Antimicrobial resistance and ESBL production in uropathogenic *Escherichia coli*: a systematic review and meta-analysis in Ethiopia

Zelalem Asmare 🕞 1*, Mulat Erkihun², Wagaw Abebe¹ and Ephrem Tamrat¹

¹Department of Medical Laboratory Science, College of Health Science, Woldia University, Amhara Region, PO Box: 400, Woldia, Ethiopia; ²Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Tabor University, Debre Tabor, Ethiopia

*Corresponding author. E-mail: zelalemasmare018@gmail.com

Received 17 February 2024; accepted 10 April 2024

Background: Antimicrobial resistance (AMR) is a serious threat to global health systems. *Escherichia coli* is a major cause of urinary tract infections (UTIs). Understanding the AMR patterns of uropathogenic *E. coli* (UPEC) is crucial for effective public health interventions worldwide.

Objectives: This systematic review and meta-analysis aimed to consolidate existing research and provide a comprehensive information on AMR UPEC in Ethiopia.

Methods: We systematically searched databases such as PubMed, Web of Science, and Science Direct, along with including articles from Google Scholar. Data were extracted into Microsoft Excel and analysed using STATA 17.0. Cohen's kappa was computed to assess reviewer agreement, while the I² statistic evaluated heterogeneity. Egger's tests were conducted to detect publication bias, and random-effects models were utilized to estimate the pooled resistance, with AMR rates for each antibiotic pooled separately.

Results: UPEC showed resistance rates, ranging from 3.64% (95% CI: -4.38% to 11.67%) for amikacin to 85.32% (95% CI: 78.6%–92.04%) for ampicillin. Highest resistance was to ampicillin (85.32%), followed by amoxicillin at 82.52% (95% CI: 74.3%–90.74%), tetracycline at 60.67% (95% CI: 51.53%–69.81%) and trimethoprim/ sulfamethoxazole at 57.17% (95% CI: 49.93%–64.42%). Conversely, resistance rates were lower for amikacin at 3.64% and meropenem at 5.26% (95% CI: 2.64%–7.88%). UPEC demonstrated a pooled MDR rate of 79.17% (95% CI: 70.32%–88.01%) and a pooled ESBL production rate of 29.16% (95% CI: 22.36%–38.55%).

Conclusions: High levels of AMR were observed in UPEC strains, highlighting a critical public health issue requiring urgent action through robust antimicrobial stewardship and surveillance to preserve effective UTI treatment options.

Introduction

Since the discovery of penicillin, the first antibiotic in the 1920s, antibiotics remain among the most potent remedies for combating life-threatening infections. However, individuals worldwide face mortality from untreatable infections due to the rise and dissemination of antimicrobial resistance (AMR).¹

AMR arises when microorganisms such as bacteria, viruses, fungi and parasites develop the capability to adapt and thrive in the presence of medications, evading the mechanisms by which drugs act to eradicate them.^{2,3} Bacteria can exhibit resistance to antibiotics either intrinsically, stemming from inherent bacterial properties, or acquire resistance through mechanisms such as gene transfer or mutation of antibiotic targets.^{3,4} MDR in bacteria is characterized by their lack of susceptibility to at least one agent in three or more antimicrobial agent categories. $^{\rm 5}$

AMR poses a significant global threat to health systems, with an estimated 4.95 million deaths associated with bacterial AMR in 2019, including 1.27 million deaths directly attributable to bacterial AMR.⁶ In addition to mortality and morbidity, additional costs to healthcare systems are attributable to AMR. In the USA, AMR infections have an additional cost of as high as 55 billion USD each year due to additional visits to healthcare providers and loss of productivity.⁷

Urinary tract infections (UTIs) are one of the most common infections worldwide.⁸ MDR *Escherichia coli* is the leading cause of UTI. *E. coli* resists the effect of antimicrobial agents through the production of ESBL and carbapenemase enzymes that are able to hydrolyse third-generation cephalosporins and carbapenems.⁸

[©] The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https:// creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

Antimicrobial-resistant *E. coli* are the leading bacteria responsible for the majority of disease associated with bacterial AMR.⁶ Uropathogens are microorganisms, typically bacteria, which can cause UTIs.⁹ In Ethiopia, the Food, Medicine and Health Care Administration and Control Authority of the country recommends trimethoprim/sulfamethoxazole, nitrofurantoin and ciprofloxacin as empirical treatment for UTI.¹⁰

Knowledge on AMR is crucial for comprehensively understanding AMR patterns, informing public health interventions and policy development, and contributing to the global effort to combat AMR. While some previously published papers have shown AMR of E. coli ranging from 0% to 100% to different antibiotics,^{11–13} the findings are not conclusive due to inconsistencies. Moreover, there is a lack of systematic review and meta-analysis that provide a nationwide profile of AMR of uropathogenic E. coli (UPEC) in Ethiopia. Systematic review and meta-analysis, particularly in light of inconsistent findings on AMR patterns, are essential to provide a comprehensive synthesis of available data, clarify discrepancies, identify prevailing resistance trends, and offer valuable insights for guiding evidence-based interventions and policymaking efforts aimed at combating AMR effectively in the Ethiopian context. Therefore, this systematic review and meta-analysis aimed to consolidate existing research on AMR in UPEC strains in Ethiopia.

Methods

Search strategy

Systematic searches were conducted across PubMed, Web of Science, and Science Direct databases, alongside Google Scholar and online repository sites of various institutions, to retrieve published articles. Utilizing appropriate Medical Subject Headings (MeSH) terms and keywords, articles published in English between 1 January 2014 and 30 August, 2023, were sought from the specified databases: (((((Antimicrobial resistance) OR (Antibiotic resistance)) OR (Microbial drug resistance)) AND (*Escherichia coli*)) OR (Uropathogenic *Escherichia coli*)) AND (Urinary tract infection)) AND Ethiopia. Our systematic review and meta-analysis have been registered with PROSPERO (International Prospective Register of Systematic Reviews) under registration number CRD42023462711. This registration ensures transparency and adherence to established protocols in conducting and reporting our study.

Eligibility criteria

Studies retrieved from the mentioned databases, Google scholar and repositories of different institutions were exported into Endnote X7 reference managing software (Thomson Reuters, Toronto, Ontario, Canada), duplicates were removed, and two authors (Z.A. and M. E.) screened the title and abstract of each article followed by detailed screening of the full text. To identify eligible articles, predetermined inclusion and exclusion criteria were applied. The inclusion criteria encompassed articles published in Ethiopia from 2014 up to August 2024 in English that reported AMR profiles of UPEC isolated from urine specimens of both symptomatic UTI and asymptomatic bacteriuria using appropriate phenotypical methods of susceptibility testing. For the meta-analysis of MDR UPEC, studies that reported MDR based on the definition that UPEC isolates showed non-susceptibility to at least one agent in three or more antimicrobial categories were included. Studies that didn't satisfy the above inclusion criteria were excluded from the study. Furthermore. articles that had difficulty to access the full text (after e-mailing the respective authors two times to obtain full texts) and studies that did not report the primary outcomes of interest were excluded. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline was used to select articles in the review process (Figure 1).¹⁴

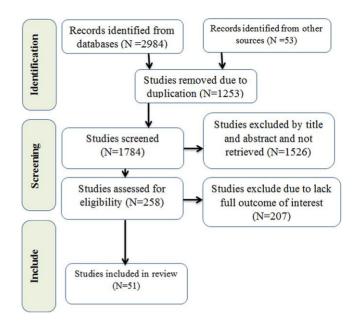


Figure 1. PRISMA flow chart for selection of studies on AMR of UPEC.

Quality assessments

The Joanna Briggs Institute tool designed for prevalence studies was used to assess the quality of each study.¹⁵ Two impartial reviewers (Z.A. and M.E.) critically appraised each study. Discussions among the two reviewers were used to resolve disagreements on inclusion and exclusions of studies. If the two independent reviewers couldn't reach an agreement on inclusion and exclusion of studies, a third reviewer (W.A.) was involved to resolve the disagreement. Studies with a final quality score of 50% or higher were included in this systematic review and meta-analysis (Table S1, available as Supplementary data at JAC-AMR Online).

Data extraction

Data were extracted by two authors (Z.A. and W.A.) using a standardized format in Microsoft Excel 2016. The extraction process covered the various pieces of information, including author(s), study year, study region, study design, sample size, total number of UPEC isolated, AMR of UPEC to different antibiotics, the prevalence of MDR isolates, and the prevalence of ESBL-producing isolates detected using phenotypical or molecular methods. Cohen's kappa was computed to assess the inter-rater reliability during data extraction. The agreement between the two reviewers was 94%.

Statistical analysis

Following the data entry process into Microsoft Excel 2016, the dataset was exported to STATA 17.0 software (StataCorp, TX, USA) for comprehensive analysis. Heterogeneity across studies was evaluated using the inverse variance (I^2) test, where I^2 values of 0%, 25%–50%, 50%–75% and >75% were interpreted as representing no, low, medium and high heterogeneity, respectively. Subgroup analyses were conducted based on geographical regions and study years. Pooled prevalence estimates of resistance profiles of UPEC to various antibiotics, MDR profiles and ESBL production were derived using a random-effects model. Furthermore, Egger's tests were utilized to identify potential publication bias, employing a significance threshold of P < 0.05. In instances where publication bias was detected, trim-and-fill analysis was executed.

Results

Search results

This systematic review and meta-analysis included 51 studies^{11-13,16-63} that reported AMR to at least 1 of the 18 commonly assessed antibiotics. In total, 15791 study participants were assessed for UTI, and from these cases, 1561 UPEC were isolated and analysed for AMR, MDR and ESBL production (Table 1). After data extraction, meta-analysis was conducted for antibiotics to which AMR was reported by more than five studies. The number of studies included in the meta-analysis varied for different antibiotics, ranging from 6 studies for tobramycin to 46 studies for ciprofloxacin and trimethoprim/sulfamethoxazole, covering a spectrum of antibiotic resistance patterns. All the studies incorporated into this systematic review and meta-analysis had a quality assessment score exceeding 77.8% (Table S1).

AMR profiles of UPEC

This comprehensive systematic review and meta-analysis investigated the AMR pattern of UPEC to 18 different antibiotics. From this review the pooled prevalence of UPEC-associated UTI was 9.2%. The pooled prevalence of AMR in UPEC for the assessed 18 antibiotics varied from 3.64% (95% CI: -4.38% to 11.67%) for amikacin to 82.52% (95% CI: 78.6%-92.04%) for ampicillin (Table 2); forest plots of pooled AMR of UPEC to each antibiotic are depicted in Figures S1–S18.

UPEC exhibited elevated pooled resistance rates to penicillin antibiotics, varying from 52.45% (95% CI: 43.17%–61.19%) to 82.52% (95% CI: 74.3%–90.74%), nalidixic acid at 41.64% (95% CI: 30.73%–52.55%) and trimethoprim/sulfamethoxazole at 57.17% (95% CI: 49.93%–64.42%). Conversely, resistance levels were notably lower for amikacin (3.64%), meropenem at 5.26% (95% CI: 2.64%–7.88%) and nitrofurantoin at 25.1% (95% CI: 20.18%–30.01%). UPEC isolates showed a pooled resistance of 27.93% (95% CI: 15.46%–40.39%) for the secondgeneration cephalosporin cefoxitin, and a closely related resistance for three different antibiotics under the category of third-generation cephalosporins (ceftazidime, cefotaxime and ceftriaxone) ranging from 33.18% to 35.6% (Table 2).

The Egger's test revealed evidence of publication bias in the studies utilized to compute the combined resistance rates of several antibiotics, including amikacin, gentamicin, meropenem, cefoxitin, nitrofurantoin, trimethoprim/sulfamethoxazole and ampicillin. Subsequently, a trim-and-fill analysis was conducted to address this bias. The outcomes of the trim-and-fill analysis prompted adjustments in the pooled resistance rates, with the exception of gentamicin and cefoxitin, which remained unaffected. Following the trim-and-fill analysis, adjustments were made to the pooled resistance rates of UPEC to amikacin, meropenem, nitrofurantoin, trimethoprim/sulfamethoxazole and ampicillin (Table 2), after imputation of different numbers of studies for each antibiotics. (Tables S2–S8); funnel plots before and after trim-and-fill analysis are depicted in Figures S19–S28.

The studies used to estimate the pooled resistance for each antibiotic exhibited high heterogeneity, surpassing 68.8%. Consequently, subgroup analyses were performed based on the year of the study and the regions where the studies were conducted to pinpoint the source of this heterogeneity. Subgroup analysis based on regions revealed a noteworthy contrast across various regions of the country. Specifically, cefoxitin, cefotaxime, nalidixic acid and chloramphenicol displayed significantly heightened resistance in Southern Nations, Nationalities and Peoples' Region (SNNPR), whereas amikacin exhibited elevated resistance in the Amhara region. Additionally, subgroup analysis based on the year demonstrated significant differences in resistance to amoxicillin and tobramycin over time, with resistance to amoxicillin displaying an escalating trend across the years (Table S10).

MDR profile of UPEC

This systematic review and analysis encompassed 34 studies reporting MDR profiles of 1022 UPEC isolates. The pooled MDR profile of UPEC was calculated to be 66.28% (95% CI: 58.57%–73.99%) (Figure 2). Egger's test revealed significant publication bias (P value <0.001), prompting the implementation of trim-and-fill analysis. This analysis yielded a pooled resistance rate of 79.17% (95% CI: 70.32%–88.01%) after the imputation of 12 studies to correct the bias (Table S9); funnel plots before and after trim-and-fill analysis are depicted in Figures S29 and S30.

The inverse of variance (I^2) statistics indicated a high level of heterogeneity at 96.13% (*P* value <0.001) among the included studies. Subsequently, subgroup analysis was conducted based on the study year and the regions where the studies were conducted. Subgroup analysis by region revealed a notable variation, with relatively higher MDR rates exceeding 70% observed in Addis Ababa, Tigray and the SNNPR (Figure 3). However, subgroup analysis by year did not show significant variation.

ESBL production profile of UPEC

We included 11 studies that examined ESBL production among 342 cases of UPEC. The overall pooled ESBL production rate among UPEC was found to be 29.16% (95% CI: 22.36%–38.55%) (Figure 4). Heterogeneity assessment revealed significant heterogeneity across the studies with an I^2 value of 66.32% and a significant *P* value of <0.001. Notably, Egger's test revealed no evidence of publication bias among the included studies. To address the observed heterogeneity, we conducted subgroup analyses based on the year of study and the region where the studies were conducted.

Upon subgroup analysis, we observed notable variations, particularly in ESBL production rates over time and across different regions. Specifically, we found that the ESBL production rate of UPEC tended to increase over the years, indicating a concerning trend of rising ESBL prevalence. Furthermore, our analysis revealed that ESBL production rates were higher in the Tigray and southern regions of Ethiopia compared with other areas (Figures S31 and S32).

Discussion

While antibiotics are crucial for combating infectious diseases, the global threat of microorganisms' ability to undermine their effectiveness is significant. This systematic review and meta-analysis revealed pooled antibiotic resistance rates among

Table 1.	Studies included in t	he systematic reviev	and meta-analysis	of AMR of UPEC in Ethiopia
Tuble 1.	Studies included in t	The systematic review	and meta analysis	

ID	Author	Year	Region	Study participants	Sample size	Number of UPEC isolates	Reports	References
			5					16
1	Abate et al.	2020	Harari Danahan sul	All age women	651	42	AMR	17
2	Abu et al.	2021	Benshangul	Pregnant women	283	21	AMR	18
3	Adugna et al.	2021	Amhara	All age and sex	422	44	AMR	19
4	Agegnehu et al.	2020	SNNPR	Paediatrics	284	32	AMR, MDR,	
F	Alexandral	2020	A ma la avec	Dish stis satisats	226	10	ESBL	20
5	Alemu et al.	2020	Amhara	Diabetic patients	336	12	AMR, MDR	21
6	Ayelign <i>et al.</i>	2018	Amhara	Paediatrics	310	45	AMR	22
7	Belete Y et al.	2019	Amhara	Paediatrics	259	14	AMR, MDR	23
8	Belete MA et al.	2020	Amhara	Pregnant women	223	17	AMR, ESBL	24
9	Biset et al.	2020	Amhara	Pregnant women	384	30	AMR, MDR, ESBL	2.
10	Bitew et al. (2017)	2017	Addis Ababa	All age and sex	712	135	AMR	25
10	Bitew et al. (2017) Bitew et al. (2022)	2017	Addis Ababa	Paediatrics	227	21	AMR	12
12	Bizuayehu et al.	2022	Addis Ababa Addis Ababa	Adults in ICU	227	8	AMR, MDR	11
13	Bizuwork et al.	2022	Addis Ababa Addis Ababa		220	17		26
				Pregnant women			AMR, MDR	27
14	Dadi et al.	2018	Addis Ababa	All age and sex	780	200	AMR, MDR	28
15	Derbie et al.	2017	Amhara	All age and sex	446	72	AMR	29
16	Diriba et al.	2019	SNNPR	Diabetic and hypertensive patients	158	9	AMR, MDR	23
17	Derese et al.	2023	Dire Dawa	Pregnant	186	7	AMR, MDR	30
18	Duffa et al.	2023	Addis Ababa	Paediatrics	384	25	AMR, MDR	31
19	Ejerssa <i>et al.</i>	2018	Harari	Pregnant women	200	14	AMR, MDR	32
20	Eshetie et al	2021	Amhara	All age and sex	200 442	104	AMR, MDR	33
			Amhara	Paediatrics	299	28	,	34
21	Fenta <i>et al.</i>	2020	Amnuru	Pueulutilics	299	20	AMR, MDR, ESBL	
22	Gebremariam et al.	2019	Tigray	All age and sex	341	36	AMR, MDR, ESBL	35
23	Gebremedhin et al.	2023	Tigray	All age and sex	64	46	AMR, MDR,	36
21	C	2017	o .		200	26	ESBL	38
24	Gessese et al.	2017	Oromia	Pregnant women	300	26	AMR	37
25	Gutema <i>et al.</i>	2018	Oromia	Diabetic patients	233	10	AMR	39
26	Hantalo et al.	2020	SNNPR	HIV patients	217	13	AMR, MDR	40
27	Kasew et al.	2021	Amhara	Patients with kidney stones	300	14	AMR, MDR, ESBL	
28	Kiros et al.	2023	Amhara	Paediatrics	220	19	AMR, MDR	41
29	Mama et al.	2019	SNNPR	Diabetic patients	239	43	AMR	42
30	Mamuye et al.	2016	Addis Ababa	All age and sex	424	53	AMR, MDR	43
31	Marami et al. (2019)	2019	Harari	HIV patients	350	24	AMR	44
32	Marami et al. (2022)	2022	Harari	Women with fistulae	146	8	AMR	45
33	Mechal <i>et al.</i>	2021	Sidama	Adults	387	46	AMR, MDR	46
34	Mekonnen et al.	2023	Harari	Paediatrics	332	23	AMR, MDR	47
35	Mitku <i>et al.</i>	2022	SNNPR	All age and sex	422	42	AMR, MDR	48
36	Nigussie et al.	2017	SNNPR	Diabetic patients	240	11	AMR, MDR	49
37	Oumer Y et al.	2022	SNNPR	Diabetic patients	282	19	AMR, MDR	50
38	Oumer O et al.	2021	Amhara	All age and sex	231	17	AMR, MDR	51
39	Seid et al.	2023	SNNPR	Sexually active women	296	22	AMR, MDR,	52
2.2		_020		serve to men	200		ESBL	
40	Sime et al.	2020	Addis Ababa	Cancer patients	292	8	AMR, MDR	53
41	Simeneh <i>et al.</i>	2020	SNNPR	HIV patients	252	16	AMR, MDR,	54
• +	sinchen et ut.		511111	patients	2.31	10	ESBL	

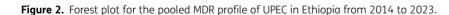
Continued

ID	Author	Year	Region	Study participants	Sample size	Number of UPEC isolates	Reports	References
42	Tadesse E et al.	2014	SNNPR	Pregnant women	244	16	AMR	55
43	Tadesse S et al.	2018	Tigray	Pregnant women	259	19	AMR	56
44	Teferi et al.	2023	Oromia	All age women	386	38	AMR, MDR, ESBL	57
45	Tigabu et al.	2020	Amhara	Cancer patients	240	9	AMR, MDR	58
46	Tula et al.	2020	SNNPR	Pregnant women	296	11	AMR	59
47	Wabe et al.	2020	Addis Ababa	Pregnant women	290	22	AMR, MDR	60
48	Woldemariam et al.	2019	Addis Ababa	Diabetic patients	248	13	AMR	61
49	Worku YG et al.	2021	Addis Ababa	Diabetic patients	225	14	AMR, MDR	62
50	Worku S et al.	2022	Amhara	Diabetic patients	250	5	AMR	13
51	Zerefaw et al.	2022	Amhara	Paediatrics	299	21	AMR, MDR	63

SNNPR, Southern Nation Nationality and People Region; AMR, Antimicrobial resistance; MDR, Multi-drug Resistance; ESBL, Extended-spectrum Beta-lactamase; HIV, Human Immunodeficiency Virus.

Table 2. Antibiotic resistance profile of UPEC in Ethiopia from 2014 to 2023

Antibiotic category	Antibiotics	No. of studies pooled	Pooled resistance (%)	95% CI	Pooled prevalence after trim-and-fill analysis (95% CI), no. of studies imputed during trim-and-fill analysis	Heterogeneity I ² (%), <i>P</i> value	Eggers test P value
Aminoglycosides	Amikacin	11	10.10	4.50-15.69	3.64 (–4.38 to 11.67), 6	68.82, <0.01	<0.01
	Gentamicin	44	32.60	25.94-39.27	No effect after trim-and-fill	91.24, <0.01	< 0.01
	Tobramycin	6	28.57	14.78-42.36		100, <0.01	0.75
Carbapenems	Meropenem	12	6.80	4.11-9.48	5.26 (2.64–7.88), 4	0.00, <0.01	0.03
Cephalosporins	Cefotaxime	15	35.31	25.99-44.63		83.54, <0.01	0.96
	Cefoxitin	13	27.93	15.46-40.39	No effect after Trim-and-fill	92.51, <0.01	0.01
	Ceftazidime	28	33.18	24.18-42.19		91.95, <0.01	0.25
	Ceftriaxone	31	35.60	26.85-44.35		91.95, <0.01	0.63
Nitrofurans	Nitrofurantoin	31	20.45	15.66-25.25	25.10 (20.18–30.01), 7	79.02, <0.01	< 0.01
Penicillins	Amoxicillin	9	82.52	74.30-90.74		75.02, <0.01	0.14
	AMC	35	52.45	43.71-61.19		92.70, <0.01	0.62
	Ampicillin	30	77.67	72.2-83.14	85.32 (78.60–92.04), 10	87.88, <0.01	< 0.01
Phenicols	Chloramphenicol	14	30.08	18.74-41.42		91.21, <0.01	0.60
Quinolones	Ciprofloxacin	46	32.64	25.96-39.33		93.16, <0.01	0.16
	NA	15	41.64	30.73-52.55		89.24, <0.01	0.32
	Norfloxacin	24	28.14	19.93-36.34		88.27, <0.01	0.22
Sulphonamides	SXT	46	58.83	51.65-66.01	57.17 (49.93–64.42), 2	100, <0.01	0.04
Tetracyclines	Tetracycline	29	60.67	51.53-69.81		92.97, <0.01	0.25


AMC, amoxicillin/clavulanic acid; NA, nalidixic acid; SXT, trimethoprim/sulfamethoxazole.

UPEC to 18 different antibiotics, ranging from 3.64% for amikacin to 85.32% for ampicillin. This comprehensive meta-analysis revealed the presence of carbapenem-resistant UPEC and an increased resistance of UPEC to the recommended empirical antimicrobial agents for UTI in Ethiopia.¹⁰

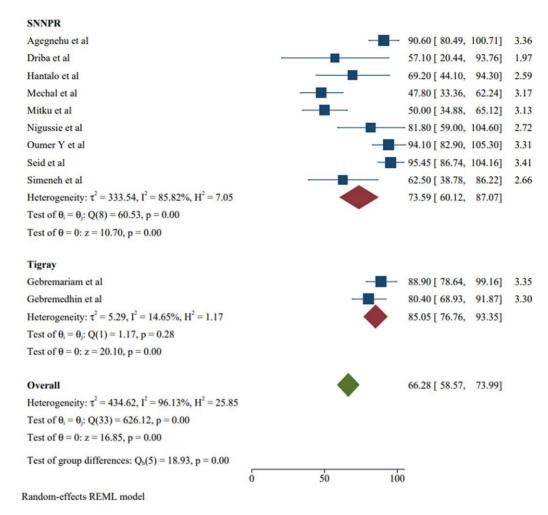
In this systematic review and meta-analysis, UPEC exhibited varying resistance levels to β -lactam antibiotics. Specifically,

resistance rates were 5.26% for meropenem, 27.93%–35.6% for cephalosporins, and 52.45%–85.32% for penicillins. Notably, our findings regarding resistance to cefotaxime, ceftazidime and ceftriaxone (35.31%, 33.18%, and 35.6%, respectively) were consistent with similar studies in Malawi and Iran. In Malawi, resistance rates were reported as 35.9%, 42.1% and 29.3% for these antibiotics, while in Iran, they were found to be 40%, 42% and 35%

Study	Year	Multi-drug resistance with 95% CI	Weigh (%)
Agegnehu et al	2020	- 90.60 [80.49, 100.71] 3.36
Alemu et al	2020	50.00 [21.71, 78.29] 2.41
Belete MA et al	2020	76.50 [56.34, 96.66	2.86
Biset et al	2020	56.67 [38.94, 74.40] 3.00
Bizuayehu et al	2020	99.90 [97.71, 102.09] 3.55
Bizuwork et al	2021] 3.12
Dadi et al	2018	- 66.50 [59.96, 73.04] 3.47
Deresse et al	2016	77.80 [50.65, 104.95] 2.47
Driba et al	2023	57.10 [20.44, 93.76] 1.97
Duffa et al	2018	66.70 [44.93, 88.47] 2.77
Ejersa et al	2021	35.70 [10.60, 60.80] 2.59
Eshetie et al	2015] 3.47
Fenta et al	2020	64.30 [46.55, 82.05] 3.00
Gebremariam et al	2019] 3.35
Gebremedhin et al	2023] 3.30
Hantalo et al	2020	69.20 [44.10, 94.30] 2.59
Kassew et al	2021	50.00 [23.81, 76.19] 2.52
Kiros et al	2023	21.10 [2.75, 39.45] 2.96
Mamuye et al	2016	47.20 [33.76, 60.64] 3.21
Marami et al 2019	2019] 3.14
Mechal et al	2021	47.80 [33.36, 62.24] 3.17
Mekonnen et al	2023	42.90 [24.57, 61.23] 2.96
Mitku et al	2022	50.00 [34.88, 65.12] 3.13
Nigussie et al	2017] 2.72
Oumer Y et al	2021] 3.31
Oumer O et al	2022	57.90 [35.70, 80.10] 2.75
Seid et al	2023	- 95.45 [86.74, 104.16] 3.41
Sime et al	2020	50.00 [15.35, 84.65] 2.07
Simeneh et al	2022	62.50 [38.78, 86.22] 2.66
Teferi et al	2023	68.40 [53.62, 83.18] 3.15
Tigabu et al	2020	44.40 [11.94, 76.86] 2.18
Wabe et al	2020	45.40 [24.60, 66.20] 2.83
Worku YG et al	2021	99.90 [98.24, 101.56] 3.56
Zerefaw et al	2022	76.20 [57.99, 94.41] 2.97
Overall		66.28 [58.57, 73.99	1
Heterogeneity: $\tau^2 = 434.62$, $I^2 = 96.13\%$, $H^2 = 25.85$		•	1
	(3) = 626.12, p = 0.00		
Test of $\theta = 0$: $z = 10$			
		0 50 100	

respectively.^{64,65} In this study, the resistance of UPEC to ampicillin was found to be 85.32%, consistent with previous reports. Specifically, studies from Malawi reported a resistance of 75%, while those from Iran and West Africa reported resistance rates of 86%, 74.6% and 75% respectively.⁶⁴⁻⁶⁷ Furthermore, in this study, resistance to amoxicillin and amoxicillin/clavulanic acid was observed at rates of 82.52% and 52.45%, respectively. These findings align with reported resistance rates from Malawi, which were 72.7% for amoxicillin and 40.8% for amoxicillin/clavulanic acid.⁶⁵

Random-effects REML model


In this systematic review, UPEC resistance to the last-resort antibiotic meropenem was 5.26%, which is higher than resistance reported from Malawi (0.3%).⁶⁵ The presence of meropenemresistant UPEC in this systematic review and meta-analysis emphasizes the urgent necessity for enhanced antimicrobial stewardship, robust infection control measures, and improved access to alternative treatments. This trend underscores the potential for a future burden of infectious diseases that may become untreatable, highlighting the critical importance of proactive intervention strategies.

Study	Multi-drug resistant with 95% CI	e Weight (%)
Addis Ababa		
Bizuayehu et al	99.90 [97.71, 102.0	9] 3.55
Bizuwork et al		[4] 3.12
Dadi et al	- 66.50 [59.96, 73.0	4] 3.47
Duffa et al	66.70 [44.93, 88.4	7] 2.77
Mamuye et al	47.20 [33.76, 60.6	3.21
Sime et al	50.00 [15.35, 84.6	5] 2.07
Wabe et al	45.40 [24.60, 66.2	2.83
Worku YG et al	99.90 [98.24, 101.5	6] 3.56
Heterogeneity: $\tau^2 = 483.68$, $I^2 = 98.84\%$, $H^2 = 86.49$	72.42 [56.11, 88.7	3]
Test of $\theta_i = \theta_j$: Q(7) = 193.10, p = 0.00		
Test of $\theta = 0$: $z = 8.70$, $p = 0.00$		
Amhara		
Alemu et al	50.00 [21.71, 78.2	2.41
Belete MA et al	76.50 [56.34, 96.6	6] 2.86
Biset et al	56.67 [38.94, 74.4	0] 3.00
Eshetie et al	85.70 [79.22, 92.1	8] 3.47
Fenta et al	64.30 [46.55, 82.0	3.00
Kassew et al	50.00 [23.81, 76.1	9] 2.52
Kiros et al	21.10 [2.75, 39.4	5] 2.96
Oumer O et al	57.90 [35.70, 80.1	0] 2.75
Tigabu et al	44.40 [11.94, 76.8	6] 2.18
Zerefaw et al	76.20 [57.99, 94.4	1] 2.97
Heterogeneity: $\tau^2 = 306.38$, $I^2 = 79.85\%$, $H^2 = 4.96$	59.76 [47.07, 72.4	5]
Test of $\theta_i = \theta_i$: Q(9) = 60.06, p = 0.00		
Test of $\theta = 0$: $z = 9.23$, $p = 0.00$		
Oromia		
Teferi et al	68.40 [53.62, 83.1	8] 3.15
Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$, $H^2 = .$	68.40 [53.62, 83.1	8]
Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = .		
Test of $\theta = 0$: $z = 9.07$, $p = 0.00$		
Others		
Deresse et al	77.80 [50.65, 104.9	2.47
Ejersa et al	35.70 [10.60, 60.8	2.59
Marami et al 2019	16.70 [1.78, 31.6	3.14
Mekonnen et al	42.90 [24.57, 61.2	
Heterogeneity: $\tau^2 = 499.38$, $I^2 = 82.16\%$, $H^2 = 5.61$	41.76 [17.36, 66.1	
Test of $\theta_i = \theta_j$: Q(3) = 16.04, p = 0.00 Test of $\theta = 0$: z = 3.35, p = 0.00		

Figure 3. Subgroup analysis of MDR in UPEC by region.

The pooled resistance of UPEC to different cephalosporin group antibiotics indicated that cefoxitin resistance was 27.93%, which is higher compared with reports from Malawi, which indicated resistance rate of 14.7%.⁶⁵ Furthermore, the resistance to ceftriaxone observed in this study was higher

compared with the resistance reported from the Philippines (1.1%) and Korea (3%).^{68,69} However, the resistance to ceftazidime in this review was lower than the reported resistance from Iran (51.4% and 83.6%). Similarly, the resistance to cefotaxime was lower than the reported resistance from Iran

(62.9%).^{66,70} The proportion of ESBL production among UPEC in this study was 29.16%, consistent with rates reported in studies from Romania (32.8%),⁷¹ Palestine (33.3%)⁷² and Iran (34.6%).⁷³ The proportion of ESBL production is higher than in a study in Uganda (16.7%),⁷⁴ but lower than in studies in Jordan (62%),⁷⁵ Nepal (50.9%)⁷⁶ and Mexico (49%).⁷⁷ Variations in ESBL production rates among UPEC may stem from differences in ESBL detection methods, study populations, settings, healthcare practices and antibiotic usage.^{78,79} Subgroup analysis by year and region underscores the dynamic nature of ESBL prevalence, stressing the need for region-specific surveillance and interventions to effectively tackle this public health concern.

The pooled resistance of UPEC to aminoglycosides in this review varied, showing low resistance to amikacin (3.64%), and moderate resistance to tobramycin (28.57%) and gentamicin (32.6%). Notably, the resistance of UPEC to amikacin observed in this study was lower than that reported in Malawi (19.9%) and Iran (17%–38.4%).^{64–66,70} Resistance to gentamicin and tobramycin observed in this study aligned closely with reports from Malawi, showing resistance rates of 33.7% for gentamicin and 28.0% for tobramycin.⁶⁵ However, the observed gentamicin resistance was higher than that reported in the USA⁸⁰ and the

Philippines (6.7%).⁶⁸ Similarly, resistance to tobramycin was higher compared with reports from Iran (10.8%).⁶⁶

The Food, Medicine and Health Care Administration and Control Authority of Ethiopia recommends trimethoprim/sulfamethoxazole, nitrofurantoin and ciprofloxacin as empirical treatment for UTI,¹⁰ even though the findings from this systematic review and meta-analysis revealed increased AMR in UPEC to these antibiotics. The pooled resistance of UPEC nitrofurantoin (25.1%) and trimethoprim/sulfamethoxazole (57.17%) observed in this study corresponds closely with findings from a systematic review in Malawi, indicating resistance of 20% for nitrofurantoin and 59.3% for trimethoprim/sulfamethoxazole.⁶⁵ The resistance of UPEC in this study to chloramphenicol (28.41%), ciprofloxacin (31.09%), nalidixic acid (39.54%), norfloxacin (27.51%) and tetracycline (60.67%) is comparatively lower than that reported in a systematic review and meta-analysis conducted in Cameroon.⁸¹ The variation in UPEC resistance profiles to various antibiotics across countries could stem from differences in study settings and bacterial exposure to antibiotics. Additionally, variations may be attributed to differences in infection prevention and control practices, and hospital overcrowding, as well as disparities in lifestyles, income levels, educational attainment and health knowledge among study participants.

Study	Year		ESBL Prevalence with 95% CI	Weight (%)
Abayneh et al	2018		20.60 [10.61, 30.59]	11.79
Agegnehu et al	2020		37.50 [20.73, 54.27]	8.88
Belete MA et al	2020		11.80 [-3.54, 27.14]	9.48
Biset et al	2020		16.67 [3.33, 30.01]	10.33
Fenta et al	2020		17.90 [3.70, 32.10]	9.96
Gebremariam et al	2019		27.80 [13.17, 42.43]	9.77
Gebremedhin et al	2023		52.20 [37.76, 66.64]	9.86
Kassew et al	2021	_	42.90 [16.97, 68.83]	5.81
Seid et al	2023		50.00 [29.11, 70.89]	7.34
Simench et al	2022		31.30 [8.58, 54.02]	6.74
Teferi et al	2023		26.30 [12.30, 40.30]	10.05
Overall		-	29.16 [21.06, 37.25]	
Heterogeneity: $\tau^2 =$	118.76, $I^2 = 66.32\%$, $H^2 = 2.97$			
Test of $\theta_i = \theta_j$: Q(10)	(0) = 28.70, p = 0.00			
Test of $\theta = 0$: $z = 7$.	06, p = 0.00			
		0 20 40 60	80	
Random-effects REM	IL model			

Figure 4. Pooled prevalence of ESBL-producing UPEC in Ethiopia from 2014 to 2023.

The pooled proportion of MDR among UPEC in this study was 79.17%, consistent with findings from a review conducted in Iran (81.1%).⁸² However, this rate was higher compared with another report from Iran (49.4%)⁸³ and Nepal (34.2%). The proportion of ESBL production among UPEC in this study was 29.16%, consistent with rates reported in studies from Romania (32.8%),⁷¹ Palestine (33.3%)⁷² and Iran (34.6%).⁷³ The proportion of ESBL production is higher than a study in Uganda (16.7%),⁷⁴ whereas lower than studies in Jordan (62%),⁷⁵ Nepal (50.9%)⁷⁶ and Mexico (49%).⁷⁷ Variations in MDR rates among UPEC may stem from differences in study populations, settings, healthcare practices and antibiotic usage.^{78,79}

Several interconnected factors might be responsible for the increased AMR in developing countries included in our systematic review and meta-analysis. These factors include the overuse and misuse of antibiotics due to inadequate regulation and oversight, limited access to healthcare facilities and diagnostics, poor infection control practices in healthcare settings, lack of robust surveillance systems to monitor resistance patterns, environmental contamination from antibiotic disposal, socioeconomic factors such as poverty and poor sanitation, and the prevalence of substandard or counterfeit antibiotics.^{84,85}

For the future, research could focus on developing novel antimicrobial agents, exploring the molecular epidemiology of AMR genes in UPEC, assessing the predisposing factors, and evaluating interventions to reduce AMR. In Ethiopia, there is a pressing need for the establishment of a comprehensive surveillance system on AMR to identify the most effective antimicrobial agents for use as empirical therapy against various infections in the future.

Strength and limitations

This systematic review and meta-analysis has strengths such as employing a predefined protocol for the overall process of the systematic review and meta-analysis, and using internationally recognized tools for critical appraisal of the quality of each study However, limitations were observed due to inability to synthesize data regarding the molecular epidemiology of the bacterial strains and resistance genes due to the lack of existing literature.

Conclusions

This systematic review and meta-analysis reveal a significant increase in AMR, MDR and ESBL production among UPEC strains in Ethiopia. These findings underscore a pressing public health challenge, necessitating urgent action to implement comprehensive strategies for antimicrobial stewardship, infection control and the exploration of alternative treatment options for UTI caused by UPEC in Ethiopia.

Based on the data from this systematic review and metaanalysis, the following recommendations are proposed: strengthen antimicrobial stewardship, enhance infection prevention and control measures; surveillance of AMR, and public awareness and education are required to decrease AMR.

Funding

This systematic review and meta-analysis work was not funded by any organization or individual.

Transparency declarations

The authors declare that they have no conflict of interests.

Author contributions

Z.A. led the systematic review and meta-analysis, overseeing the study's conceptualization, article selection, data extraction, statistical analysis and manuscript preparation. Z.A. and W.A. played a pivotal role in

searching for relevant articles, conducting data extraction, performing statistical analysis, and contributing to manuscript drafting. M.E. and E.T. provided valuable support in data extraction and statistical analysis to ensure accuracy and completeness. Additionally, all authors actively engaged in critically reviewing the study's progress, data analysis and manuscript preparation, culminating in the collective approval of the final manuscript for submission, thereby affirming their endorsement of its content and findings.

Supplementary data

Figures S1 to S32 and Tables S1 to S10 are available as Supplementary data at JAC-AMR Online.

References

1 CDC. Antibiotic resistance threats in the United States, 2019. 2019. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.

2 Christaki E, Marcou M, Tofarides A. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. *J Mol Evol* 2020; **88**: 26–40. https://doi.org/10.1007/s00239-019-09914-3

3 Dadgostar P. Antimicrobial resistance: implications and costs. *Infect Drug Resist* 2019; **12**: 3903–10. https://doi.org/10.2147/IDR.S234610

4 Lee J-H. Perspectives towards antibiotic resistance: from molecules to population. *Microbiology* 2019; **57**: 181–4. https://doi.org/10.1007/s12275-019-0718-8

5 Magiorakos A-P, Srinivasan A, Carey RB *et al.* Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. *Clin Microbiol Infect* 2012; **18**: 268–81. https://doi.org/10.1111/j.1469-0691. 2011.03570.x

6 Murray CJ, Ikuta KS, Sharara F *et al.* Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *Lancet* 2022; **399**: 629–55. https://doi.org/10.1016/S0140-6736(21)02724-0

7 CDC. Antibiotic resistance threats in the United States, 2013. 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.

8 Nicolle LE. Urinary tract infection. *Crit Care Clin* 2013; **29**: 699–715. https://doi.org/10.1016/j.ccc.2013.03.014

9 Behzadi P, García-Perdomo HA, Autrán Gómez AM *et al.* Uropathogens, urinary tract infections, the host-pathogen interactions and treatment. *Front Microbiol* 2023; **14**: 1183236. https://doi.org/10.3389/fmicb.2023. 1183236

10 Food, Medicine and Health Care Administration and Control Authority of Ethiopia. Standard Treatment Guidelines for General Hospitals. 2014. http://www.fmhaca.gov.et/wp-content/uploads/2019/03/STG-General-Hospital..pdf.

11 Bizuayehu H, Bitew A, Abdeta A *et al.* Catheter-associated urinary tract infections in adult intensive care units at a selected tertiary hospital, Addis Ababa, Ethiopia. *PLoS One* 2022; **17**: e0265102. https://doi.org/10. 1371/journal.pone.0265102

12 Bitew A, Zena N, Bacterial AA *et al.* Antibiotic susceptibility patterns of bacterial pathogens and associated risk factors of urinary tract infection among symptomatic pediatrics patients attending St. Paul's Hospital Millennium Medical College. *Infect Drug Resist* 2022; **15**: 1613–24. https://doi.org/10.2147/IDR.S358153

13 Worku S, Girum A, Birhan A *et al.* Urinary tract infection: antibiotic resistance profiles of bacterial etiologies and associated risk factors in diabetic patients attending Debre Tabor Hospital. Northwest Ethiopia. *Res Sq* 2022; http://doi.org/10.21203/rs.3.rs-1316717/v1

14 Page MJ, McKenzie JE, Bossuyt PM *et al*. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021; **372**: n71. https://doi.org/10.1136/bmj.n71

15 Munn Z, Moola S, Lis K *et al.* JBI Manual for Evidence Synthesis, Systematic Reviews of Prevalence and Incidence. 2020. https://jbi-global-wiki.refined.site/space/MANUAL/355863557/Previous+versions.

16 Abate D, Marami D, Letta S *et al.* Prevalence, antimicrobial susceptibility pattern, and associated factors of urinary tract infections among pregnant and nonpregnant women at public health facilities, Harar, Eastern Ethiopia. *Can J Infect Dis Med Microbiol* 2020; **2020**: 9356865. https:// doi.org/10.1155/2020/9356865

17 Abu D, Abula T, Zewdu T *et al.* Asymptomatic bacteriuria, antimicrobial susceptibility pattern and associated risk factors among pregnant women attending antenatal care in Assosa General Hospital, Western Ethiopia. *BMC Microbiol* 2021; **21**: 348. https://doi.org/10.1186/s12866-021-02417-6

18 Adugna B, Sharew B, Jemal M. Bacterial profile, antimicrobial susceptibility pattern, and associated factors of community- and hospital-acquired urinary tract infection at Dessie Referral Hospital, Dessie, Northeast Ethiopia. *Int J Microbiol* 2021; **2021**: 5553356. https://doi.org/10.1155/2021/5553356

19 Agegnehu A, Worku M, Nigussie D *et al.* Pediatric febrile urinary tract infection caused by ESBL producing Enterobacteriaceae species. *Biomed Res In* 2020; **2020**: 6679029. https://doi.org/10.1155/2020/6679029

20 Alemu M, Belete MA, Gebreselassie S *et al.* Bacterial profiles and their associated factors of urinary tract infection and detection of extended spectrum beta-lactamase producing Gram-Negative uropathogens among patients with diabetes mellitus at Dessie Referral Hospital, Northeastern Ethiopia. *Diabetes Metab Syndr Obes* 2020; **13**: 2935–48. https://doi.org/10.2147/DMSO.S262760

21 Ayelign B, Abebe B, Shibeshi A *et al.* Bacterial isolates and their antimicrobial susceptibility patterns among pediatric patients with urinary tract infections. *Turk J Urol* 2018; **44**: 62–9. https://doi.org/10.5152/tud. 2017.33678

22 Belete Y, Asrat D, Woldeamanuel Y *et al.* Bacterial profile and antibiotic susceptibility pattern of urinary tract infection among children attending Felege Hiwot Referral Hospital, Bahir Dar, Northwest Ethiopia. *Infect Drug Resist* 2019; **12**: 3575–83. https://doi.org/10.2147/IDR.S217574

23 Belete MA. Bacterial profile and ESBL screening of urinary tract infection among asymptomatic and symptomatic pregnant women attending antenatal care of Northeastern Ethiopia region. *Infect Drug Resist* 2020; **13**: 2579–92. https://doi.org/10.2147/IDR.S258379

24 Biset S, Moges F, Endalamaw D *et al.* Multi-drug resistant and extended-spectrum β -lactamases producing bacterial uropathogens among pregnant women in Northwest Ethiopia. *Ann Clin Microbiol Antimicrob* 2020; **19**: 25. https://doi.org/10.1186/s12941-020-00365-z

25 Bitew A, Molalign T, Chanie M. Species distribution and antibiotic susceptibility profile of bacterial uropathogens among patients complaining urinary tract infections. *BMC Infect Dis* 2017; **17**: 654. https://doi.org/10. 1186/s12879-017-2743-8

26 Bizuwork K, Alemayehu H, Medhin G et al. Asymptomatic bacteriuria among pregnant women in Addis Ababa, Ethiopia: prevalence, causal agents, and their antimicrobial susceptibility. *Int J Microbiol* 2021; **2021**: 8418043. https://doi.org/10.1155/2021/8418043

27 Dadi BR, Abebe T, Zhang L *et al.* Drug resistance and plasmid profile of uropathogenic *Escherichia coli* among urinary tract infection patients in Addis Abeba. *J Infect Dev Ctries* 2018; **12**: 608–15. https://doi.org/10. 3855/jidc.9916

28 Derbie A, Hailu D, Mekonnen D *et al.* Antibiogram profile of uropathogens isolated at Bahir Dar Regional Health Research Laboratory Centre, Northwest Ethiopia. *Pan Afr Med J* 2017; **26**: 134. https://doi.org/10. 11604/pamj.2017.26.134.7827 **29** Diriba K, Awulachew E, Bizuneh B. Identification of bacterial uropathogen and antimicrobial resistance patterns among patients with diabetic and hypertension attending Dilla University General Hospital, Dilla, Ethiopia. *Infect Drug Resist* 2023; **16**: 4621–33. https://doi.org/10.2147/ IDR.S417033

30 Derese B, Kedir H, Teklemariam Z *et al.* Bacterial profile of urinary tract infection and antimicrobial susceptibility pattern among pregnant women attending at antenatal clinic in Dil Chora referral hospital, Dire Dawa, Eastern Ethiopia. *Ther Clin Risk Manag* 2016; **12**: 251–60. https://doi.org/10.2147/TCRM.S99831

31 Merga Duffa Y, Terfa Kitila K, Gebre DM *et al.* Prevalence and antimicrobial susceptibility of bacterial uropathogens isolated from pediatric patients at Yekatit 12 Hospital Medical College, Addis Ababa, Ethiopia. *Int J Microbiol* 2018; **2018**: 8492309. https://doi.org/10.1155/2018/8492309

32 Ejerssa AW, Gadisa DA, Orjino TA. Prevalence of bacterial uropathogens and their antimicrobial susceptibility patterns among pregnant women in Eastern Ethiopia: hospital-based cross-sectional study. *BMC Women's Health* 2021; **21**: 291. https://doi.org/10.1186/s12905-021-01439-6

33 Eshetie S, Unakal C, Gelaw A *et al*. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral hospital, Northwest Ethiopia. *Antimicrob Resist Infect Control* 2015; **4**: 12. https://doi.org/10.1186/s13756-015-0054-7

34 Fenta A, Dagnew M, Eshetie S *et al.* Bacterial profile, antibiotic susceptibility pattern and associated risk factors of urinary tract infection among clinically suspected children attending at Felege-Hiwot Comprehensive and Specialized Hospital, Northwest Ethiopia. *BMC Infect Dis* 2020; **20**: 673. https://doi.org/10.1186/s12879-020-05402-y

35 Gebremariam G, Legese H, Woldu Y *et al.* Bacteriological profile, risk factors and antimicrobial susceptibility patterns of symptomatic urinary tract infection among students of Mekelle University, Northern Ethiopia. *BMC Infect Dis* 2019; **19**: 950. https://doi.org/10.1186/s12879-019-4610-2

36 Gebremedhin MG, Weldu Y, Kahsay AG *et al.* Extended-spectrum β -lactamase and carbapenemase-producing gram-negative bacteria and associated factors among patients suspected of community and hospital-acquired urinary tract infections at Ayder Comprehensive Specialized Hospital, Tigrai, Ethiopia. *Infect Drug Resist* 2023; **16**: 4025–37. https://doi.org/10.2147/IDR.S412350

37 Gutema T, Weldegebreal F, Marami D *et al.* Prevalence, antimicrobial susceptibility pattern, and associated factors of urinary tract infections among adult diabetic patients at Metu Karl Heinz Referral Hospital, Southwest Ethiopia. *Int J Microbiol* 2018; **2018**: 7591259. https://doi.org/10.1155/2018/7591259

38 Gessese YA, Damessa DL, Amare MM *et al*. Urinary pathogenic bacterial profile, antibiogram of isolates and associated risk factors among pregnant women in Ambo town, Central Ethiopia: a cross-sectional study. *Antimicrob Resist Infect Control* 2017; **6**: 132. https://doi.org/10.1186/ s13756-017-0289-6

39 Haile Hantalo A, Haile Taassaw K, Solomon Bisetegen F *et al.* Isolation and antibiotic susceptibility pattern of bacterial uropathogens and associated factors among adult people living with HIV/AIDS attending the HIV center at Wolaita Sodo University teaching referral hospital, south Ethiopia. *HIV AIDS (Auckl)* 2020; **12**: 799–808. https://doi.org/10.2147/HIV. S244619

40 Kasew D, Eshetie S, Diress A *et al.* Multiple drug resistance bacterial isolates and associated factors among urinary stone patients at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. *BMC Urol* 2021; **21**: 27. https://doi.org/10.1186/s12894-021-00794-8

41 Kiros T, Zeleke M, Eyayu T *et al.* Bacterial etiology of urinary tract infection and antibiogram profile in children attending Debre Tabor Comprehensive Specialized Hospital, Northwest Ethiopia. *Interdiscip Perspect Infect Dis* 2023; **2023**: 1035113. https://doi.org/10.1155/2023/1035113

42 Mama M, Manilal A, Gezmu T *et al.* Prevalence and associated factors of urinary tract infections among diabetic patients in Arba Minch Hospital, Arba Minch province, South Ethiopia. *Turk J Urol* 2019; **45**: 56–62. https://doi.org/10.5152/tud.2018.32855

43 Mamuye Y. Antibiotic resistance patterns of common Gram-negative uropathogens in St. Paul's Hospital Millennium Medical College. *Ethiop J Health Sci* 2016; **26**; 93–100. https://doi.org/10.4314/ejhs.v26i2.2

44 Marami D, Balakrishnan S, Seyoum B. Prevalence, antimicrobial susceptibility pattern of bacterial isolates, and associated factors of urinary tract infections among HIV-positive patients at Hiwot Fana Specialized University Hospital. *Can J Infect Dis Med Microbiol* 2019; **2019**: 6780354. https://doi.org/10.1155/2019/6780354

45 Marami D, Abate D, Letta S. Urinary tract infection, antimicrobial susceptibility pattern of isolates, and associated factors among women with a post-fistula at public health facilities, Harar, Eastern Ethiopia. *SAGE Open Med* 2022; **10**: 20503121221079309. https://doi.org/10.1177/20503121 221079309

46 Mechal T, Hussen S, Desta M. Bacterial profile, antibiotic susceptibility pattern and associated factors among patients attending adult OPD at Hawassa University Comprehensive Specialized Hospital, Hawassa, Ethiopia. *Infect Drug Resist* 2021; **14**: 99–110. https://doi.org/10.2147/ IDR.S287374

47 Mekonnen S, Tesfa T, Shume T *et al.* Bacterial profile, their antibiotic susceptibility pattern, and associated factors of urinary tract infections in children at Hiwot Fana Specialized University Hospital, Eastern Ethiopia. *PLoS One* 2023; **18**: e0283637. https://doi.org/10.1371/journal. pone.0283637

48 Mitiku A, Aklilu A, Tsalla T *et al.* Magnitude and antimicrobial susceptibility profiles of Gram-Negative bacterial isolates among patients suspected of urinary tract infections in Arba Minch General Hospital, Southern Ethiopia. *PLoS One* 2022; **17**: e0279887. https://doi.org/10.1371/journal.pone.0279887

49 Nigussie D, Amsalu A. Prevalence of uropathogen and their antibiotic resistance pattern among diabetic patients. *Turk J Urol* 2017; **43**: 85–92. https://doi.org/10.5152/tud.2016.86155

50 Oumer Y, Regasa Dadi B, Seid M *et al.* Catheter-associated urinary tract infection: incidence, associated factors and drug resistance patterns of bacterial isolates in Southern Ethiopia. *Infect Drug Resist* 2021; **14**: 2883–94. https://doi.org/10.2147/IDR.S311229

51 Oumer O, Metaferia Y, Gebretsadik D. Bacterial uropathogens, their associated factors, and antimicrobial susceptibility pattern among adult diabetic patients in two health centers at Kombolcha town, Northeastern Ethiopia. *SAGE Open Med* 2022; **10**: 20503121221139149. https://doi.org/10.1177/20503121221139149

52 Seid M, Markos M, Aklilu A *et al.* Community-acquired urinary tract infection among sexually active women: risk factors, bacterial profile and their antimicrobial susceptibility patterns, Arba Minch, Southern Ethiopia. *Infect Drug Resist* 2023; **16**: 2297–310. https://doi.org/10. 2147/IDR.S407092

53 Sime WT, Biazin H, Zeleke TA *et al*. Urinary tract infection in cancer patients and antimicrobial susceptibility of isolates in Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. *PLoS One* 2020; **15**: e0243474. https://doi.org/10.1371/journal.pone.0243474

54 Simeneh E, Gezimu T, Woldemariam M *et al.* Magnitude of multidrug-resistant bacterial uropathogens and associated factors in urinary tract infection suspected adult HIV-positive patients in Southern Ethiopia. *Open Microbiol J* 2022; **16**: e187428582208180 https://doi.org/10.2174/18742858-v16-e2208180

55 Tadesse E, Teshome M, Merid Y *et al.* Asymptomatic urinary tract infection among pregnant women attending the antenatal clinic of Hawassa Referral Hospital, Southern Ethiopia. *BMC Res Notes* 2014; **7**: 155. https://doi.org/10.1186/1756-0500-7-155

56 Tadesse S, Kahsay T, Adhanom G *et al.* Prevalence, antimicrobial susceptibility profile and predictors of asymptomatic bacteriuria among pregnant women in Adigrat General Hospital, Northern Ethiopia. *BMC Res Notes* 2018; **11**: 740. https://doi.org/10.1186/s13104-018-3844-1

57 Teferi S, Sahlemariam Z, Mekonnen M *et al.* Uropathogenic bacterial profile and antibiotic susceptibility pattern of isolates among gynecological cases admitted to Jimma Medical Center, South West Ethiopia. *Sci Rep* 2023; **13**: 7078. https://doi.org/10.1038/s41598-023-34048-4

58 Tigabu A, Ferede W, Belay G *et al.* Prevalence of asymptomatic bacteriuria and antibiotic susceptibility patterns of bacterial isolates among cancer patients and healthy blood donors at the university of Gondar Specialized Hospital. *Int J Microbiol* 2020; **2020**: 3091564. https://doi.org/10.1155/2020/3091564

59 Tula A, Mikru A, Alemayehu T *et al.* Bacterial profile and antibiotic susceptibility pattern of urinary tract infection among pregnant women attending antenatal care at a tertiary care hospital in Southern Ethiopia. *Can J Infect Dis Med Microbiol* 2020; **2020**: 5321276. https://doi.org/10. 1155/2020/5321276

60 Wabe YA, Reda DY, Abreham ET *et al.* Prevalence of asymptomatic bacteriuria, associated factors and antimicrobial susceptibility profile of bacteria among pregnant women attending Saint Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia. *Ther Clin Risk Manag* 2020; **16**: 823–32. https://doi.org/10.2147/TCRM.S267101

61 Woldemariam HK, Geleta DA, Tulu KD *et al.* Common uropathogens and their antibiotic susceptibility pattern among diabetic patients. *BMC Infect Dis* 2019; **19**: 43. https://doi.org/10.1186/s12879-018-3669-5

62 Yenehun Worku G, Belete Alamneh Y, Erku Abegaz WE. Prevalence of bacterial urinary tract infection and antimicrobial susceptibility patterns among diabetes mellitus patients attending Zewditu Memorial Hospital, Addis Ababa, Ethiopia. *Infect Drug Resist* 2021; **14**: 1441–54. https://doi. org/10.2147/IDR.S298176

63 Zerefaw G, Tadesse S, Derbie A. Bacterial uropathogens, antimicrobial susceptibility profile and associated factors among pediatric patients in Bahir Dar, Northwest Ethiopia. *Ethiop J Health Sci* 2022; **32**: 81–92. https://doi.org/10.4314/ejhs.v32i1.10

64 Mortazavi-Tabatabaei SAR, Ghaderkhani J, Nazari A *et al.* Pattern of antibacterial resistance in urinary tract infections: a systematic review and meta-analysis. *Int J Prev Med* 2019; **10**: 169. https://doi.org/10. 4103/ijpvm.IJPVM_419_17

65 Bunduki GK, Heinz E, Phiri VS *et al.* Virulence factors and antimicrobial resistance of uropathogenic *Escherichia coli* (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis. *BMC Infect Dis* 2021; **21**: 753. https://doi.org/10.1186/s12879-021-06435-7

66 Zhao F, Yang H, Bi D *et al.* A systematic review and meta-analysis of antibiotic resistance patterns, and the correlation between biofilm formation with virulence factors in uropathogenic *E. coli* isolated from urinary tract infections. *Microb Pathog* 2020; **144**: 104196. https://doi.org/10. 1016/j.micpath.2020.104196

67 Bernabe KJ, Langendorf C, Ford N *et al*. Antimicrobial resistance in West Africa: a systematic review and meta-analysis. *Int J Antimicrob Agents* 2017; **50**: 629–39. https://doi.org/10.1016/j.ijantimicag.2017.07.002

68 Gangcuangco LM, Alejandria M, Henson KE *et al.* Prevalence and risk factors for trimethoprim-sulfamethoxazole-resistant *Escherichia coli* among women with acute uncomplicated urinary tract infection in a developing country. *Int J Infect Dis* 2015; **34**: 55–60. https://doi.org/10.1016/j.ijid.2015.02.022

69 Kim JH, Sun HY, Kim TH *et al.* Prevalence of antibiotic susceptibility and resistance of *Escherichia coli* in acute uncomplicated cystitis in Korea. *Medicine (Baltimore)* 2016; **95**: e4663. https://doi.org/10.1097/MD.00000 00000004663

70 Shapouri Moghaddam A, Arfaatabar M, Tavakol Afshari J *et al.* Prevalence and antimicrobial resistance of bacterial uropathogens isolated from Iranian kidney transplant recipients: a systematic review and meta-analysis. *Iran J Public Health* 2019; **48**: 2165–76.

71 Albu S, Voidazan S, Bilca D *et al.* Bacteriuria and asymptomatic infection in chronic patients with indwelling urinary catheter: the incidence of ESBL bacteria. *J Med* 2018; **97**: e11796. https://doi.org/10.1097/MD. 000000000011796

72 Tayh G, Al Laham N, Ben Yahia H *et al.* Extended-spectrum β -lactamases among Enterobacteriaceae isolated from urinary tract infections in Gaza Strip, Palestine. *Biomed Res In* 2019; **2019**: 4041801. https://doi.org/10.1155/2019/4041801

73 Naziri Z, Derakhshandeh A, Soltani Borchaloee A *et al.* Treatment failure in urinary tract infections: a warning witness for virulent multi-drug resistant ESBL-producing *Escherichia coli. Infect Drug Resist* 2020; **13**: 1839–50. https://doi.org/10.2147/IDR.S256131

74 Musinguzi B, Kabajulizi I, Mpeirwe M *et al.* Incidence and etiology of catheter associated urinary tract infection among admitted patients at Kabale Regional Referral Hospital, South Western Uganda. *Adv Infect Dis* 2019; **9**: 183–96. https://doi.org/10.4236/aid.2019.93014

75 Al-Jamei SA, Albsoul AY, Bakri FG *et al.* Extended-spectrum β -lactamase producing *E. coli* in urinary tract infections: a two-center, cross-sectional study of prevalence, genotypes and risk factors in Amman, Jordan. *J Infect Public Health* 2019; **12**: 21–5. https://doi.org/10.1016/j.jiph.2018.07.011

76 Shrestha R, Khanal S, Poudel P *et al.* Extended spectrum β -lactamase producing uropathogenic *Escherichia coli* and the correlation of biofilm with antibiotics resistance in Nepal. *Ann Clin Microbiol Antimicrob* 2019; **18**: 42. https://doi.org/10.1186/s12941-019-0340-y

77 Sierra-Diaz E, Hernandez-Rios CJ, Bravo-Cuellar A. Antibiotics resistance: microbiological profile of urinary tract infection in Mexico. *Cir Cir* 2019; **87**: 176–82. https://doi.org/10.24875/CIRU.18000494

78 Hertz FB, Schønning K, Rasmussen SC *et al.* Epidemiological factors associated with ESBL-and non ESBL-producing *E. coli* causing urinary tract infection in general practice. *Infect Dis* 2016; **48**: 241–5. https://doi.org/10.3109/23744235.2015.1103895

79 Salihu MK, Yarima A, Atta HI. Methods for the phenotypic detection of extended spectrum beta lactamase (ESBL)-producing bacteria. *Nig J Biotech* 2020; **37**: 113–25. https://doi.org/10.4314/njb. v37i2.11

80 Critchley IA, Cotroneo N, Pucci1 MJ *et al.* The burden of antimicrobial resistance among urinary tract isolates of *Escherichia coli* in the United States in 2017. *PLoS One* 2019; **14**: e0220265. https://doi.org/10.1371/journal.pone.0220265

81 Mouiche MMM, Moffo F, Akoachere JTK *et al.* Antimicrobial resistance from a one health perspective in Cameroon: a systematic review and meta-analysis. *BMC Public Health* 2019; **19**: 1135. https://doi.org/10. 1186/s12889-019-7450-5

82 Mohsenzadeh M, Abtahi-Eivary S-H, Pirouzi A *et al.* A systematic review and meta-analysis of urinary tract infection, frequency of IS elements and MDR isolates retrieved from adult patients. *Gene Rep* 2020; **20**: 100707. https://doi.org/10.1016/j.genrep.2020.100707

83 Hadifar S, Moghoofei M, Nematollahi S *et al.* Epidemiology of multidrug resistant uropathogenic *Escherichia coli* in Iran: a systematic review and meta-analysis. *Jpn J Infect Dis* 2017; **70**: 19–25. https://doi.org/10. 7883/yoken.JJID.2015.652

84 PAHO, WHO. Worldwide Country Situation Analysis: Response to Antimicrobial Resistance. 2015. https://www.paho.org/en/node/63913.

85 WHO. Global Action Plan on Antimicrobial Resistance. 2016. https://www.who.int/publications/i/tem/9789241509763.