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Abstract

Background: Finding an efficient method to solve the parameter estimation problem (inverse problem) for
nonlinear biochemical dynamical systems could help promote the functional understanding at the system level for
signalling pathways. The problem is stated as a data-driven nonlinear regression problem, which is converted into
a nonlinear programming problem with many nonlinear differential and algebraic constraints. Due to the typical ill
conditioning and multimodality nature of the problem, it is in general difficult for gradient-based local optimization
methods to obtain satisfactory solutions. To surmount this limitation, many stochastic optimization methods have
been employed to find the global solution of the problem.

Results: This paper presents an effective search strategy for a particle swarm optimization (PSO) algorithm that
enhances the ability of the algorithm for estimating the parameters of complex dynamic biochemical pathways.
The proposed algorithm is a new variant of random drift particle swarm optimization (RDPSO), which is used to
solve the above mentioned inverse problem and compared with other well known stochastic optimization
methods. Two case studies on estimating the parameters of two nonlinear biochemical dynamic models have
been taken as benchmarks, under both the noise-free and noisy simulation data scenarios.

Conclusions: The experimental results show that the novel variant of RDPSO algorithm is able to successfully solve
the problem and obtain solutions of better quality than other global optimization methods used for finding the
solution to the inverse problems in this study.

Background
Evolutionary algorithms (EAs) have been widely used for
data mining tasks in Bioinformatics and Computational
Biology [1,2]. They are random search methods inspired
by natural mechanisms existing in the biological world
[1,2]. EAs originally comprised four types of paradigms,
namely, genetic algorithms (GAs), genetic programming
(GP), evolution strategies (ES), and evolutionary program-
ming (EP), with GAs being the most popular one. Data
analysis tools traditionally used in Bioinformatics were
mainly based on statistical techniques, such as regression
and estimation, and EAs played significant roles in hand-
ling large biological data sets in a robust and computation-
ally efficient manner [2].

Currently, evolutionary computing techniques mostly
comprise conventional EAs (GAs, GP, ES and EP), swarm
intelligence algorithms, artificial immune systems, differ-
ential evolution, as the main representative classes of evo-
lutionary computing approaches[3]. Swarm intelligence is
a class of evolutionary computing techniques simulating
natural systems composed of many individuals that coor-
dinate one another using decentralized control and self-
organization. Two most influential and classical examples
of swarm intelligence approaches are particle swarm opti-
mization (PSO) and ant colony optimization (ACO) algo-
rithms, which have been widely used in many different
fields [3-7]. Particularly, PSO algorithms have shown their
effectiveness in data mining tasks in bioinformatics due
to their performance in solving difficult optimisation
tasks [8-10].
Biochemical modelling can be considered a generic

data-driven regression problem on the given experimen-
tal data. The goal of biochemical modeling is to build the
mathematical formulations that quantitatively describe
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the dynamical behaviour of biochemical processes. For
example, metabolic reactions are formulated as rate laws
and described as a system of differential equations, the
kinetic parameters of which are identified from a set of
experimental data. Finding the solution of the parameter
estimation problem, thus, plays a key role in building a
dynamic model for a biochemical process, which, in turn,
can help understand the functionality of the signalling
pathways at the system level [11,12].
Since solving the inverse problem in biochemical process

modelling involves a task of nonlinear programming, many
numerical optimization methods have been used to deter-
mine the parameters of biochemical models. These meth-
ods can be generally classified into two categories, namely,
local optimization methods and global optimization meth-
ods [13]. The widely used local optimization tools for
inverse problems are those based on gradient descent
methods, the most popular being the Newton method [14].
This type of approaches, however, cannot be applied to
non-smooth problems, since the objective functions of the
problems are discontinuous or have discontinuous deriva-
tives. Direct search methods, such as the Hooke-Jeeves
method, the Needler-Mead simplex algorithm and the
Downhill simplex algorithm, are also a kind of local opti-
mization techniques that could be used to find a local
minimum without the information from derivatives [13].
Normally, most local optimization approaches are used as
single shooting methods. For each of them, the path of its
optimization process leading to a final solution is deter-
mined by the initial conditions for the state variables.
Therefore, the algorithm will lead to a wrong minimum,
particularly if the initial conditions depend on model para-
meters. To overcome this shortcoming, one can adopt
multiple shooting methods in which the time interval is
partitioned and new initial conditions are used at the start
of each time interval part [15]. The methods can offer the
possibility to circumvent local optima by enlarging the
parameter space during the optimization process.
The aforementioned local search methods are generally

less efficient for the inverse problems of biochemical mod-
els, which are multimodal and high-dimensional. In order
to solve these hard inverse problems efficiently, one can
turn to global optimization methods, most of which incor-
porate stochastic search strategies to prevent the search
process from being stuck into the local optimal or subopti-
mal solutions. The branch-and-bound approach is a global
optimization method that converts the inverse problem
into a convex optimization problem so that a global opti-
mal solution can be obtained [16]. This method requires a
finite search space that can be divided into smaller sub-
spaces. A remarkable disadvantage is that it is applicable
only if the lower and upper bounds of the objective func-
tion can be computed. Simulated annealing (SA) can be
effectively used for parameter estimation from time-course

biochemical data as shown in [17]. However, it has a slow
convergence speed and high computational cost, and is
not easy to be parallelized. Genetic algorithms (GAs)
represent a widely used global search technique that could
be employed to predict the parameters of dynamic models
[18]. Nevertheless, GAs are always complained of
slow convergence speed and high computation cost. The
evolutionary strategy (ES) approach showed its ability to
successfully solve inverse problems in a performance com-
parison made by Moles et al. [19] among a number of glo-
bal optimization techniques on biochemical system
identification problems. In contrast to SA, evolutionary
algorithms, including ES and GAs, can be implemented as
self-tuning methods and can be parallelizable, with the
stochastic ranking evolutionary strategy (SRES) method
being a very successful example [19-21]. Scatter search
(SS) is known as a population-based random search
approach that was proposed to identify the appropriate
parameters for nonlinear dynamic biological systems
[22,23]. As an evolutionary algorithm method, the SS
method, as well as its hybrid with a local search step after
the recombination operation, showed to be efficient in sol-
ving inverse problems. Particle swarm optimization (PSO),
also a population-based optimization technique from
swarm intelligence and evolutionary computation area,
has demonstrated its better performance than GAs in sol-
ving inverse problems [24,25]. Hybrids of PSO with other
methods have also shown their effectiveness in modelling
biochemical dynamic systems [26-28]. However, PSO
shows to be sensitive to the neighbourhood topology of
the swarm, as commented in [29].
Other methods for parameter estimation include the

Newton-flow analysis [30], the alternating regression
technique [31], decoupling approaches [32,33], the collo-
cation method [20,34], the decomposing method [35,36].
These approximation techniques, when incorporated into
an optimization algorithm, can help reduce the number
of objective function evaluations, which are very compu-
tationally expensive. Additionally, radial basis function
neural networks [37] and a quantitative inference method
[38] have also been employed to solve inverse problems
in biochemical process modelling.
In all of the above cases, the optimization approach is

used to minimize to the residual error of an inferred
model against experimental data. Smaller error means that
the model describes the dynamic behaviour of the bio-
chemical system better and has more justification to be
accepted as a valid mathematical representation of the sys-
tem. Theoretically, the prediction error diminishes with
the accuracy of the model increasing. This study focuses
on developing an efficient optimization method for para-
meter estimation of a given dynamic biochemical model.
However, since parameter estimation problems of com-
plex dynamic systems (generally with many parameters
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and many differential equations) are high-dimensional,
multimodal and more challenging to solve, but which
allow to depict more complex biochemical processes, our
goal in this study is to develop an efficient global optimiza-
tion method for solving such inverse problems of complex
biochemical dynamic systems.
After extensive and in-depth study, we selected the PSO

algorithm as a candidate to be modified in order to
achieve our goal of solving complex inverse problems. The
reason why PSO attracted us is that PSO has many advan-
tages, such as faster convergence speed, lower computa-
tional need, as well as being easily parallelizable and
having fewer parameters to adjust. However, PSO has the
following shortcomings. First of all, it was theoretically
proven that the PSO is not a global convergent algorithm,
even not a local convergent one, against the convergence
criteria given in [39]. Practically, the algorithm is more
prone to be trapped into local optimal or suboptimal
points for a high-dimensional problem, due to the weak-
ening of its global search ability during the mid and later
stages of the search process. Next, PSO is widely known to
be sensitive to its search parameters including upper limits
of the velocity, and even to the “swarm topology”, so that
users may feel awkward when selecting the parameters
and the topologies when using the algorithm [40]. Finally,
the performance of PSO appears to be very sensitive to
the setting of upper and lower bounds of the search scope
[40]. If the global optimal solution is located near the
boundary of the search scope, the algorithm may have lit-
tle chance to catch it. We have found that these shortcom-
ings are mainly attributed to the velocity update equation,
which is the essence of the PSO algorithm, and where it
seems to be much room for improvement so as to boost
the global search ability of the PSO.
In this study, inspired by the free electron model in

metal conductors placed in an external electric field [41],
we propose to use a variant of the PSO algorithm, called
the random drift particle swarm optimization (RDPSO), in
order to achieve our goal of effectively estimating the para-
meters of complex biochemical dynamical systems. The
motivation of the RDPSO algorithm is to improve the
search ability of the PSO algorithm by fundamentally
modifying the update equation of the particle’s velocity,
instead of by revising the algorithm based on the original
equation so as to probably increase the complexity of the
algorithmic implementation as well as its computational
cost. It is different from the drift particle swarm optimiza-
tion (DPSO) proposed by us in [42,43] in that it can make
a better balance between the global search and the local
search of the particle swarm.
The original and basic RDPSO version was recently

introduced by us in [44], which was used for solving other
problems in [45,46]. A novel variant of RDPSO algorithm

is being proposed in this work to solve the parameter
identification problem for two biochemical systems. The
novel variant proposed here is different from the original
one in that it employs an exponential distribution for sam-
pling the velocity of the particles, whilst the original one
used the Gaussian distribution.
The novel RDPSO variant is used for estimating the

parameters of two benchmark models, one of which
describes the thermal isomerization of a-pinene with 5
parameters [22,47], the other of which has a three-step
pathway with 36 parameters [19]. The results of RDPSO
and some other well-known global optimization algo-
rithms are then compared and discussed. It should be
noted that although this paper is focused on the parameter
estimation for biochemical modelling, just as PSO and
other EAs, the proposed RDPSO variant can be employed
as a general-purpose tool for optimization problems in
data miming tasks, such as clustering, classification,
regression, and so forth, which widely exist in bioinfor-
matics and computational biology [1,2,8,48,49].

Methods
Problem statement
The inverse problem of a nonlinear dynamic system
involves finding proper parameters so as to minimize the
cost function of the model with respect to an experimen-
tal data set, with some given differential equality con-
straints as well as other algebraic constraints. Such a
data-driven regression problem can be approached with
statistical techniques, using the given experimental data
and the proposed models with unknown parameters. As
stated by Moles et al. [19], the problem can be mathema-
tically formulated as a nonlinear programming problem
(NLP) with differential-algebraic constraints, whose goal
is to find θ so as to minimize

J =

tf∫
0

(ymsd(t) − y(θ , t))TW(t)(ymsd(t) − y(θ , t))dt (1)

subject to

f
(

dx
dt

, x, y, θ , v, t
)

= 0 (2)

x(t0) = x0 (3)

h(x,y, θ , t) = 0 (4)

g(x,y, θ , t) ≤ 0 (5)

θL ≤ θ ≤ θU (6)
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where J is the cost function of the model, θ is a vector
of model parameters to be estimated, ymsd(t) is the
experimental measure of a subset of the output state vari-
ables, y(θ , t) is the prediction of those outputs by the
model, x is the differential state variables and v is a vector
of other (usually time-invariant) parameters that are not to
be estimated. In Equation (1), W(t) is the weighting (or
scaling) matrix, and the equation can be discretized into a
weighted least-square estimator. In Equation (2), f is the
set of differential and algebraic equality constraints
describing the system dynamics (i.e., the nonlinear process
model). Equation (3) gives the initial value of x. In Equa-
tions (4) and (5), h and g are equality and inequality path
and point constraints on system performance. In addition,
θ is subject to upper and lower bounds, which are
described by inequality constraints (6).
The above defined inverse problem is generally a multi-

modal (non-convex) optimization problem with multiple
local optima due to the nonlinearity and constraints of
the system dynamics. Even though many local and global
optimization methods have been proposed to solve the
problem as mentioned in Introduction, it is still challen-
ging and very necessary to develop efficient optimization
algorithms to deal with the parameter estimation pro-
blems, especially those for the dynamic systems with
many parameters and many equations. Therefore this
study focuses on the optimization approach for the
inverse problem using the proposed variant of random
drift particle swarm optimization (RDPSO) and other
global optimization methods.

Particle swarm optimization
The original PSO algorithm was introduced by Kennedy
and Eberhart in [50]. The algorithm was inspired by the
observed social behavior of bird flocks or fish schooling,
and it roots its methodology both in evolutionary com-
puting and artificial life. It shares many similarities with
EAs, in that both the PSO and the EAs are initialized
randomly with a population of candidate solutions and
then update the population iteratively, in order to
approximate the global optimal solution to the given
problem. However, unlike EAs, PSO has no evolution
operators such as crossover and mutation, but perform
optimization tasks by updating the particles’ position
(potential solutions) according to a set of discrete differ-
ential equations. It was shown that the PSO algorithm
has comparable and even better performance than
GAs [51].
In the PSO with m particles, each particle i

(1 ≤ i ≤ m ), representing a potential solution of
the given problem in a D-dimensional space, has
three vectors at the kth iteration, namely, the

current position Xk
i = (Xk

i,1, Xk
i,2, · · · , Xk

i,D) , the velocity

Pk
i = (Pk

i,1, Pk
i,2, · · · , Pk

i,D) and its personal best (pbest)

position Pk
i = (Pk

i,1, Pk
i,2, · · · , Pk

i,D) , which is defined as

the position with the best objective function value
found by the particle since initialization. A vector

Gk = (Gk
1, Gk

2, · · · , Gk
D), called the global best (gbest) posi-

tion, is used to record the position with the best objective
function value found by the all the particles in the particle
swarm since initialization. With the above specification,
the update equations for each particle’s velocity and
current position are given by:

Vk+1
i,j = w · Vk

i,j + c1rk
i,j(P

k
i,j − Xk

i,j) + c2Rk
i,j(G

k
j − Xk

i,j) (7)

Xk+1
i,j = Xk

i,j + Vk+1
i,j (8)

for i = 1, 2, · · · m; j = 1, 2 · · · , D , where c1 and c2 are
known as acceleration coefficients and w is called the
inertia weight, which can be adjusted to balance the
exploration and exploitation ability of each particle [52].
Without loss of generality, we assume that the PSO is
used to solve the following minimization problem:

Minimize f (X) , s. t. X ∈ S ⊆ RD, (9)

where f (X) is an objective function (or fitness func-
tion) and S denotes the feasible space. Consequently, Pk

i
can be updated by:

Pk
i =

{
Xk

i if f (Xk
i ) < f (Pk−1

i )
Pk−1

i if f (Xk
i ) ≥ f (Pk−1

i )
(10)

and Gk can be found by:

Gk = Pk
g , where g = arg min

1≤i≤m
[f (Pk

i )] (11)

In Equation (7), rk
i,j and Rk

i,j are the sequences of two
different random numbers with uniform distribution on

the interval (0, 1), namely, rk
i,j, Rk

i,j∼U(0, 1). In order to

prevent the particle from flying away out of the search

scope, Vk
i,j is restricted on the interval [−Vmax, Vmax],

where Vmax is also a user-specified algorithmic
parameter.
Many researchers have proposed different variants of

PSO in order to improve the search performance of the
algorithm and proved this through empirical simulation
[3-7,52-56].

The proposed random drift particle swarm optimization
In [57], it was demonstrated that if the acceleration coeffi-
cients are properly valued, each particle converges to its

local attractor, pk
i = (pk

i,1, pk
i,2, · · · pk

i,D), so that the conver-

gence of the whole particle swarm can be achieved. Each
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coordinate of Pk
i is given by:

pk
i,j =

c1rk
i,jP

k
i,j + c2Rk

i,jG
k
j

c1rk
i,j + c2Rk

i,j

, 1 ≤ j ≤ D (12)

which can be restated as

pk
i,j = φk

i,jP
k
i,j + (1 − φk

i,j), 1 ≤ j ≤ D (13)

where

φk
i,j =

c1rk
i,j

c1rk
i,j + c2Rk

i,j

(14)

In the PSO algorithm, c1 and c2 are set to be equal,

and thus φk
i,j is a random number with uniform distri-

bution on the interval (0, 1), i.e. φk
i,j∼U(0, 1).

During the search process of the PSO, as particles’ cur-
rent position are converging to their own local attractor,
their current positions, pbest positions, local attractors
and the gbest positions are all converging to one single
point. The directional movement of each particle
i towards Pk

i resembles the drift motion of an electron in
metal conductors placed in an external electric field.
According to the free electron model [37], the electron
has not only drift motion caused by the external electric
field, but also a thermal motion, which appears to be a
random movement. The superposition of the drift
thermal motions makes the electron careen towards the
location of the minimum potential energy. Thus, if the
position of an electron in the metal is regarded as a
candidate solution and the potential energy function as
the objective function to be minimized, the movement of
the electron resembles the process finding the minimum
solution of the minimization problem.
The above facts can lead to a novel variant of PSO if the

particle in PSO is assumed to behave like an electron mov-
ing in a metal conductor in an external electric field. More
specifically, it can be assumed that at the kth iteration,

each particle i has drift motion towards Pk
i as well as a

thermal motion, with their velocities in each dimension j

denoted as V1k+1
i,j and V2k+1

i,j , respectively. As a result, the

velocity of the particle is given by Vk+1
i,j = V1k+1

i,j + V2k+1
i,j .

In the drift particle swarm optimization proposed in

[42,43], we assume that V1k+1
i,j follows a Maxwell distribu-

tion, say a Gaussian probability distribution, and the

V2k+1
i,j is given by the social part plus the cognitive part in

Equation (7). This velocity update equation appears to add
some effectiveness to the search performance of the parti-
cle swarm but has some shortcomings. Firstly, the

Gaussian distribution has a thin tail so that it has less
opportunity to generate outliers. As a result, the thermal
motion of the particle has less randomness and cannot
significantly improve the particle’s global search ability.

Secondly, although the update equation of V2k+1
i,j :

V2k+1
i,j = c1rk

i,j(P
k
i,j − Xk

i,j) + c2Rk
i,j(G

k
j − Xk

i,j) (15)

can guarantee the particle to converge towards its local
attractor, the two random scaling coefficients add random-
ness to its motion, which means that the particle’s position
is sampled at uniformly random positions within the
hyper-rectangle around the gbest position and its personal
best position. It is not able to enhance the particle’s
global search ability because of the finite scope of the
hyper-rectangle, but it may weaken its local search ability,
which is the responsibility of the directional motion.
Therefore, the velocity of the particle, which is given by

the sum of V1k+1
i,j and V2k+1

i,j , may not be able to make a

good balance between the global search and the local
search of the particle. In the present study, we employ a

new way of determining V1k+1
i,j and V2k+1

i,j .
Here, we assume that the velocity of the thermal

motion V1k+1
i,j follows a double exponential distribution,

whose probability density function and probability distri-
bution function are

fV1k+1
i,j

(v) =
1

σ k
i,j

e

−2|v|
σ k

i,j (16)

and

FV1k+1
i,j

(v) = 1 − e

−2|v|
σ k

i,j
(17)

respectively, where v represents the value of the ran-

dom variable V1k+1
i,j and σ k

i,j is the standard deviation of

the distribution. By employing a stochastic simulation

method, we can express V1k+1
i,j as

V1k+1
i,j =

σ k
i,j

2
φk

i,j
(18)

φk
i,j =

⎧⎨
⎩

+ ln
(

1/uk
i,j

)
if s > 0.5

− ln
(

1/uk
i,j

)
if s ≤ 0.5

, (19)

where
where s and uk

i,j are two different random numbers
uniformly distributed on the interval (0,1), i.e.
Ck = (Ck

1, Ck
2, · · · , Ck

D) . As for the value of σ k
i,j , an
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adaptive strategy is adopted to determine σ k
i,j by

σ k
i,j = 2α|Ck

j − Xk
i,j| , where Ck = (Ck

1, Ck
2, · · · , Ck

D) is called

the mean best (mbest) position, defined as the mean
of the pbest positions of all the particles, i.e.

Ck
j = (1/m)

∑m
i=1 Pk

i,j (1 ≤ j ≤ D) .

The velocity of the drift motion V2k+1
i,j may have many

possible forms. However, the following simple linear

expression is adopted in this study:

V2k+1
i,j = β(pk

i,j − Xk
i,j) (20)

where pk
i,j is determined by

pk
i,j = φk

i,jP
k
i,j + (1 − φk

i,j), φk
i,j∼U(0, 1), 1 ≤ j ≤ D (21)

It can be immediately proven that if Vk+1
i,j = V2k+1

i,j ,

when k → ∞ , Xk
i,j → pk

i,j . Therefore the expression of

V2k+1
i,j in Equation (20) can indeed guarantee that the

particle move directionally to Pk
i as an overall result.

With the definitions of the thermal motion and the
drift motion of the particle, we can obtain a novel set of
update equations for the particle:

Vk+1
i,j = α|Ck

j − Xk
i,j|φk

i,j + β(pk
i,j − Xk

i,j) (22)

Xk+1
i,j = Xk

i,j + Vk+1
i,j (23)

where α is called the thermal coefficient and β is
called the drift coefficient. The PSO with Equations (22)
and (23) is a novel variant of RDPSO, which employs a
double exponential distribution instead of a Gaussian
one. The procedure of this RDPSO variant is outlined
below.
Step 0: Randomly initialize the current positions and

the pbest position of all the particles;
Step 1: Set k = 0;
Step 2: While the termination condition is not met, do

the following steps;
Step 3: Set k=k+1 and compute the mbest position Ck ,

which is the centroid of the pbest positions of all the
particles at iteration k;
Step 4: From i = 1 , carry out the following steps;
Step 5: Evaluate the objective function value f (Xk

i ) ,

and update Pk
i and Gk according to Equation (10) and

Equation (11), respectively;
Step 6: Update the components of the velocity and

current position of particle i in each dimension, respec-
tively, according to Equations (21), (22) and (23);
Step 7: Set i=i+1, and return to Step 5 until i = m ;
Step 8: Return to Step 2;

In the RDPSO algorithm, in addition to the population
size m, α and β are two very important user-specified
algorithmic parameters, which play the same roles as the
inertia weight w and acceleration coefficients in the basic
PSO algorithm. That is, the can be tuned to balance the
exploration and exploitation ability of the particle. How to
select the values of these parameters to prevent the parti-
cles from explosion is an open problem. Here, we per-
formed the stochastic simulations for the one dimensional
case, in which the local attractor was fixed at the origin
and the mbest position was at x = 0.1. The results of two
simulations are visualized in Figure 1 and Figure 2, in
which the logarithmic value of the absolute of Xk was
recorded as ordinate, and the iteration number was the
abscissa. Figure 1 shows that the particle’s position was
bounded when α = 1 and β = 1.5 . However, when
α = 1.8 and β = 1.5 , the particle diverged to infinity. To
obtain the sufficient and necessary condition for the parti-
cle to be bounded, we will focus our attention on a theore-
tical analysis in terms of probability measure in future.
Setting large values for α and β implies better global

search ability of the algorithm, while setting small
values means better local search. When the RDPSO is
used for solving a problem, a good balance between the
global search and the local search of the algorithm is
crucial for the algorithmic performance. However, in
order to find out how to tune the parameters to gener-
ate generally good algorithmic performance we need a
large number of experiments on benchmark functions,
which will be performed in our future tasks. Here, we
recommend that when the RDPSO is used, α should be
set to be no larger than 1.0 and β to be no larger than
1.5. More specifically, when the problem at hand is
complex, the values of the two parameters should be set
to be relatively large in order to make the particles
search more globally, and on the other hand, when the
problem is simple, relatively smaller values should be
selected for the parameters, for the purpose of faster
convergence speed of the algorithm. In the present
study, the value of α and β were set to be 0.75 and
1.0, respectively.
In addition, the population size and the maximum

number of iterations (MaxIter) can also affect the per-
formance of a population-based technique. Just as for
other PSO variants, it is suggested that the population
size should be larger than 20 for the RDPSO as well.
The value of the MaxIter depends on the complexity of
the problem. Generally, a smaller MaxIter value is used
for simple problems, while a larger one is used for com-
plex problems.
Moreover, Vk

i,j is also restricted within the interval

[−Vmax, Vmax] during the search process of the RDPSO

algorithm, just as in the original PSO algorithm.
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The optimization methods compared
Besides the PSO and RDPSO algorithms, the Differential
Evolution (DE), Scatter Search (SS) method and two ver-
sions of Evolution Strategies were also used to solve the
selected inverse problems, for performance comparison

purposes. The DE method, as presented by Storn and
Price [58], is an evolutionary computing method, which
has a faster convergence speed than GAs and can find
the global optimal solution of a multidimensional and
multimodal function effectively [58].

Figure 1 The result of the stochastic simulation with α = 1 and β = 1.5 . It is shown that, with this parameter setting, the particle’s
position is bounded.

Figure 2 The result of the stochastic simulation with α = 1.8 and β = 1.5 . It is shown that, with this parameter setting, the particle’s
position diverges as the iteration number increases.
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The SS method is also a population-based search techni-
ques originally developed by Glover [59]. In [22], a novel
meta-heuristic method, which is the combination of the
original SS method with a local search technique, was pro-
posed to solve inverse problems. It was shown that the
local search operator can accelerate the convergence
speed significantly. Thus, in our experiments, we used this
novel SS method for performance comparison.
Evolutionary strategy (ES) is an important paradigm of

EAs, which imitates the effects that genetics produces on
the phenotype, rather than the genotype as in GAs [60].
The two canonical versions of ES we used in this study
are denoted by (μ, l)-ES and (μ + l)-ES, where μ denotes
the number of parents and l the number of offspring. In
the (μ, l)-ES, the parents are deterministically selected
from offspring (μ <l must hold), while in (μ + l)-ES, the
parents are selected from both the parents and offspring.
In addition, the performances of the above mentioned

algorithms, including the RDPSO, are also compared
with those of the SRES method. The SRES is a version
of (μ, l)-ES that uses stochastic ranking to handle the
constraints, by adjusting the balance between the objec-
tive function and the penalty function on the course of
the search [19], [61].

Case studies
Two case studies involving two benchmark systems were
carried out. For each system, we performed two groups
of numerical experiments, one with noise-free simula-
tion data, and the other with noisy simulation data.
Case study 1
The goal of this case study is to estimate the five rate con-
stants of the homogeneous biochemical reaction describ-
ing the thermal isomerization of a-pinene, which is an
organic compound of the terpene class, one of two iso-
mers of pinene [22], [23]. The mathematical model of this
process is formulated with the following linear equations:

dy1

dt
= −(p1 + p2)y1 (24)

dy2

dt
= p1y1 (25)

dy3

dt
= p2y1 − (p3 + p4)y3 + p5y5 (26)

dy4

dt
= p3y3 (27)

dy5

dt
= p4y3 − p5y5 (28)

where (p1, p2 · · · , p5) is the vector of unknown coeffi-
cients to be estimated, y1, y2, y3, y4 and y5 denote the
concentrations of the a-pinene, dipentene, alloocimen,
b-pyronene and a dimer, respectively.
Case study 2
This case study involves the inverse problem to identify
36 kinetic parameters of a nonlinear biochemical
dynamic model formed by the following 8 ordinary dif-
ferential equations that describe the variation of the
metabolite concentrates with time 1 [19].

dG1

dt
=

V1

1 +
(

P
Ki1

)ni1

+
(

Ka1

S

)na1
− k1 · G1

(29)

dG2

dt
=

V2

1 +
(

P
Ki2

)ni2

+
(

Ka2

M1

)na2
− k2 · G2

(30)

dG3

dt
=

V3

1 +
(

P
Ki3

)ni3

+
(

Ka3

M2

)na3
− k3 · G3

(31)

dE1

dt
=

V4 · G1

K4 + G1
− k4 · E1 (32)

dE2

dt
=

V5 · G2

K5 + G2
− k5 · E2 (33)

dE3

dt
=

V6 · G3

K6 + G3
− k6 · E3 (34)

dM1

dt
=

kcat1 · E1 ·
(

1
Km1

)
· (S − M1)

1 +
S

Km1
+

M1

Km2

−
kcat2 · E2 ·

(
1

Km3

)
· (M1 − M2)

1 +
M1

Km3
+

M2

Km4

(35)

dM2

dt
=

kcat2 · E2 ·
(

1
Km3

)
· (M1 − M2)

1 +
M1

Km3
+

M2

Km4

−
kcat3 · E3 ·

(
1

Km5

)
· (M2 − P)

1 +
M2

Km5
+

P
Km6

(36)
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where M1 , M2 , E1 , E2 , E3 , G1 , G2 and G3 are the
state variables representing the concentrations of the
species involved in different biochemical reactions, and
S and P are controlling parameters which are kept fixed
at the initial values for each experiment. The inverse
problem is then reduced to the optimization problem
that fits the remaining 36 parameters represented by
θ = (θ1, θ2, · · · , θ36) .

Objective functions
The objective function (or fitness function) for the
inverse problem in either of the two case studies is the
discretization of Equation (1), which is formulated as
the weighted sum of squares of the differences between
the experimental and the predicted values of the state
variables:

J =
n∑

i=1

l∑
j=1

wij{[ypred(i) − yexp(i)]j}2 (37)

where n is the number of data for each experiment,
l is the number of experiments, yexp is the vector of
experimental values of the state variables, and ypred is
the vector of the values of state variables predicted by
the model with a given set of parameters. In Case Study
1, each wij was set to be 1 [22], while in Case Study 2,

wij = {1/ max [ypred(i)]j}2 was set as
wij = {1/ max [ypred(i)]j}2 , which was used to normalize
the contributions of each term [19].

Obtaining simulation data
In order to evaluate the performances of the global optimi-
zation methods in finding the solution of the inverse pro-
blems, we chose a set of parameters for each model, which
are considered as the true or nominal values. For Case
Study 1, the true values of the parameters are p1 = 5.93e-5,
p2 = 2.96e-5, p3 = 2.05e-5, p4 = 27.5e-5 and p5 = 4.00e-5.
For Case Study 2, the nominal values of the model
parameters are shown in Table 1.
The pseudo-experimental data (essentially the simula-

tion data) in either case were generated by substituting
the chosen parameters into the dynamic model and per-
forming fourth order Runge-Kutta method on the corre-
sponding differential equations. For Case Study 2, the
pseudo-measurements of the concentrations of metabo-
lites, proteins, and messenger RNA species were the
results of 16 different pseudo-experiments, in which,
with the given nominal values for the parameters, the
initial concentrates of the pathway substrate S and pro-
duct P were varied for each experiment (simulation) as
shown in Table 1. These simulated data represent the
exact experimental results devoid of measurement noise

Table 1 Experiment generation (simulation) and the nominal value.

P 0.05 0.13572 0.36840 1.0

S 0.1 0.46416 2.1544 10

Parameter Element of decision variables vector Nominal value Parameter Element of decision variables vector Nominal value

V1 θ1 1 V4 θ19 0.1

Ki1 θ2 1 K4 θ20 1

ni1 θ3 2 k4 θ21 0.1

Ka1 θ4 1 V5 θ22 0.1

na1 θ5 2 K5 θ23 1

k1 θ6 1 k5 θ24 0.1

V2 θ7 1 V6 θ25 0.1

Ki2 θ8 1 K6 θ26 1

ni2 θ9 2 k6 θ27 0.1

Ki2 θ10 1 kcat1 θ28 1

na2 θ11 2 Km1 θ29 1

k2 θ12 1 Km2 θ30 1

V3 θ13 1 kcat2 θ31 1

Ki3 θ14 1 Km3 θ32 1

ni3 θ15 2 Km4 θ33 1

Ka3 θ16 1 Kcat3 θ34 1

na3 θ17 2 Km5 θ35 1

k3 θ18 1 Km6 θ36 1

(P and S are initial concentrations of the pathway substrate and product, and were varied and combined to generate a total of 16 sets of pseudo-experimental
(simulation) measurements)
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and they were used as noise-free data for the first group
of numerical experiments in each case study. In order to
test the optimization methods for noisy data, we added a
white noise to each of the original noise-free data:

z′ = z + σε (38)

where z and z′ represents the original noise-free data
and the resulting noisy data, respectively, ε is an ran-
dom number with standard normal distribution, namely,
ε∼N(0, 1) , and σ is the standard deviation of the
white noise. In our case studies, σ was set to 0.01 for
both systems.

Initial problem solver used
During the search of each global optimization algorithm,
each potential solution (i.e., a set of estimation values
for the parameters) was substituted into the dynamic
model. Then, the fourth order Runge-Kutta method was
performed on the corresponding system of differential
equations to generate a set of predicted values of the
output state variables, from which the objective function
value (or fitness value) of the potential solution could be
evaluated according to Equation (37) with the obtained
pseudo-experimental (simulation) data. This process is
known as the solution to the forward problem, which
was embedded in the iterations of the search during the
solving of the inverse problem with the algorithm.

Experimental settings
For the sake of performance comparison, all the tested
global optimization methods except the SS method (i.e.,
PSO, RDPSO, DE, (μ, l)-ES, and (μ + l)-ES) were pro-
grammed in C++ on a VC++6.0 platform in Windows
XP environment, and implemented on Intel Pentium
Dual-Core E5300 2.6GHz PCs, each with 2 MB cache
and 4 GB main memory. The SS method was imple-
mented in Matlab 7.0, on the same platform, for the
purpose of calling the local solver SQP in Matlab during
the search process. The software for SS for inverse pro-
blems can be found on http://www.iim.csic.es/~ging-
proc/ssmGO.html.
The configuration of the algorithm parameters including

the population sizes are listed in Table 2. In Case Study 1,
each optimization algorithm ran 20 times with each run
executed for 500 iterations; that is, the maximum number
of iterations (MaxIter) is 500. In Case Study 2, each algo-
rithm also ran 20 times with each run executed for
2250000 function evaluations, which is the same as that for
the DE in [19]. Since the population size of each algorithm
was 100, the value of MaxIter was 22500 in Case Study 2.
For the SS method, the initial population size was 100,
and 10 individuals were selected to perform the iterative
search after initialization. Other parameters were selected
according to recommendations from the corresponding
references and/or our preliminary runs. For all the algo-
rithms tested on the inverse problems, the statistical values

Table 2 Configuration of search parameters in different algorithms (F is an algorithmic control parameter used to
control the size of the perturbation in the mutation operator for DE, CR is the crossover constant in DE, varphi is a
parameter determining the standard deviation of the mutation in the evolution strategy).

Algorithm RDPSO SS method PSO DE (μ, l)-ES (μ + l)-ES

Search
parameters

Population Size = 100
a = 0.75
b = 1.0

Initial Population Size = 100,
10 selected individual after

initialization

Population Size = 100
w = 0.729

c1 = 1.49;c2 = 1.49

Population Size = 100
F = 0.5

CR = 0.55

l = 100
μ = 10

varphi = 1

l = 100
μ = 10

varphi = 1

Table 3 J values and computational time for the global optimization methods in Case Study 1.

Results for the Experiments (simulations) with Noise-free Data

Algorithms RDPSO SS method (μ, l)-ES PSO DE (μ + l)-ES

Best Value of J 1.3740e-14 0.3930 301.9941 3.4461e-005 258.892 339.4941

Mean Value of J 2.5845e-004 0.5703 2.8522e+06 0.0225 2.3197e+03 1.9103e+06

Standard Deviation of J 3.5978e-04 0.1348 2.2673e+06 0.0183 704.7776 2.2118e+06

CPU time(h) 0.0347 – 0.0419 0.0330 0.0353 0.0419

Results for the Experiments (simulations) with Noisy Data

Algorithms RDPSO SS method (μ, l)-ES PSO DE (μ + l)-ES

Best Value of J 0.2023 0.7195 388.9242 0.2028 1.0273e+003 52.4817

Mean Value of J 0.2026 0.8361 2.1952e+05 0.2083 2.5488e+003 8.2498e+05

Standard Deviation of J 4.2918e-04 0.0743 3.2308e+05 0.0126 5393.6832 1.6245e+06

CPU time(h) 0.0349 – 0.0423 0.0338 0.0351 0.0422
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Figure 3 The figure visualizes the convergence curves of objective function values of all the algorithms averaged over 20 runs in the
numerical experiments with noisy data for Case Study 1. It is shown that the RDPSO, PSO and SS methods had better convergence
properties than other methods.

Figure 4 The figure shows the noise-free experimental data (marker) versus the predicted model (continuous line) for Case Study 1.
It is shown that the predicted model obtained by RDPSO fits the experimental data well
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of J were figured out and the results with best values of
J were selected, processed and visualized with Matlab 7.0.

Results
For Case Study 1, the statistical values of J from 20 search
runs with 500 iterations by each algorithm are listed in
Table 3. The best value of J (J = 1.3740e-014) for the
numerical experiments with noise-free simulation data was
obtained by using our proposed RDPSO algorithm after
running for 0.0348h (about 2 minutes). For the experiment
with noisy data, the RDPSO generated the best J value (J =

0.2023) as well. The proposed algorithm also showed the
best performance on average among all tested methods, as
shown by the mean value of J over 20 runs. In this case
study, the basic PSO algorithm showed good perfor-
mance on low-dimensional inverse problems.
The convergence process of each tested algorithm aver-

aged over 20 runs in the numerical experiment with noisy
data in Case Study 1 is shown by the convergence curve in
Figure 3, which is plotted in the log-log scale with objec-
tive function values versus the iteration number. Evidently,
the SS method showed a better convergence property than

Figure 5 The figure shows the noisy experimental data (marker) versus the predicted model (continuous line) for Case Study 1. It is
also shown that the predicted model obtained by RDPSO fits the experimental data well.

Table 4 J values and computational time of the global optimization methods for Case Study 2, including the results
for the noise-free and noisy data.

Results for the Experiments with Noise-free Data

Algorithms RDPSO SS method (μ, l)-ES PSO DE (μ + l)-ES

Best Value of J 0.009124 7.1358e-07 0.022858 7.140163 10.168989 0.123209

Mean Value of J 0.178881 3.4.274e-06 0.736311 10.3859 17.701876 2.141820

Standard Deviation of J 0.252749 1.3649e-06 0.960729 3.1927 4.112377 1.692726

CPU time(h) 52.4 – 54.9 49.2 53.8 53.3

Results for the Experiments with Noisy Data

Algorithms RDPSO SS method (μ, l)-ES PSO DE (μ + l)-ES

Best Value of J 0.2313 0.2337 2.5957 7.7433 11.7900 5.1490

Mean Value of J 0.3459 0.3106 3.6029 11.2353 18.5928 10.8691

Standard Deviation of J 0.1268 0.1325 0.1730 3.2921 3.3616 3.7065

CPU time(h) 52.4 – 54.9 49.2 53.8 53.3
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other algorithms. The best solution vector corresponding
to the best value of J (J = 1.3740e-014) obtained by the
RDPSO in the numerical experiment with noise-free
data was p1 = 5.930000e-005, p2 = 2.960000e-005,
p3 = 2.750002e-004, p4 = 2.750002e-004, p5 = 4.000561e-
005, extremely close to the real values of the parameters,
and the best solution vector obtained by the RDPSO for
the numerical experiment with noisy data was (when
J = 0.2023) p1 = 5.928818e-005, p2 = 2.959918e-005,
p3 = 1.712580e-005, p4 = 3.147252e-004, p5 = 1.537512e-
003. Figure 4 and Figure 5 show good fits between the
experimental data (simulation data) and the predicted
data, with the best obtained parameters in the experiments
with both noise-free and noisy data.
For Case Study 2, the obtained values of J resulted from

20 runs with 22500 iterations by each algorithm are listed
in Table 4. For the numerical experiments with noise-free
data, the best result of J (J = 0.7358e-06) was obtained by
using the SS method, which also had the better average
performance than any other compared algorithm, as
shown by the mean value of J over the 20 runs of the algo-
rithm. The second best method was the RDPSO algorithm,
which could converge to a value of J = 0.009124 and had a
mean value of J = 0.178881 over 20 runs. Table 5 lists the
estimated values of the model parameters corresponding
to the best J value (J=0.009124) found by the RDPSO
algorithm. The results also show that (μ, l)-ES is the win-
ner in this inverse problem compared to (μ + l)-ES, whose

Table 5 Decision vector for the solution found by RDPSO
in the experiment with noise-free data for Case Study 2.

Elements of best vector

θ1-θ4 0.890001 0.996928 1.990488 1.000000

θ5-θ8 1.998655 0.885005 1.000085 1.000213

θ9-θ12 1.898600 0.999900 2.002120 1.010091

θ13-θ16 0.998763 1.005851 2.000021 0.995512

θ17-θ20 2.000150 0.996318 0.100025 1.000013

θ21-θ24 0.100211 0.099875 1.000361 0.100021

θ25-θ28 0.100004 1.000300 0.100008 1.000750

θ29-θ32 1.000321 0.987620 1.000041 1.000035

θ33-θ36 0.997855 0.998856 1.000000 1.000001

Table 6 Decision vector for the solution found by RDPSO
in the experiment with noisy data for Case Study 2.

Elements of best vector

θ1-θ4 1.0128 0.9962 1.9923 1.0220

θ5-θ8 1.9698 1.0057 1.4290 0.7919

θ9-θ12 1.8388 1.6173 1.4905 0.9384

θ13-θ16 1.2683 1.0180 1.3832 0.9271

θ17-θ20 2.0248 1.3612 0.1242 1.4658

θ21-θ24 0.0956 0.1101 0.5970 0.1482

θ25-θ28 0.0979 1.0012 0.0977 0.9916

θ29-θ32 1.3351 1.9900 1.3957 1.9209

θ33-θ36 1.5504 1.3801 1.6637 1.1668

Figure 6 The figure visualizes the convergence curves of objective function values of all the algorithms averaged over 20 runs of the
numerical experiments with noisy data in Case Study 2. It is shown that the SS method had the fastest convergence speed and the RDPSO
had the second fastest one.
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best and mean results of J were 0.123209 and 2.141820,
respectively. The PSO and DE are two well-known efficient
population-based optimization methods, which, however,
could not arrive at the vicinity of the aforementioned solu-
tions. When the experimental data (simulation data) was

noisy, the SS method and RPSO obtained similar results for
the best J value over 20 runs, but the former had a better
average algorithmic performance. Table 6 shows the identi-
fied model parameters corresponding to the best J value
(J = 0.2313) obtained by the RDPSO for the noisy data.

Figure 7 The figure shows the predicted concentration provided by the RDPSO (continuous line) and noise-free experimental (marker)
data in Case Study 2 when P = 1.0, S = 2.1544. It is shown that the predicted concentration had good correlation with the experimental data.
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We plotted in Figure 6 the convergence curve of each
method averaged over 20 runs. It is shown that the SS
method had a remarkably better convergence rate than
others, probably due to its local solver that can enhance
the local search ability of the algorithm significantly.
Figures 7a and Figure 8 show comparisons between the

predicted data and the experimental (simulation) data
for the decision vectors found by the RDPSO in both
groups of numerical experiments (with the noise-free
and noisy data, respectively). It can be observed that
there is good correlation between the experimental and
predicted data.

Figure 8 The figure shows the predicted concentration provided by the RDPSO (continuous line) and noisy experimental (marker)
data in Case Study 2 when P = 1.0, S = 2.1544. It is shown that the predicted concentration had good correlation with the experimental data.
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Conclusions
In this paper, a variant of RDPSO algorithm was proposed
and showed to be able to successfully solve two inverse
problems associated with the thermal isomerization of
a-pinene and a three-step pathway, respectively. The results
indicate that the proposed RDPSO algorithm outperformed
its PSO predecessors and some other competitors in the
first problem, and also had the second best algorithmic per-
formance among all the compared algorithms.
Like other stochastic optimization methods, a possible

drawback of the RDPSO method is the computational
effort required. This is mainly because most of the com-
putational time was spent on solving the forward pro-
blem. One measure that can be taken is to incorporate
the local search technique into the algorithm in order to
accelerate its convergence speed. Another is to develop
a parallelized RDPSO implementation to solve inverse
problems on computer clusters to reduce the computa-
tional cost to a reasonable level. Our future tasks will
focus on these two ways of improving the algorithmic
effectiveness of the RDPSO algorithm.

Availability and requirements
In the additional file 1 the source codes of five of the tested
algorithms on the two benchmark systems are provided. It
includes two file folds, one for benchmark system 1 and the
other one for benchmark system 2. All the algorithms are
programmed with C++ in Microsoft Visual C++ 6.0.
In additional file 2 the data files for the five algorithms

used in the two case studies are provided. For each case,
the data corresponding to the best results generated by
20 runs of each algorithm are provided in a .txt file.

Additional material

Additional file 1: Source. CodeThis file includes the source code of all
tested algorithms on the two benchmark problems, programmed in C++
on Microsoft Visual VC++ 6.0. All the source codes are compressed into a
single .rar file.

Additional file 2: Data. This file includes the data of the best solution
out of 20 runs of each tested algorithm.
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