-
ool levels are not correlated with levels of other terpenes,
suggesting that linalool biosynthesis may not be regulated in
the same manner as other terpenes.

Applications of Metabolomic Selection to Breeding of Fruits and
Vegetables. One alternative to phenotype fruits and vegetables
for flavor quality is the establishment of consumer sensory
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panels. This approach has low throughput, from a breeding
standpoint, because a sensory panel can usually only taste a
limited number of samples (4-6) per day. The tomato and blue-
berry breeding programs at the University of Florida have been
using consumer sensory panels to guide breeding decisions for
several years (5, 10). To do this, selections currently in develop-
ment by the breeding programs are subjected to biochemical
analysis and simultaneous consumer evaluations each year.
However, due to the low throughput of the assay, sensory char-
acterization is typically performed in the final stages of selec-
tion prior to release, when favorable alleles may no longer be
segregating in the population.

The use of metabolomic profiling as a phenotyping assay can
enable accurate characterization of flavor profiles in earlier
stages of a breeding program, when more genetic variability is
available for selection (Fig. 6). Metabolic profiling at earlier
stages of the breeding program opens up the possibility of iden-
tification of superior flavor genotypes that may otherwise have
been discarded. Chemical profiling of fruits can capture the
genetic potential of the variety as well as environmental vari-
ability. To reduce this variability and generate a phenotype that
better represents the genetic potential of the individual, the
breeder can characterize replicates from different environments
and/or harvests. Replicates within plots in a single experiment,
within harvest dates within a season, or even within environ-
ments can be pooled prior to running the instrument, maintain-
ing the per-sample cost and resulting in an average prediction
of the genotypic effect. Furthermore, in situations where fruit
quality is under the influence of genotype-by-environment
interactions, the breeder may choose to estimate fruit quality
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stability by profiling the chemical composition in each environ-
ment. While this additional analysis would increase the per-
genotype cost of the analysis, the information would facilitate
selection of stable genotypes that perform well across multiple
environments.

Moreover, the use of metabolomic selection to estimate fla-
vor perception complements a molecular breeding program. A
by-product of applying metabolomic selection is the metabolo-
mic profiling of many breeding lines, which in turn enables
QTL mapping or genome-wide association study (GWAS)
against metabolomic datasets. Thus, flavor-related metabolites
identified by metabolomic selection could then be further used
in GWAS analysis to identify the genes/loci contributing and
create markers for molecular breeding (5, 22). This two-step
approach can enable the use of MAS at the earliest stages of a
breeding program and thereby speed up the genetic enrichment
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for flavor associated traits (Fig. 6, step 2). This approach is
especially useful for fruit crops where there is much less avail-
able information on markers affecting flavor chemical composi-
tion. It is important to note that the chemical composition of a
fruit can be highly affected by weather and agronomic practices.
Like other quantitative phenotypes currently evaluated in
breeding programs, flavor-related traits have large variability
and low heritability and are subjected to complex interaction
effects (38—-40). With the availability of data from multiple envi-
ronments, the MAS or genomic selection application can also
be tailored to selecting early for stability of important metabolic
classes. However, MAS alone cannot address the complexity of
flavor perception. Hence, the value of metabolomic selection is
derived from including all metabolites in the prediction models,
even those with small effects, leading to better overall estimates
of flavor perception. Thus, the most practical application of
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metabolomic selection is in the middle stages of a breeding pro-
gram where genes involved in the biosynthesis of inferred vola-
tiles still retain enough genetic variability to select flavorful
cultivars (Fig. 6, steps 3 and 4). Finally, consumer sensory anal-
yses can be restricted to the final stages, in which a few target
genotypes will be subject to consumer evaluations prior to
release (Fig. 6, step 5).

Machine Learning Models Can Accurately Predict Flavor Attributes.
The use of metabolomics to predict flavor attributes has impor-
tant implications not only in plant breeding but also in food sci-
ence and genetics research. Prediction using metabolomics is
challenging due to the correlated nature of the metabolomic
predictors since it requires a large number of sensory panels
for model calibration. Flavor prediction has been attempted
before using linear regression models (41, 42), random-forest
models (39), and PLS regression (10), achieving variable levels
of prediction accuracies. One of the objectives of our work was
to evaluate a range of statistical and machine learning models
to determine the best performers for metabolite-based pheno-
type prediction of flavor quality traits. Importantly, we wanted
to access the predictive power of methods known to handle cor-
related features well and thus simultaneously predict the effect
of all metabolites. Identification of the most accurate predictive
models provides a simple way to improve phenotyping accuracy
with the same available dataset. Here, machine learning models
such as gradient-boosting machines and XGBoost were the
most predictive across all the traits and in both species, whereas
multiple linear regression and PLS methods were found to be
the least predictive. Considering that PLS is still the standard
in food science applications (43), these proposed predictive
models show marked improvements with increases relative to
PLS ranging from 3.3% for sweetness in blueberry to 44.6% for
umami in tomato. Furthermore, the fact that the models
worked well in two entirely different systems (blueberry and
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tomato; breeding population and diversity panel) supports the
effectiveness of the models proposed.

To better understand the factors affecting flavor perception
in each fruit species, we grouped compounds based on their
biochemical classification and estimated a proportion of the
phenotypic variance associated with each group. Biochemical
pathways that were represented by a small number of chemicals
were also grouped to minimize the effect of sampling variance
in the creation of distance (variance/covariance) matrices (44).
As would be expected, sugars (glucose, fructose, and soluble
solids) were important predictors of sweetness as well as overall
liking in both crops, while acids explained a large portion of the
sourness variance. By grouping volatiles by their biochemical
pathway, we were able to estimate a proportion of the total var-
iance jointly explained by the chemicals within each group. Phe-
nylalanine- and lipid-derived volatiles explained a large fraction
of flavor variance in tomato, while lipid-derived, esters, and
carotenoid/terpenoid volatiles explained most of the blueberry
variance for liking score. Interestingly, ester compounds were
shown to be negatively selected in red-fruited tomato as com-
pared to related green-fruited species (45, 46), which poten-
tially explains the lack of contribution to liking score in tomato
contrasting to blueberry. Although tomato is botanically a fruit,
it is not used as such in most cuisines. Thus, the fruity esters
that are so important for flavor in most fruits do not serve the
same function in a tomato.

The statistical models were used to infer which volatiles con-
tribute to each flavor attribute (Fig. 5). Although many of these
compounds have been shown to contribute to tomato liking
and flavor intensity, our results show that several compounds
including E-3-hexen-1-ol; (E,E)-2-,4-decadienal; and benzyl
alcohol are important flavor components. Although benzyl
alcohol and (E,E)-2-,4-decadienal were shown to contribute to
flavor intensity, they did not contribute to overall liking when a
simple regression or multivariate analysis was used (4, 5). Also,
the contributions of methional and benzothiazole to sourness
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intensity are interesting, as these compounds have not typically
been associated with sour flavor. Methional odor is described
as malty or cooked potato-like, while benzothiazole odor is
described as sulfurous or meaty. Multiple linear regression
analysis of volatiles associated with sweetness identified three
that contributed to sweetness independently of sugars, but the
relative contribution of these volatiles was not determined (4).
By grouping volatiles by biochemical pathway and using a linear
mixed model, the important role of volatiles in sweetness per-
ception was highlighted. These results also emphasize the need
to include volatile detection in breeding programs because by
focusing only on sugars and acids during breeding, part of the
flavor profile may be lost (Fig. 3). On the other hand, the
results suggest that the magnitude of the effect of each individ-
ual volatile is much smaller than the individual effect of sugar
compounds, highlighting the complexity of breeding for fruit
flavor and the challenges to improve flavor using MAS. The
important contribution of volatiles to overall liking of tomatoes
is illustrated by the negative effects of extended refrigeration
on volatile contents and consumer preferences (47). Refrigera-
tion substantially reduces volatile contents but not sugars or
acids (48).

Conclusions and Future Directions. In this work we demonstrate
the comparison of different algorithms to predict consumer
preferences. This information can benefit plant breeding pro-
grams to improve flavor perception of new varieties. It is impor-
tant to note that while we believe that the approach outlined
here is generally useful, the specific chemical contributions to
overall liking will likely vary with the ethnic and geographic
makeup of the consumer panel. Future extensions of this
approach could include the modeling of information and
parameters for each individual in the panel, such as the inclu-
sion of demographic parameters to predict more nuanced varia-
tions in taste preferences. In summary, by creating predictive
models for consumer perceptions of flavor we are able to
increase the throughput of flavor phenotyping and provide new
tools to make more informed, flavorful selections in breeding
programs. Through inference, candidate flavor enhancers and
suppressors were identified, indicating the possibility of their
use as natural food additives in the food industry. Furthermore,
genes involved in biosynthesis of these flavor enhancing/sup-
pressing metabolites can now be targets for marker assisted
selection or direct engineering of more flavorful fruit varieties.

Materials and Methods

Data. Prediction analysis was carried in two fruit species: tomato (S. lycopersi-
cum) and blueberry (Vaccinium spp.). For tomato, 68 sugars, acids, and vola-
tiles were analyzed in 147 genotypes grown and evaluated in multiple
seasons. A total of 209 samples were used, with 160 samples having been
previously evaluated (4, 5). For blueberry, firmness and 55 sugars, acids, and
volatiles were analyzed. Firmness was only available for a small number of
genotypes in blueberry, but it was kept in the model since it is an important
component of blueberry quality (49). Sixty-three genotypes were grown and
evaluated in multiple seasons for a total of 244 samples, of which 164 were
evaluated previously (10). Fruit flavor of tomato and blueberry accessions was
assessed by consumer sensory panels. Our sensory panels averaged ~80 partici-
pants sampled from a diverse university population (Datasets S8 and S9) with
the intention to represent for potential person-to-person variation in flavor
preferences. This study was approved by the University of Florida Institutional
Review Board 2 (case #2003-U-0491). All participants provided informed con-
sent. Panels were conducted in the Food Science and Human Nutrition Depart-
ment at the University of Florida in Gainesville, FL. Flavor attributes including
sweetness, sourness, flavor intensity, and overall liking were rated. Addition-
ally, sensory perceptions of umami were quantified solely for tomato. Overall
liking was rated on a scale from —100 to 100, while the remaining attributes
were rated from 0 to 100 (3). All data were normalized to a mean of 0 and a
variance of 1 for further analyses. Missing data were imputed by the mean
value per metabolite. Volatile concentrations were quantified by gas chroma-
tography as described in ref. 23, while sugars, soluble solids, and acids were
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quantified as described in ref. 50. Sensory analysis was conducted as described
in Tieman et al. (4), and scaled data can be found in Datasets S1 and S2. All
blueberry data collection was described in Gilbert et al. (10). Network analysis
was performed using the R package WGCNA (51). Briefly, the pairwise Pearson
correlation coefficient between each pair of metabolites was used to con-
struct a weighted metabolite coexpression network. The process assumed an
unsigned network and the network was visualized and represented using
Cytoscape 3.7.1 (52). The network for each species is provided as a Cytoscape
file in the GitHub repository.

Calculating Contributions of Metabolites to Flavor Ratings. To estimate the
proportion of variance in flavor ratings that each metabolite group explains,
we divided the metabolites identified in tomato and blueberry in six (Nonaro-
matic Amino Acid-derived, Carotenoid/Terpenes, Lipid derived, Phe-derived,
Sugars, and Acids) and seven groups (Nonaromatic Amino Acid-derived, Carot-
enoid/Terpenes, Lipid-derived, Ester, Phe-derived, Sugars, and Acids), respec-
tively. In tomato, for example, we fit a linear model in which

Yi=p+2Z1uy + Zpuy + Z3us + Zaus + Zsus + ZgUs + €

where y; is the averaged consumer rating for cultivar /i, u is the fixed model
intercept, ¢ is a normally distributed and independent random residual effect;
Z are design matrices for random effects associated to each biochemical
group, and u are the random terms associated to the chemical groups. For
each random term u, we assumed u ~ MVN(0, Go?), where G(.) represents the
Gaussian kernel matrices built as the pairwise Euclidean distance between
each chemical in a given group (MVN; multivariate normal distribution). The
proportion of the variance explained by a given metabolomic group was

determined by PME = ff{;z, where o% is the variance component estimated

02 +
for a given metabolomic group and the denominator is the variance repre-
sented by the sum of the variance explained by all other chemical groups (%)

and the residual term (62) . To further represent the contribution of sugar/
acids versus volatiles, we also presented it separately by summing the variance
components estimated within each group. All analyses were carried out using
the ASReml-R package (53).

Comparing Genomic and Metabolomic Selection. In order to compare predic-
tion performance between genomic and metabolomic selection models, we
organized a group of 70 tomato accessions that had whole genome
sequencing, metabolomic evaluation, and sensory panel information. The
genomic data comprised 26,262,280 SNPs, which were mapped to the S.
lycopersicum reference genome SL3.0 as described in ref. 5. We applied
additional quality filters and retained only biallelic SNPs with minor alleles
frequencies >0.1, excluded markers mapped on the chromosome 0 (unas-
signed scaffolds), and considered no more than 30% missing data and 20%
heterozygosity rate. Using the SNPRelate R package (54). we removed
redundant SNPs by pruning markers defined as r* > 0.9 in a 100-kilobase
genome window. After this step, we retained 79,821 SNPs used in the geno-
mic prediction steps.

Sensory traits were predicted using gBLUP models and compared to metab-
olomic predictions. The general model for genetic valuesisy = u + Zg + ¢,
where y is the vector of observed values,  is the fixed model intercept, and
Z is a design matrix that relates the vector of random genetic effects. For
genomic prediction, the g random effect has null mean and a kernel covari-
ance matrix (G) that represents the realized relationship among individuals
computed as described by ref. 27. For metabolomic prediction, the kernel
was defined in the Euclidean space as described by ref. 55. Residuals were
defined as normally distributed and independent. As the number of acces-
sions with metabolomic data are larger than the number of genotyped indi-
viduals, we considered the same number of individuals for the genomic and
metabolomic prediction (70 individuals). To evaluate the prediction perfor-
mance of each model, a 10-fold cross-validation was employed, described in
the following section.

Cross-Validation. To evaluate the predictive performance of each model, a
10-fold cross-validation was employed. In this way, the dataset was randomly
split into 10 equal groups of varieties. For each of the ten iterations, nine
groups of varieties were used to train the model (training set), and one
unseen group of varieties was used as a “holdout” group to test the model
(test set). During training, a secondary, nested 10-fold cross-validation was
used to calibrate the tuning parameters of the machine learning models. The
root-mean-squared error between predicted and observed flavor ratings in
the secondary test set was minimized to obtain the optimal parameter values
for the primary model. The trained models were then applied to the metabo-
lite concentrations of the varieties within the primary test set and predicted
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flavor ratings were obtained. The correlation between predicted and
observed flavor ratings is recorded. The average correlation of predicted and
observed flavor ratings in the test set is referred to here as the accuracy of
the model.

Statistical Models. A diverse sample of 18 statistical and machine learning
models representing a range of regression, regularization, genomic
selection, decision tree, and neural network models were chosen for
assessment. These include a linear model and PLS as our baseline models;
regularization methods such as ridge regression, elastic net, and LASSO;
kernel methods such as support vector machines, relevant vector
machines, and reproducing kernel Hilbert space; neural network models
such as a multilayer perceptron neural network and a Bayesian neural
network; decision tree-based models such as random forest, gradient
boosting machines, and XGBoost; and models frequently used in genomic
selection such as Bayes A, Bayes B, and Bayes Cx. Each model has its indi-
vidual strengths, weaknesses, and assumptions. Here we assess which
models are most useful for the application of flavor phenotyping by
metabolomic selection. All models were implemented in R (56). Each
model is described in more detail in S/ Appendix. The Bayesian models
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