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The prediction of protein function is a common topic in the field of bioinformatics. In recent
years, advances in machine learning have inspired a growing number of algorithms for
predicting protein function. A large number of parameters and fairly complex neural
networks are often used to improve the prediction performance, an approach that is
time-consuming and costly. In this study, we leveraged traditional features and machine
learning classifiers to boost the performance of vesicle transport protein identification and
make the prediction process faster. We adopt the pseudo position-specific scoring matrix
(PsePSSM) feature and our proposed new classifier hypergraph regularized k-local
hyperplane distance nearest neighbour (HG-HKNN) to classify vesicular transport
proteins. We address dataset imbalances with random undersampling. The results
show that our strategy has an area under the receiver operating characteristic curve
(AUC) of 0.870 and a Matthews correlation coefficient (MCC) of 0.53 on the benchmark
dataset, outperforming all state-of-the-art methods on the same dataset, and other
metrics of our model are also comparable to existing methods.

Keywords: transport proteins, protein function prediction, hypergraph learning, local hyperplane, membrane
proteins

1 INTRODUCTION

Proteins are the basis of most life activities and perform important functions in different biochemical
reactions. Proteins with different amino acid sequences and folding patterns have different functions.
Understanding the factors that influence protein function has practical biological implications.
Therefore, protein function prediction has been an important topic since the birth of bioinformatics.
In recent years, machine learning-based protein function prediction methods have been widely used
in many studies (Shen et al., 2019; Zhang J. et al., 2021; Zulfiqar et al., 2021; Ding et al., 2022b; Zhang
et al., 2022), such as drug discovery (Ding et al., 2020c; Chen et al., 2021; Song et al., 2021; Xiong et al.,
2021), protein gene ontology (Hong et al., 2020b; ZhangW. et al., 2021), DNA-binding proteins (Zou
et al., 2021), enzyme proteins (Feehan et al., 2021; Jin et al., 2021), and protein subcellular localization
(Ding et al., 2020b; Su et al., 2021; Wang et al., 2021; Zeng et al., 2022). In this study, we propose a
novel method to identify vesicular transporters with machine learning.

Vesicular transport proteins are membrane proteins. The cell membrane separates the cell’s
internal environment from the outside and controls the transport of substances into and out of the
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cell. Different substances enter and leave cells in different ways,
and the transport of macromolecular substances is called
vesicular transport. In vesicular transport, cells first surround
substances and form vesicles. Vesicles move within cells and
release their contents through vesicle rupture or membrane
fusion. The process of vesicle transport exists widely in life
activities. Vesicular transport proteins play an important role
in vesicle transport by regulating the interactions of specific
molecules with the vesicle membrane. In biology, there have
been many studies on vesicular transport proteins, such as
(Cheret et al., 2021; Li et al., 2021; Fu T. et al., 2022). Many
human diseases are associated with abnormal vesicle transport
proteins, such as those described in (Buck et al., 2021; Mazere
et al., 2021; Zhou et al., 2022).

With the development of protein sequencing technology, an
increasing number of vesicle transport protein sequences have
been discovered. The need to rapidly identify vesicle transporter
protein sequences conflicts with traditional experimental
techniques, which are costly and time-consuming. Therefore, it
is imperative to develop a fast and efficient computational
method. To date, there have been few studies on the
computational identification of vesicle transport proteins.

Computational identification of protein, RNA and DNA
sequences has similar steps, and their processes can be described
as two steps of feature extraction and classification. In 2019, Le et al.
proposed a method (Vesicular-GRU) to identify vesicle transporters
using position-specific scoring matrix (PSSM) features and a neural
network classifier based on a convolutional neural network (CNN)
and gated recurrent unit (GRU) and released the dataset used in their
study (Le et al., 2019). In 2020, Tao et al. (Tao et al., 2020) attempted

to classify vesicular transport proteins with fewer feature dimensions.
Their model used the composition part of the method of
composition, transition, and distribution (CTDC) features and a
support vector machine (SVM) classifier. After dimensionality
reduction with the Maximum Relevance Maximum Distance
(MRMD) method, they obtained a comparatively satisfactory
accuracy with fewer feature dimensions on the Le et al. dataset.

In our study, we propose a new model to identify vesicular
transporters using pseudo position-specific scoring matrix
(PsePSSM) features and a classifier called hypergraph
regularized k-local hyperplane distance nearest neighbour
(HG-HKNN). The main contributions of our work are as
follows: 1) a better identification model of vesicle transport
protein, with fewer feature dimensions and better results than
the state-of-the-art model; and 2) a classifier called HG-HKNN
that combines hypergraph learning (Zhou et al., 2006; Ding et al.,
2020a) with k-local hyperplane distance nearest neighbours
(HKNN) (Vincent and Bengio, 2001; Liu et al., 2021). The
flowchart of our study is illustrated in Figure 1.

2 MATERIALS AND METHODS

2.1 Dataset
The dataset we use to build and evaluate the model is the
benchmark dataset released by Le et al. (Le et al., 2019). In the
construction of the benchmark dataset, experimentally validated
vesicular transport proteins were screened from the universal
protein (UniProt) database (Consortium, 2019) and the gene
ontology (GO) database (Consortium, 2004).

FIGURE 1 | Flowchart of our model.
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For the positive dataset, the authors collected protein
sequences by searching the UniProt database for the keyword
“vesicular transport” or the gene ontology term “vesicular
transport”. Likewise, for the negative dataset, the authors
collected a set of universal protein (membrane protein)
sequences and excluded vesicular transporters from them.
Next, protein sequences annotated by biological experiments
were selected in the original dataset, and all protein sequences
that were not validated experimentally were filtered out. The
authors then eliminated homologous sequences on the positive
and negative datasets, respectively, with a 30% cut-off level by the
basic local alignment search tool (BLAST) clustering (Johnson
et al., 2008). The BLAST clustering ensures that any two
sequences in the dataset have less than 30% pairwise sequence
similarity. Finally, protein sequences with noncanonical amino
acids (X, U, B, Z) were removed from the dataset.

The benchmark dataset contains 2533 vesicular transport
proteins and 9086 non-vesicular transport proteins, and the
dataset is divided into a training set and a test set. The
training set consists of 2144 vesicular transporters and
7573 non-vesicular transporters, and the test set consists of
319 vesicular transporters and 1513 non-vesicular transporters.
We perform random undersampling (RUS) on the training set to
balance the proportions of positive and negative samples. In
random undersampling, we randomly select a sample from the
class with more samples in the training set to represent its class,
and repeat until there are the same number of vesicular transport
proteins and non-vesicular transport proteins in the training set.
The randomly undersampled training set has 2214 positive
samples and 2214 negative samples. The details of the dataset
are listed in Table 1.

2.2 Feature Extraction
The feature type we use is PsePSSM (Chou and Shen, 2007), and
the PSSM profile used to build PsePSSM is directly downloaded
from the open-source data of Le et al. (Le et al., 2019). The
authors of (Le et al., 2019) constructed these PSSM profiles by
searching all sequences one by one in the non-redundant (NR)
database with BLAST software. The PSSM matrix is an Lp20
matrix similar to the following formula (Zhu et al., 2019). Each
PSSM matrix corresponds to a protein sequence.

PPSSM �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1→1 E1→2 / E1→20

E2→1 E2→2 / E2→20

..

. ..
. ..

. ..
.

Ei→1 Ei→2 / Ei→20

..

. ..
. ..

. ..
.

EL→1 EL→2 / EL→20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

In this formula, L is the length of the protein sequence. Ei→j

represents the relationship between the amino acid at position i of
the protein sequence and the amino acid of type j in the
homologous sequence. j is the amino acid type number
ranging from 1 to 20. The PSSM matrix contains the position-
specific frequency information of amino acids in the protein
homologous sequences, which is used to decode the evolutionary
information of proteins. Compared with other protein
information (such as amino acid frequency and
physicochemical properties), the PSSM matrix of proteins not
only contains the information of the proteins in the dataset but
also contains the motif information of the protein homologous
sequences in the NR database. However, the dimension of the
PSSMmatrix is too large, so further PsePSSM feature extraction is
required.

The PsePSSM feature we use is a (ξ + 1)*20 dimension feature,
which can be calculated with this formula:

Pξ
PsePSSM � [�E1/�E20G

1
1/G1

20/Gξ
1/Gξ

20]T . (2)
where �Ej is the average value of each column of the PSSMmatrix,
and the calculation of Gξ

j can be expressed by the following
formula:

Gξ
j �

1
L − ξ

∑L−ξ
i�1

[Ei → j − E(i+ξ) → j]2 (j � 1, 2,/, 20; ξ < L).
(3)

Gξ
j is the correlation factor obtained by coupling the ξ th-most

contiguous PSSM scores along the protein chain with amino acid
type j. Clearly, �Ej and G0

j are the same. Note that the maximum
value of ξ must be less than the length of the shortest protein
sequence in the benchmark dataset. The value of ξ we choose is 6,
so Pξ

PsePSSM is a feature vector with 140 dimensions. When ξ
increases, the evaluation metric first increases and then decreases
and reaches the maximum value when ξ is 6.

2.3 Method for Classification
The hypergraph regularized k-local hyperplane distance nearest
neighbour model (HG-HKNN) is a new classifier that combines
the k-local hyperplane distance nearest neighbour algorithm
(HKNN) and hypergraph learning.

2.3.1 HKNN
In the HKNN (Vincent and Bengio, 2001) workflow, multiple
hyperplanes are constructed first, each hyperplane corresponds to
a class in the training set, and the hyperplane is constructed by the
k samples of the same class that is closest to the test sample. Then,
the HKNN predicts the class of the test sample by comparing the
distance between the test sample and the hyperplanes and assigns
the test sample to the class corresponding to the nearest
hyperplane (Ding et al., 2022c). Figure 2 shows a sketch of an
HKNN, where sample x obtains its class by comparing the
distances to hyperplane 1 and hyperplane 2.

In class c, when x represents the test sample, the hyperplane
can be expressed as the following formula:

TABLE 1 | Details of the dataset used in our study.

Original Train Set Train Set (RUS) Test Set

Vesicular transport 2533 2214 2214 319
Non-vesicular transport 9086 7573 2214 1513
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LHc
k(x) �

⎧⎨⎩pc | pc � �N
c +∑k

i�1
αc
i V

c
i , α

c
1...k ∈ Rk

⎫⎬⎭. (4)

where k means that k nearest neighbour samples are taken to
construct the hyperplane, and the i -th sample in class c can be
expressed asNc

i (i from 1 to k). Let �Nc represent the centre ofNc
i ,

and let Vc
i � Nc

i − �Nc, where αci is an undetermined parameter;
then, pc is a point on this hyperplane.

The mean squared distance of the test sample x to each
hyperplane can be expressed as follows:

(LHc
k(x))2 � ���������x − �N

c −∑k
i�1
αc
i V

c
i

���������
2

+ λ∑k
i�1
(αci )2. (5)

where λ is the regularization parameter of αci , which is used to
reduce the complexity of the model. αc is obtained by minimizing
the distance. Finally, the classification result of the HKNN can be
judged by the following formula:

c � argminc

���������x − �N
c −∑k

i�1
αc
i V

c
i

���������
2

. (6)

HKNN has relatively good performance on unbalanced
datasets because the same number of samples are selected in
each class. However, since the distribution of samples cannot be
fully expressed by a hyperplane, the performance of the HKNN is
disturbed by the distribution of samples.

2.3.2 Hypergraph Learning
In machine learning, we can express the similarity between two
samples by calculating the inner product of the features of the two
samples to form a pairwise similarity matrix (Yang et al., 2020).
However, the relationship between samples cannot simply be
determined by pairwise similarity. Therefore, hypergraphs (Zhou
et al., 2006) are proposed to express the relationship between
three or more samples.

In a hypergraph, each hyperedge consists of multiple vertices.
Figure 3 is a hypergraph and its association matrix H. In our

study, each hyperedge weights 1. When hyperedge ej contains
vertex vi, then Hij is 1; otherwise, it is 0.

Formally, the association matrix H, the degree of each
hyperedge, and the degree of each vertex can be expressed as:

H(v, e) � { 1, if v ∈ e
0, if v ∉ e

, (7a)

δ(e) � ∑
v∈V

H(v, e), (7b)
d(v) � ∑

e∈E
H(v, e). (7c)

The Laplacian matrix of a hypergraph association matrix H
can be calculated as:

LH � I −D−1
2

v HAD−1
e HTD−1

2
v . (8)

where Dv and De are the diagonal matrices formed by d(v) and
δ(e), respectively, and A is the same as the identity matrix I in
our study. We construct the association matrix H with the k
-nearest neighbour algorithm proposed by Zhou et al. (Zhou
et al., 2006). Given a set of samples, we choose the k nearest
neighbours of each sample and construct a hyperedge
containing these k vertices. Finally, we construct N
hyperedges for a dataset of N samples.

2.3.3 HG-HKNN
The HG-HKNN rewrites the mean squared distance from the test
sample x to each hyperplane in the HKNN into the following
form:

(LHc
k(x))2 � ���������ϕ(x−) −∑k

i�1
αciϕ(Vc

i )���������
2

+ λ∑k
i�1
(αc

i )2
+μ∑k

p�1
∑k
q�1

wc
p,q(αc

p − αcq)2. (9)

The kernel trick (Hofmann, 2006; Ding et al., 2019) is used to
solve this problem, and the map ϕ maps the feature space to
higher dimensions. x

− � x −N
− c

is a simple rewrite. The third term
in this formula is the Laplacian regularization term, which
improves classification performance by smoothing the feature
space (Ding et al., 2021). μ is the Laplacian regularization
parameter, and wc

p,q is the similarity between the p -th nearest
and the q -th nearest samples in the k samples in class c, which is

FIGURE 2 | Sketch of an HKNN.

FIGURE 3 | A hypergraph and its association matrix H.
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calculated by the kernel function (Ding et al., 2022a). K(x, y) �
ϕ(x), ϕ(y) represents the kernel function, which is the radial
basis function (RBF) in our study.

By minimizing the distance and making the partial derivative
of (LHc

k(x))2 with respect to αc zero, then the solution of αc is
obtained as follows:

z((LHc
k(x))2)

zαc � 0,

(ϕ(Vc)Tϕ(Vc) + λI + μL)αc � ϕ(Vc)Tϕ(x−),
αc � (ϕ(Vc)Tϕ(Vc) + λI + μL)−1ϕ(Vc)Tϕ(x−),
αc � (K(Vc, Vc) + λI + μL)−1K(Vc, x

−).
(10)

We construct the hypergraph and use the Laplacian matrix of
the hypergraph to replace the Laplacian matrix in the above
formula:

αc � (K(Vc, Vc) + λI + μLH)−1K(Vc, x
−). (11)

Note that the original Laplacian matrix contains pairwise
similarities between samples, while our hypergraph Laplacian
matrix contains more complex relationships between
samples.

Now the distance from sample x to the c -th hyperplane can be
expressed as follows:

distancec �
���������ϕ(~x) −∑k

i�1
αc
iϕ(Vc

i )2���������,
� (ϕ(�x) − ϕ(Vc)αc)T(ϕ(�x) − ϕ(Vc)αc),
� (K(x− , x−) − 2(αc)TK(Vc, x

−) + (αc)TK(Vc, Vc)αc).
(12)

Finally, we assign the test sample x to class c:

c � argminc(distancec). (13)
We define the prediction score as follows:

scorec �
��������
distancec

√
∑C

i�1
��������
distancei

√ , i � 1, 2, . . . , C. (14)

The process of HG-HKNN is listed in Algorithm 1

Algorithm 1. Algorithm of HG-HKNN

3 RESULTS AND DISCUSSION

3.1 Evaluation
In this section, we will introduce the evaluation methods and
metrics we use. We use positive to describe vesicular transport
proteins and negative to describe non-vesicular transport
proteins. We optimize the parameters with cross-validation
(CV) on the training set and then evaluate our model on the
test set.

Cross-validation sets aside a small portion of the dataset for
validating the model, while the rest of the dataset is used for
training the model (Zhang D. et al., 2021; Lv et al., 2021; Yang
et al., 2021; Zheng et al., 2021; Li F. et al., 2022; Li X. et al., 2022).
The leave-one-out cross-validation (LOOCV) is a classic cross-
validation method (Qiu et al., 2021). LOOCV takes only one
sample in the dataset at a time for validation and uses other
samples in the dataset to train the model. Until all samples are left
out once for validation, the leave-one-out method obtains
statistical values for multiple results. However, the leave-one-
out method is too time-consuming, so we adopted another cross-
validationmethod: k -fold cross-validation (K-CV). K-CV divides
the dataset into k subsets. Each time, one of the subsets is taken
for validation, and the remaining k − 1 subsets are used for
training the model. In this way, k prediction results are
obtained, and we take the average of these k results as the
result of k -fold cross-validation.

The evaluation indicators we take include sensitivity,
precision, specificity, accuracy (ACC), Matthews correlation
coefficient (MCC), and area under the receiver operating
characteristic curve (AUC), which have been widely used in
previous studies (Hong et al., 2020a; Tang et al., 2020; Pan
et al., 2022; Song et al., 2022).

sensitivity � TP

TP + FN
, (15a)

precision � TP

TP + FP
, (15b)

specificity � TN

TN + FP
, (15c)

ACC � TP + TN

TP + FN + FP + FN
, (15d)

MCC �
1 − ((FN

TP
+ FN) + (FP

TN
+ FP))����������������������������������������(1 + (FP − FN

TP
+ FN))(1 + (FN − FP

TN
+ FP))√ .

(15e)
where TP, FP, TN, and FN represent true positives, false positives,
true negatives, and false negatives, respectively. In addition, the
AUC is obtained by integrating the receiver operating
characteristic curve (ROC) (Fu J. et al., 2022). The ROC curve
plots sensitivity and specificity at different classification
thresholds (Tzeng et al., 2022). The more meaningful ones are
AUC and precision since our test set is a class-imbalanced dataset.
In our model, we perform 10-fold cross-validation on a training
set of 4428 samples (2214 positive and 2214 negative). The binary
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classification threshold is set to the default 0.5. Finally, the trained
model is evaluated on the test set, which has 319 positive samples
and 1513 negative samples.

3.2 Parameter Tuning
In this section, we describe the parameter tuning process for
our model. Classification metrics are largely influenced by
parameter tuning. The HG-HKNN has five parameters: k, λ,
μ, γ, and kH. k represents the number of neighbour samples
selected when constructing the hyperplane. λ is the
regularization parameter in L2 regularization and μ is the
Laplacian regularization parameter. γ is a parameter in the
radial basis function. kH is the number of neighbours used to
construct the hypergraph.

We first adjust the k parameters among them. We set k, μ and
γ to be 0.2, 0.2 and 0.2, respectively, and kH to be 2. We perform
10-fold cross-validation for different values of k, and the best
parameter k is determined to be 650; the details are shown in
Table 2.

For λ, μ, γ and kH, we adopt the grid search method for
parameter tuning. The grid search method enumerates the
possible values of each parameter, combines the possible
values of all parameters into groups, and then trains the
model with each group of parameters to obtain the best set of
parameters. In our grid search, the possible values of λ, μ and γ are
all 0.1, 0.2, 0.4, and 0.8, and the kH values in the hypergraph range
from 2 to 10. The best parameters for choosing λ, μ and γ are 0.4,
0.4 and 0.4, respectively. The best parameter kH is 2, and the best
AUC is 0.8309.

In our dataset, the dimension of features is much smaller than
the number of samples, which is regarded as a sign that the
dataset is linearly inseparable. On linearly inseparable datasets,
the RBF kernel generally performs better than the linear or
polynomial kernel. Formally, the Laplacian kernel is similar to
the RBF kernel, and they usually have similar performance, but
the Laplacian kernel function requires additional computational
cost. We regard the type of kernel function used by HG-HKNN as

an additional hyperparameter and conduct comparative
experiments. The details of the experimental results are shown
in Table 3. The results show that the RBF kernel has the best
performance.

3.3 Comparison With Traditional Machine
Learning Methods
In the previous section, we have chosen the best parameters for
our model. Our model is trained with traditional PsePSSM
features, with nothing special in feature extraction. In this
section, to highlight the effect of our proposed classifier HG-
HKNN, we train some models with different traditional machine
learning classifiers, the same training set, and the same PsePSSM
feature extraction method. We perform 10-fold cross-validation
on these models and compare the evaluation metrics of these
models with ours. Note that the only difference between these
models is the classifier.

We implement and train these models with the programming
language’s built-in library of functions. With the help of the
parameter optimization function, we can automatically train the
SVM model with the best evaluation metrics. After parameter
tuning, the parameters in the other models are as follows: K � 20
in the k-nearest neighbour model(KNN), ntrees � 60 in the
random forest model (RF), and k � 30 and λ � 10 in HKNN.
Table 4 shows the comparison of our model with other
traditional machine learning models in 10-fold cross-validation.

Among them, the prediction effect of HKNN is better than
that of the KNN algorithm. Intuitively explained in principle,
although the classical K-nearest neighbour algorithm can fit the
training samples well, it does not work well for the unseen
samples located near the decision boundary. This is the
overfitting problem of the KNN algorithm, and overfitting is
more obvious in small data sets. HKNN constructs a hyperplane
for k-nearest neighbour samples and then compares the distances
between the test sample and the hyperplanes. The construction of
the hyperplane can be analogous to adding more sample points to
the k-nearest neighbours, which will reduce the interference of
extreme samples on the decision boundary. Therefore, compared
with KNN, the HKNN model has a smoother decision boundary,
avoiding the disadvantage of overfitting in KNN.

Our proposed HG-HKNN model outperforms the other
models on almost all metrics at the same level of comparison.
By introducing Laplacian regularization in manifold learning, the
HG-HKNN model incorporates local similarity information in
the feature space into the construction process of the hyperplane.

TABLE 2 | Details in parameter tuning of k.

k AUC ACC Precision Specificity

200 0.8127 0.7256 0.7677 0.8035
350 0.8241 0.7319 0.7897 0.8311
500 0.8284 0.7362 0.7940 0.8338
650 0.8292 0.7398 0.7954 0.8333
800 0.8287 0.7425 0.7927 0.8265
950 0.8279 0.7437 0.7840 0.8134

TABLE 3 | Comparison of classification metrics among different kernels.

Kernel Type AUC MCC ACC Precision Specificity

Linear 0.7618 0.3739 0.6719 0.7833 0.8686
Polynomial 0.8021 0.4664 0.7322 0.7519 0.7687
Laplacian 0.8243 0.5153 0.7575 0.7592 0.7597
RBF 0.8309 0.5099 0.7538 0.7760 0.7922

TABLE 4 | Comparison of classification metrics among different models.

Techniques AUC MCC ACC Precision Specificity

KNN 0.7824 0.4189 0.7078 0.6886 0.6519
RF 0.8019 0.4576 0.7285 0.7267 0.7231
SVM 0.8091 0.4820 0.7405 0.7466 0.7502
HKNN 0.8203 0.4976 0.7484 0.7442 0.7371
OG-HKNN 0.8289 0.4944 0.7446 0.7843 0.8130
HG-HKNN 0.8309 0.5099 0.7538 0.7760 0.7922
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Compared with the HKNN model, the HG-HKNN model not
only reduces the disturbance of extreme samples to the decision
boundary, but also preserves the local similarity information in
the feature space. In the HG-HKNN model, we replace the
ordinary graph with a hypergraph for Laplacian regularization.
Hypergraph learning allows us to represent feature space local
structures with more complex relationships than just pairwise
similarity relationships. This further improves the performance
of our HG-HKNN model. To highlight the effect of hypergraph
learning, we add an ordinary graph regularized HKNN model
(OG-HKNN) to our comparison, and the details are also listed in
Table 4. The parameter tuning process of the OG-HKNN model
is the same as that of the HG-HKNN. The best parameters for
choosing λ, μ, γ and k are 0.2, 0.8, 0.4 and 350, respectively. The
experimental results show that the AUC, MCC and ACC of the
HG-HKNN model are better than the OG-HKNN model.

One disadvantage of our model is that HG-HKNN increases
computation time and memory usage compared to HKNN. In
terms of memory usage, the storage of hypergraphs, Laplacian
matrices, and kernel matrices in HG-HKNN increases memory
usage. In terms of operating efficiency, we conduct experiments
on the test set with the same parameter k � 20, HKNN completes
the computation in 362 milliseconds, while HG-HKNN
completes the computation in 640 milliseconds. Such
computational time cost is acceptable, especially considering
the performance of HG-HKNN and time-consuming deep
learning models in vesicle transporter identification.

3.4 Comparison With Previous Techniques
In this section, we aim to compare our model with previous
techniques to highlight the performance of our proposed model
on benchmark datasets. After optimizing the parameters with
cross-validation, we obtain the optimal values of each parameter
in HG-HKNN, where λ is 0.4, k is 650, γ is 0.4, μ is 0.4, and the
value of kH in the hypergraph part is 2.With these parameters, we
no longer perform cross-validation on the training set but instead
feed the entire training set into our model and then evaluate our
final model on the test set. Among the metrics, the AUC is 87.0%,
and the MCC is 0.53. Compared with the existing state-of-the-art
Vesicular-GRU method with an AUC of 86.1% and MCC of 0.52,
our model has higher AUC and MCC values, fewer feature
dimensions (140 dimensions) and fewer parameters.

We compare our model with several other existing methods,
among which the GRU model is a prediction method using
traditional PSSM features and GRU and BLAST is a general-
purpose protein prediction tool (Johnson et al., 2008). BLSTM is a

commonly used prediction method in protein research (Li et al.,
2020). The state-of-the-art method Vesicular-GRU (Le et al.,
2019), a prediction method based on 1D CNN and GRU, is also
listed in the comparison. The details of the comparison are shown
in Table 5.

The meaning of the indicators has been described in the
previous section. Experimental results show that our model
achieves the best AUC and MCC metrics on this imbalanced
benchmark dataset. Deep learning is involved in most of the
methods in the comparison. The black box is an unavoidable
problem for deep learning-based methods, and it is difficult to
intuitively understand which factors lead to the predicted
results. In deep learning models, researchers need to
optimize a large number of parameters to improve the
performance of the network, and these parameters are
directly tuned through back-propagation of the prediction
results, resulting in overfitting and the curse of
dimensionality. The neural network in the Vesicular-GRU
model has hundreds of thousands of parameters, which
makes the Vesicular-GRU model a potential risk of
overfitting on the training set. Our HG-HKNN has only five
parameters, and the performance of our model is mainly
attributable to hypergraph regularization and hyperplane
rather than fitting to the parameters. Local hyperplane
models have better performance on imbalanced datasets
because the same number of samples are selected in each
class. Like many biological sequence datasets, the vesicle
transporter dataset is a typically imbalanced dataset, which
is where the local hyperplane model excels. Furthermore, HG-
HKNN applies kernel tricks to handle high-dimensional
features, avoiding the curse of dimensionality. Although
there is an increase in time and memory usage compared to
HKNN, our model is faster relative to deep learning models
trained with huge parameters via backpropagation. With only
five parameters, our model avoids the black box, overfitting
and curse of dimensionality problems in deep learning and
makes predictions faster, and the performance of our model is
equal to or higher than all the mentioned techniques, especially
in terms of MCC and AUC.

4 CONCLUSION

In this study, we propose a novel approach for predicting
vesicular transport proteins. The existing methods are
typically performed with complex neural networks or by

TABLE 5 | Comparison of our model with other existing technologies.

Techniques AUC MCC ACC Sensitivity Precision Specificity

GRU 0.848 0.44 79.2 70.8 44.0 81.0
BLSTM 0.846 0.46 84.6 54.2 55.8 90.9
BLAST 0.82 0.43 83.6 54.1 52.8 89.8
Vesicular-GRU 0.861 0.52 82.3 79.2 48.7 82.9
HG-HKNN 0.870 0.53 84.1 72.1 53.2 86.7
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extracting a large number of features. Our method classifies
vesicular transport proteins with PsePSSM features and our
proposed HG-HKNN model. We completed the prediction of
vesicle transporters with only 140-dimensional features and
5 parameters with satisfactory results. Experimental results
show that our method has the best AUC of 0.870 and MCC of
0.53 on the benchmark dataset and outperforms the state-of-the-
art method (Vesicular-GRU) in ACC, MCC and AUC. Other
metrics of our model are also comparable to other methods. A
traditional machine learning computational model is used in our
approach, avoiding some of the drawbacks of deep learning.
Compared with another study (Tao et al., 2020) using
traditional machine learning on the same dataset, their study
achieved 72.2% accuracy and 0.34 MCC with 21-dimensional
CTDC features after MRMD (He et al., 2020) dimensionality
reduction, while our model achieves 84.1% accuracy and
0.53 MCC with 140-dimensional PsePSSM features.
Furthermore, like CTDC features, the classical features we used
imply that amino acids have a certain regularity in the arrangement
of the protein sequence. Since PSSM matrix information is a
commonly used motif representation, our study may help
scholars to judge whether an unknown protein is a vesicle
transporter.

The proposed method also has the following limitations: 1)
In the case of large parameter k, the prediction takes a long time;
2) Our model uses the PsePSSM feature without incorporating
sequence information for prediction; and 3) Feature selection
and dimensionality reduction are not performed in our model.
For the first limitation, parallel optimization can be used to solve
the problem of computation time. For the second question,
adding sequence features such as amino acid frequency or
composition of k-spaced amino acid pairs (CKSAAP) to our
model may further improve the prediction accuracy. For the

third question, the dataset can be processed with feature
selection and dimensionality reduction tools that remove
redundant features. The results of this study can provide a
basis for further studies in computational biology to identify
vesicle transport proteins with classical features and traditional
machine learning classifiers.
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