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Abstract

Presently, concern regarding the effects of selenium (Se) on the environment and organ-

isms worldwide is increasing. Too much Se in the soil is harmful to plants. In this study, Illu-

mina RNA sequencing and the untargeted metabolome of control and Se-treated celery

seedlings were analyzed. In total, 297,911,046 clean reads were obtained and assembled

into 150,218 transcripts (50,876 unigenes). A total of 36,287 unigenes were annotated

using different databases. Additionally, 8,907 differentially expressed genes, including

5,319 up- and 3,588 downregulated genes, were identified between mock and Se-treated

plants. “Phenylpropanoid biosynthesis” was the most enriched KEGG pathway. A total of 24

sulfur and selenocompound metabolic unigenes were differentially expressed. Furthermore,

1,774 metabolites and 237 significant differentially accumulated metabolites were identified

using the untargeted metabolomic approach. We conducted correlation analyses of

enriched KEGG pathways of differentially expressed genes and accumulated metabolites.

Our findings suggested that candidate genes and metabolites involved in important biologi-

cal pathways may regulate Se tolerance in celery. The results increase our understanding of

the molecular mechanism responsible for celery’s adaptation to Se stress.

Introduction

At present, the effects of selenium (Se) on the environment and organisms worldwide are

receiving increased attention. Se is an important trace element in many organisms, including

humans and animals [1]. The biological functions of Se have become gradually clear to human

health, over the past decade [2]. In recent years, applications of Se fertilizers and the
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development of agricultural in Se-rich areas have attracted interest. However, the difference

between a Se deficiency and Se poisoning in the human body is relatively small, and the risk of

Se poisoning occurs if the daily intake is more than 400 μg [3]. Se, as a potential toxic substance

in higher plants, has been studied in the context of its beneficial effects [4]. At appropriate con-

centrations, Se promotes plant growth, participates in antioxidative defenses and increases

resistance to heavy-metal stress, but at higher concentrations, it causes oxidative damage, in

the form of Se-amino acids, which incorporate nonspecifically into proteins [5].

The total amount of Se absorbed and accumulated by plants is correlated with the total

amount of Se in the soil [6], but the correlations with the form and valence of Se in the soil are

greater [7–9]. Se mainly exists in four stable oxidative valences in soil: selenate (+6), selenite

(+4), elemental selenium (0) and selenide (-2) [10,11]. Selenate and selenite selenium are the

main forms taken up and utilized by plants [12,13]. Selenate is absorbed by sulfate (S) trans-

porters because Se and S are similar chemically [14,15]. The overexpression of Arabidopsis
thaliana Sultr1;2, a high-affinity S transporter, can lead to the substantial absorption of sele-

nate[16]. Sultr2, encoding a low affinity sulfate transporter, participates in the transfer from

roots to shoots, irrespective of the Se supply or an S deficiency [17,18]. However, the mecha-

nism of selenite uptake is not clear. The expression levels of rice (Oryza sativa) NIP2;1, a sili-

con influx transporter, as well as OsPT2 and OsPT8 (two phosphate transporters), are

correlated with selenite uptake [19–21].

High Se concentrations can retard plant growth and development, reduce protein

synthesis and increase oxidative pressure [22]. It is necessary to adopt new methods to

reveal the mechanisms of Se tolerance and accumulation. Omics technology provides new

opportunities to understand the organization and function of Se in complex systems [23].

With the rapid development of new-generation sequencing tools, RNA-Seq technology has

been widely used and has rapidly become a powerful means of systematically studying tran-

scriptional regulation. De novo transcriptome sequencing technology provides a fast and inex-

pensive method for investigating the genetic information of non-model plant species whose

genomic information is not available [24]. Metabolomics approaches screen all the small

molecular metabolites of an organism or a cell in a specific physiological period both qualita-

tively and quantitatively.

Celery (Apium graveolens L.) belongs to Apiaceae, which originated in the Mediterranean

coast of Europe, Sweden, Egypt and other regions, and is widely cultivated because of its rich

nutrient, low caloric, high medicinal characteristics [25,26]. In this study, the combined analy-

ses of the transcriptome and metabolome of control and Se-treated celery seedlings were per-

formed. The findings suggested that candidate genes and metabolites involved in important

biological pathways might regulate Se tolerance in celery. The results increase our understand-

ing of the molecular mechanisms of celery’s adaptive responses to Se stress.

Materials and methods

Plant materials and treatment

The celery (A. graveolens L. cv. ‘Hangzhou lvqing’, purchased from Hangzhou fengke seed

company) seedlings used in this study were grown in a hydroponic pool of Hoagland’s nutri-

ent solution at the Zhejiang Academy of Agricultural Sciences in Zhejiang Province, China

under natural conditions. Six-week-old celery seedlings were used for the treatment. Seedlings

were grown in Hoagland’s solution containing 0 (mock) or 100 ppm Na2SeO4. After 48 h,

stems were collected for RNA and metabolites extraction.
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Analysis of hydrogen peroxide (H2O2), Chlorophyll, malondialdehyde

(MDA) and total flavonoids contents

The content of H2O2 measured using a hydrogen peroxide assay kit (Code: A064-1-1, Nanjing

Jiancheng Bioengineering Institute, Nanjing, China). H2O2 reacts with molybdic acid to form

a complex, which was measured at 405 nm. Total chlorophyll was extracted in 95% (v/v) etha-

nol, and then calculated by determining the absorbance at 470 nm, 649 nm and 665 nm. MDA

was determined by MDA assay kit (for plant) (Code: A003-3-1, Nanjing Jiancheng Bioengi-

neering Institute, Nanjing, China), which based on the spectrophotometer measurement of a

red-complex produced during the reaction of thiobarbituric acid. The content of total flavo-

noids was assessed using plant flavonoids test kit (Code:A142-1-1, Nanjing Jiancheng Bioengi-

neering Institute, Nanjing, China). In alkaline nitrite solution, flavonoids and aluminium ions

form a red complex with characteristic absorption peaks at 502 nm, which can be used to cal-

culate the content of flavonoids in samples. All of the procedures were carried out following

the manufacturer’s protocols.

RNA isolation, library construction and sequencing

The total RNAs from the six samples were extracted using RNAiso plus (9108, Takara, Dalian,

China) according to the manufacturer’s protocol and treated with DNase I (2270, Takara).

RNA degradation and contamination were monitored on 1% agarose gels. RNA purity was

determined using the NanoPhotometer1 spectrophotometer (Implen, CA, USA). RNA con-

centrations were measured using a Qubit1 RNA Assay Kit in a Qubit1 2.0 Fluorometer (Life

Technologies, CA, USA). RNA integrity was assessed using the RNA Nano 6000 Assay Kit on

the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). High quality RNA

samples (RIN number > 7.0) were selected for preparing a cDNA library.

For library construction, NEBNext1Ultra™ RNA Library Prep Kit for Illumina1 (E7530,

NEB, USA) was used according to manufacturer’s recommendation. Briefly, mRNA was puri-

fied using poly-T oligo-attached magnetic beads and fragmented into small fragments. Ran-

dom hexamer primers and M-MuLV Reverse Transcriptase (RNase H) were used for first-

strand cDNA synthesis. Subsequently, DNA polymerase I and RNase H were used to synthe-

size second-strand cDNAs. After end-repair and adapter-ligation, the products were amplified

using PCR with Phusion High-Fidelity DNA polymerase and purified using the AMPure XP

system (Beckman Coulter, Beverly, USA). Library quality was assessed on the Agilent Bioana-

lyzer 2100 system. A cBot Cluster Generation System using a TruSeq PE Cluster Kit v3-cBot-

HS (Illumina, San Diego, CA, USA) was used to generate clusters of index-codes according to

the manufacturer’s instructions. The cDNA libraries were sequenced on an Illumina HiSeq X

Ten platform (Illumina), and paired-end reads were generated.

Quality control, de novo transcriptome assembly and gene functional

annotation

Raw data (reads) were obtained using the Illumina HiSeq X Ten platform. After removing

adapters, ploy-Ns and low quality reads, clean reads were obtained. At the same time, Q20,

Q30, GC-content and the sequence duplication level of the clean data were calculated. Trinity

[27] was used to assemble the transcriptome. To obtain comprehensive information, gene

functional annotations of seven databases, NCBI non-redundant protein sequence (Nr), NCBI

non-redundant nucleotide sequence (Nt), Protein family (Pfam), euKaryotic Ortholog Groups

(KOG), Swiss-Prot (a manually annotated and reviewed protein sequence database), KEGG

Ortholog (KO) and gene ontology (GO), were carried out.
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Differential expression analysis and functional enrichment

The DESeq R package (1.10.1) was used to perform a differential gene expression analysis

between mock and Se-treatment groups [28]. DESeq software provides a statistical program

for identifying differentially expressed genes (DEGs) in gene expression data based on a nega-

tive binomial distribution model. The resulting P values were adjusted using the Benjamini

and Hochberg’s approach for controlling the false discovery rate. Genes with an adjusted P-

value < 0.05 and |log2FoldChange |> 1 as assessed by the DESeq analysis were assigned as dif-

ferentially expressed. A GO enrichment analysis of the DEGs was implemented in the GOseq

R package based on the Wallenius non-central hyper-geometric distribution, which can adjust

for gene length bias in DEGs [29]. Enriched KEGG pathways were determined using KOBAS

software [30].

Metabolite extraction for the untargeted metabolomics analysis

The stem samples from the mock or Se-treatment of celery seedlings (100 mg each, n = 8) were

ground in liquid nitrogen and transferred to centrifuge tubes. An aliquot of 400 μL of 80%

aqueous methanol solution was added to each tube, vortexed and allowed to stand at -20˚C for

60 min. Then, samples were centrifuged at 14,000 × g for 10 min at 4˚C. A certain amount of

supernatant was placed in a new centrifuge tube, vacuum freeze-dried, precipitated with

100 μL of 80% methanol for dissolution, vortexed and centrifuged at 14,000 × g at 4˚C for 15

min. The supernatants were injected into an ultra-high performance liquid chromatography-

tandem mass spectrometry (UHPLC-MS/MS) system for analysis. To control the quality of the

experiment, QC samples were prepared and processed as alongside the samples. The QC sam-

ples contained an equal mixture of experimental samples used to balance the UHPLC-MS/MS

system and monitor the state of the instrument. The system’s stability was evaluated through-

out the experimental process.

UHPLC-MS/MS analysis for the untargeted metabolites

The chromatographic separations of the samples were performed using a Vanquish™ UHPLC

system (ThermoFisher Scientific, Waltham, MA, USA). An Accucore HILIC column (50

mm × 2.6 mm, 2.1 μm; ThermoFisher Scientific) was used for the reversed phase separation.

The column oven was maintained at 40˚C, and the flow rate was 300 μL/min. For positive ion

mode, the mobile phase consisted of solvent A (0.1% formic acid + 95% acetonitrile + 10 mM

ammonium acetate) and solvent B (0.1% formic acid + 50% acetonitrile + 10 mM ammonium

acetate). For negative ion mode, the mobile phase consisted of solvent A (95% acetonitrile + 10

mM ammonium acetate, pH 9.0) and solvent B (50% acetonitrile + 10 mM ammonium acetate,

pH 9.0). Gradient elution conditions were set as follows: 0–1 min, 98% A; 1–17 min, 2% to

50% B; 17–17.5 min, 50% A; 17.5–18 min, 50% to 98% A; 18–20 min, 98% A.

A high-resolution tandem mass spectrometer QE HF-X (ThermoFisher Scientific) was used

to detect metabolites eluted from the column. The scan range was from 100 to 1,500 m/z. The

electrospray ionization source was set as follows: spray voltage, 3.2 kV; sheath gas flow rate, 35

Arb; aux gas flow rate, 10 Arb; capillary temperature, 320˚C and polarity, positive and

negative.

Identification of metabolites

The obtained MS data files were imported into the Compound discoverer database search soft-

ware, and parameters, such as retention time and mass to charge ratio, were used for screen-

ing. Then, peak alignments of different samples were conducted based on 0.2 min retention

Transcriptomics and metabolomic analyses of celery in responses to selenium stimuli
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time deviations and 5 ppm quality deviations to increase the accuracy of the identifications. In

accordance with a quality deviation of 5 ppm, signal strength of 30%, signal-to-noise ratio of 3,

a 100,000 minimum signal strength and ion peaks, as well as extracted information, such as

peak areas for quantitative assessments and integrated target ions, a prediction formula was

attained, and the results were compared with the mzCloud database (https://www.mzcloud.

org/). The quantitative results were normalized using the QC sample, and the final data identi-

fication and quantitative assessments were obtained.

Results

Illumina sequencing and de novo assembly

Six samples from mock and Se-treated celery stems were collected for transcriptome sequenc-

ing. A total of 307,027,326 raw reads were generated. Approximately 297,911,046 (97.03%)

clean reads (44.68 Gb) were obtained after filtering adapters and low-quality reads (Table 1).

For mock samples, 54,448,562 (97.72% of the raw reads), 53,072,190 (96.75% of the raw reads)

and 53,286,580 (97.70% of the raw reads) clean reads were obtained from the three replicates,

respectively. For Se-treated samples, 46,365,002 (96.30%), 41,053,980 (97.41%) and 49,684,732

(97.34%) clean reads were obtained from the three replicates, respectively. Pair-wise Pearson’s

correlation coefficients of six samples indicated the high repeatability of the sequencing data

(S1 Fig).

Trinity software was used to assemble the clean reads. The longest cluster sequence was

obtained using Corset hierarchical clustering for subsequent analyses. The lengths of tran-

scripts and clustering sequences were statistically analyzed (Fig 1A). A total of 150,218 tran-

scripts (50,876 genes) were obtained (N50 2,443 bp), with an average length of 1,629 bp.

Among them, 33,276 transcripts were distributed between 200–500 bp, 30,984 transcripts were

distributed between 500–1,000 bp, 39,888 transcripts were distributed between 1–2 Kb and

46,070 transcripts were greater than > 2 Kb.

Gene functional annotation and classification

To determine the functions of assembled unigenes in celery, all the unigene sequences were

queried against seven protein databases. In total, 26,341 and 29,706 unigenes were annotated

in the Nr and Nt databases, respectively. In total, 12,909 unigenes displayed significant similar-

ities to known proteins in the KO database. Additionally, 25,478 unigenes were annotated in

the Swiss-Prot database, and 24,478 and 24,478 unigenes were annotated in the Pfam and GO

databases, respectively (Fig 1B). The gene functional information of celery and related species

was obtained using comparisons with the Nr database. The unigene sequences of celery were

most similar to the gene sequences from Daucus carota, Quercus suber, Actinidia chinensis,
Vitis vinifera and Hordeum vulgare (Fig 1C). A total of 9,480 unigenes were annotated using

the KOG database, and they clustered into 25 functional categories. The largest category was

“Translation, ribosomal structure and biogenesis” (1,352 unigenes, 27%) (Fig 1D).

Based on the GO annotations, 24,478 unigenes were classified into 67 functional subgroups,

including 26 in “biological process,” 10 in “molecular function” and 22 in “cellular compo-

nent” (Fig 2A). In the biological process category, “cellular process” was the most highly repre-

sented. In the molecular function category, “binding” was the largest subgroup, and in the

cellular component category, “cell” and “cell part” contained the greatest numbers of unigenes.

A total of 12,353 unigenes were grouped into 5 KEGG Pathway Hierarchy1 and 19 main Path-

way Hierarchy2 (Fig 2B). The “Metabolism” categories contained the greatest numbers of uni-

genes, with “Carbohydrate metabolism” being the most highly represented.

Transcriptomics and metabolomic analyses of celery in responses to selenium stimuli
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Differential gene expression and functional analyses

Transcriptional responses to the Se treatments were acquired by comparing the transcriptomes

of the mock and treated celery. Fragments per kilobase of exon per million reads mapped was

used to estimate the gene expression level. Differential gene expression profiles after Se treat-

ments are shown as heatmaps (Fig 3A and S1 Table). A total of 8,907 DEGs, including 5,319

up- and 3,588 downregulated genes, were identified (Fig 3B). A detailed KEGG enrichment

analysis of the DEGs is shown in Fig 3C and S2 Table. “Phenylpropanoid biosynthesis” was the

Table 1. Sequencing output statistics of six samples.

Sample Raw Reads Clean Reads Clean Bases Error(%) Q20(%) Q30(%) GC Content(%)

Mock1 56295942 54448562 8.17G 0.03 97.19 92.21 42.69

Mock2 54857250 53072190 7.96G 0.03 97.39 92.59 42.93

Mock3 54541362 53286580 7.99G 0.03 97.27 92.33 42.48

Se1 48148620 46365002 6.95G 0.03 97.27 92.33 42.5

Se2 42143422 41053980 6.16G 0.03 97.12 92.02 42.81

Se3 51040730 49684732 7.45G 0.03 96.93 91.61 42.57

https://doi.org/10.1371/journal.pone.0226752.t001

Fig 1. Characteristics of celery unigenes generated by Illumina sequencing. (A) The length distribution of all assembled

transcripts and unigenes. (B) The number of unigenes annotated by seven different databases, including Nr, Nt, Swiss-Prot, KO,

KOG, GO and Pfam. (C) Species distributions of the top BLAST hits for all homologous sequences. (D) KOG functional

classifications of all the unigenes. Nr: NCBI non-redundant protein sequences; Nt: NCBI nucleotide sequences; KO: Kyoto

encyclopedia of genes and genomes ortholog; KOG: eukaryotic ortholog groups; GO: gene ontology; Pfam: protein family.

https://doi.org/10.1371/journal.pone.0226752.g001
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most enriched pathway. “Protein processing in endoplasmic reticulum” contained the greatest

number of unigenes (123 unigenes), followed by “Plant hormone signal transduction” (109

unigenes). A total of 24 sulfur and selenocompound metabolic genes were differentially

expressed (Table 2). The GO enrichment of DEGs is shown as a histogram (Fig 3D). In the

molecular function category, “transferase activity” was the most highly represented (1,348

DEGs). In the cellular component category, “extracellular matrix” contained the greatest num-

ber of unigenes (49 DEGs). In the biological process category, the “metabolic process” was the

most highly represented (3,639 DEGs).

Untargeted metabolite profiling analysis

To study the changes of metabolites after the Se treatment, an untargeted metabolomic

approach was used (n = 8). Compound discoverer software was used to search and analyze the

data. Using the mzCloud database, the compounds were identified and confirmed by spectro-

gram comparison. A total of 1,774 metabolites were identified (Table 3 and S3 Table). The QC

samples’ correlations increased in tandem with the whole method’s stability and data quality

(Fig 4A). A principal component analysis was carried out to assess the total metabolic differ-

ences between samples in each group and the degree of variation among samples in the group

(Fig 4B). We also measured some physiological parameters between treated and non-treated

plants. The results showed that the contents of hydrogen peroxide and malondialdehyde

Fig 2. GO (A) and KEGG (B) functional classifications of the annotated unigenes in celery. The unigenes were distributed into

three GO categories: biological process, cellular component and molecular function. The unigenes were divided into five KEGG

groups: metabolism (a), genetic information processing (b), environmental information processing (c), cellular processes (d) and

organismal systems (e).

https://doi.org/10.1371/journal.pone.0226752.g002
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increased, while the contents of chlorophyll and total flavonoids decreased under selenium

treatment (S2 Fig).

A partial least squares discrimination analysis uses a partial least squares regression to

establish a model of the relationships between metabolite expression and sample categories.

The results showed a distinct separation between mock and Se-treated sample groups (Fig

5A). These generated models explained variation values from the seven-fold cross-validated

R2Y�0.98 and Q2Y�0.92. The statistical analysis identified 237 significantly differentially

accumulated metabolites (SDAMs), including 213 up- and 24 down-regulated SDAMs in both

positive and negative electrospray ionization modes based on the following criteria: Variable

Importance in the Projection> 1.0, 0.5 < fold change > 2.0 with P value < 0.05 (Fig 5B and

S4 Table). An overview of the SDAM profiles of mock and Se-treated celery is shown in Fig

5C.

Integrated analyses of transcriptomic and metabolomic changes involved

in vital biological pathways

To obtain more information regarding the physiological changes of celery under Se stress, we

analyzed the relationships between differential gene expressions and changes in Se-responsive

Fig 3. Identification of the DEGs between the mock and Se-treated celery samples. (A). Cluster diagram of differential gene

expression. The color ranges from red to blue, corresponding to large to small log10 (fragments per kilobase of exon per million

reads mapped +1) values. (B). Significance analysis of the DEGs as assessed by volcano plots. (C). KEGG enrichment analysis of the

DEGs. The top 20 statistics of KEGG pathway enrichment are shown. The size of the q value is represented by the dot color. The

smaller the q value, the closer the color is to red. The number of different genes contained in each pathway is represented by the dot

size. (D). GO enrichment analysis of the DEGs.

https://doi.org/10.1371/journal.pone.0226752.g003
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metabolites. The results of the correlation analysis between gene expression levels and metabo-

lites are shown in Fig 6 and S5 Table. To understand the changes in the metabolic regulatory

network of celery in response to Se stress, we conducted a correlation analysis of enriched

KEGG pathways of DEGs and SDAMs (S6 Table). As shown in Fig 7A, there are 11 pathways

shared by the metabolome and the transcriptome. The “Plant hormone signal transduction”

pathway contained the greatest number of DEGs (109 unigenes). Many DEGs participate in

various hormone-signaling pathways as indicated by the KEGG analysis. The summary of the

various hormone-signaling networks in celery is shown in Fig 7B. For auxin-related DEGs,

AUX1 (K13946), TIR1 (K14485) and ARF (K14486) were downregulated by the Se treatment.

DEGs associated with cytokinin were also down-regulated. In the ethylene and jasmonic acid

pathways, all the DEGs were upregulated. Among abscisic acid-related DEGs, PP2C (K14497)

and ABF (K14432) were downregulated by Se stress. Additionally, abscisate (Com_1688_neg)

was downregulated by the Se treatment.

Discussion

Celery, an important vegetable belonging to the Apiaceae family, is widely grown in Europe

and in tropical and subtropical areas [31]. The development of various omics techniques has

Table 2. The genes related with sulfur and selenocompound metabolism in the stems of celery plants.

GeneID KO ID Gene Description KO Name log2FC q value

Cluster-1975.12663 K00384 thioredoxin reductase trxB, TRR 1.3422 0.0001607

Cluster-26621.0 K00384 thioredoxin reductase 1 trxB, TRR 2.8927 6.3755E-12

Cluster-1975.6602 K00392 Sulfite reductase 1like sir 2.7681 0.0031039

Cluster-1975.10040 K00549 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase metE 1.7232 0.017959

Cluster-1975.10039 K00549 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase-like metE 2.4525 0.0015574

Cluster-19378.0 K00640 serine acetyltransferase 1 cysE 9.9727 1.5467E-11

Cluster-1975.622 K00640 serine acetyltransferase 1 cysE 6.6463 4.0559E-17

Cluster-9630.0 K01082 PAP-specific phosphatase, mitochondrial cysQ, MET22, BPNT1 -1.7109 0.000038524

Cluster-253.0 K01739 putative trans-sulfuration enzyme metB 6.1894 0.027758

Cluster-1975.708 K01761 methionine gamma-lyase E4.4.1.11 2.2997 0.049269

Cluster-1975.14310 K01874 hypothetical protein DCAR_026633 MARS, metG 1.1911 0.0019799

Cluster-1975.2297 K05907 5’-adenylylsulfate reductase 3 APR 6.3746 3.2312E-11

Cluster-1975.2154 K05907 5’-adenylylsulfate reductase 3 APR 7.5437 1.4671E-12

Cluster-1975.39 K08247 Aminotransferase E2.1.1.12 1.9072 0.000076199

Cluster-23972.0 K08247 hypothetical protein DCAR_001729 E2.1.1.12 -3.7045 2.1307E-06

Cluster-24206.0 K08738 Cytochrome c CYC 5.2202 0.00087537

Cluster-1975.10037 K13034 hypothetical protein DCAR_005355 ATCYSC1 2.8054 1.4219E-06

Cluster-1975.5913 K13811 ATP-sulfurylase 3 PAPSS 2.1472 0.0064403

Cluster-1975.5914 K13811 ATP-sulfurylase 3 PAPSS 1.5553 0.0096365

Cluster-1975.2031 K13811 hypothetical protein DCAR_027249 PAPSS 5.254 5.9058E-15

Cluster-25056.1 K13811 ATP sulfurylase 2 PAPSS 1.388 0.0054543

Cluster-10657.0 K17069 homocysteine synthase-like MET17 5.3604 0.0031751

https://doi.org/10.1371/journal.pone.0226752.t002

Table 3. Identified metabolite statistics using UPLC-MS/MS analysis.

Compared Samples Num. of Total Identified. Num. of Total significant difference Num. of significant Up Num. of significant down

Se.vs.Mock_pos 858 99 87 12

Se.vs.Mock_neg 916 138 126 12

https://doi.org/10.1371/journal.pone.0226752.t003
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promoted the research of celery growth and breeding. For example, a genomic database of cel-

ery, CeleryDB, was constructed for the convenience of researchers to study celery[32]. Lignin

biosynthesis-related enzymes and simple sequence repeat (SSR) markers were identified using

transcriptome sequencing[33,34]. A total of 71 temperature stress-responsive proteins were

identified through MALDI-TOF-TOF analysis[35]. Transcriptome sequencing has become a

powerful technique for elucidating new genes and their related biochemical pathways in non-

model plants because of its high throughput, low cost and large data output [36]. Metabolo-

mics is a new field in the post-genome era that reveals the changing roles of metabolites in var-

ious tissues [37]. Metabolites are the end products of cellular biological processes, and their

levels can be used as indicators of plant responses to genetic and environmental changes [38].

The combination of transcriptomic and metabolic data is useful for identifying genes that may

be involved in metabolic networks [39]. Se-induced genes were identified in several species

using RNA-seq [40,41], but the genes related to Se uptake, accumulation and tolerance in cel-

ery remain unclear. In the present study, we combined transcriptome and metabolomics anal-

yses to determine the differences in gene transcriptional levels and metabolic pathways

Fig 4. QC sample correlations and principal component analyses (PCAs) of 19 celery samples. QC sample correlation in

electrospray ionization positive (ESI+) (A) and negative (ESI−) modes (B). QC samples were used to determine the instrumental

state before injection and to evaluate the stability of the system during the whole experiment. PCAs of the ESI+ (C) and ESI−(D)

data.

https://doi.org/10.1371/journal.pone.0226752.g004
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between Se-treated and untreated celery. In our study, 50,876 unigenes were generated by Illu-

mina sequencing, of which 36,287 unigenes were annotated by seven databases. Furthermore,

8,907 unigenes were identified as DEGs between Se-treated and untreated celery seedlings. A

total of 1,774 metabolites were successfully obtained by UHPLC-MS/MS, of which 213 were

identified as SDAMs. Our study found that many new genes and metabolites were involved in

many biochemical pathways, including Se tolerance and metabolism.

Se is mainly transported as selenate and selenite through S and P transporters in plants,

respectively. Interestingly, the expression levels of seven phosphate transporters were increased

by selenate, including the phosphate and inorganic phosphate transporters and mitochondrial

phosphate carrier genes. Additionally, the expression levels of three of four sulfate transporters

were increased by selenate (Table 4). Thus, P and S transporters were probably the main path-

ways for the uptake and transport of selenate in celery. Se can form selenocysteine and seleno-

methionine through the S-assimilation pathway[42]. Therefore, we further analyzed the DEGs

associated with sulfur and selenocompound metabolism. ATP sulfurylase (APS), a first and

rate-limiting enzyme, mediates the binding of selenate and ATP to form on adenosine-

Fig 5. Differential metabolites analysis. (A) The PLS-DA score plot shows groupings of Se-treated vs. mock samples in both ESI

+ and ESI− modes. The abscissa represents the score of the sample for the first principal component; the ordinate represents the

score of the sample for the second principal component; R2Y is the interpretation rate of the second principal component of the

model; Q2Y is the prediction rate of the model. (B) Volcanic map of differential metabolites in both ESI+ and ESI− modes. Black

represents metabolites having no significant differences, red represents upregulated metabolites, green represents downregulated

metabolites, and the dot size represents the Variable Importance in the Projection Value. (C). Heat map and cluster analyses of mock

and Se-treated celery varieties at the metabolome level in both ESI+ and ESI− modes. Hierarchical clustering was used to analyze the

differentiated metabolites. The relative quantitative values of differentiated metabolites were transformed into Z values and clustered.

Different color regions represent different clustering information. The metabolic expression patterns within the same group are

similar, which indicates that they may have similar functions or participate in the same biological process.

https://doi.org/10.1371/journal.pone.0226752.g005
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5-phosphoselenate [36]. In the present study, the expression levels of four APS unigenes

increased in celery plants. APS2, a cytoplasmic protein in A. thaliana plays a major role in the

assimilation of selenate [43]. Adenosine-5-phosphoselenate is reduced to selenite by adenylyl-

sulfate reductase.

Plant hormones are particularly important in responses to stresses and in ionic homeostasis

[44–46]. In this study, a large number of DEGs were identified in relation to plant hormones.

Auxin and its related genes are involved in the homeostasis of various ions [47,48]. For exam-

ple, OsABCB14, a rice auxin influx transporter, participates in Fe homeostasis [48]. In Astraga-
lus chrysochlorus (a Se accumulating plant), IAA30-like, ARF2-like and ARF5-like are

upregulated after selenate treatments [41]. Contrary to these results, AUX1 (K13946), TIR1

(K14485) and ARF (K14486) were downregulated by the Se treatment. This is probably

because different plants absorb different amounts of Se and have different metabolic mecha-

nisms. For example, in Arabidopsis, selenate treatments reduce the auxin-reactive protein level

and thus reduce plant development [49], which is consistent with our results. Our physiologi-

cal data showed that the contents of H2O2 and MDA increase under Se treatment. The

increased production of reactive oxygen species results in abscisic acid to playing a more

important role in abiotic stress responses [44]. In addition, these hormones can affect the

absorption and assimilation of S [50], which may help plants prevent Se from replacing S in

proteins [42].

Fig 6. Results of the correlation analysis between DEGs and DAMs. There were 50 of the former and 100 of the latter. Red

represents a positive correlation and blue represents a negative correlation.

https://doi.org/10.1371/journal.pone.0226752.g006
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Based on highly accurate modern MS, the metabonomics analysis method can directly ana-

lyze small molecule metabolites qualitatively and quantitatively, and the activities of gene

expression products can be understood at the metabolic level [51]. Lobinski’s team has con-

ducted in-depth studies on a Se-rich yeast metabolome and established a set of relatively com-

plete analysis methods for the Se metabolome [51–54]. A comprehensive metabolite analysis is

important for describing the final nutritional value of a celery stem. The untargeted

Fig 7. Association analysis of metabolomic and transcriptomic pathways. (A). Analysis of KEGG pathways in the metabolome

and transcriptome. Dots represent metabolic data, and delta signs represent transcribed data. (B). Identification and differential

analysis of the hormonal network between mock and Se-treated celery. Red boxes indicate the predominantly expressed genes in Se-

treated celery. Green boxes indicate the down-regulated genes in Se-treated celery. Yellow boxes represent families that contained

up- and downregulated members. Green circles represent decreasing metabolites.

https://doi.org/10.1371/journal.pone.0226752.g007

Table 4. The DEGs related with phosphate and sulfate transporters.

Gene_id Protein Description log2FC q value

Cluster-23123.0 phosphate transporter PHO1 homolog 3-like isoform X1 -1.5412 0.0059557

Cluster-437.1 phosphate transporter PHO1 homolog 3-like 6.3006 1.17E-23

Cluster-1975.16237 inorganic phosphate transporter 1-4-like isoform X1 3.3445 4.28E-08

Cluster-25918.2 phosphate transporter PHO1 homolog 3-like 3.5771 0.013098

Cluster-350.0 phosphate transporter PHO1 homolog 3-like 5.8071 0.0041555

Cluster-1975.14365 mitochondrial phosphate carrier protein 3, mitochondrial-like 3.8973 9.79E-10

Cluster-17574.0 mitochondrial phosphate carrier protein 2-like 5.1274 0.0023377

Cluster-1975.17837 sulfate transporter 1.3-like 10.262 3.63E-21

Cluster-1975.5238 sulfate transporter 3.4 -2.1611 7.23E-06

Cluster-1833.0 sulfate transporter 3.5 7.1798 0.00049882

Cluster-1975.2010 sulfate transporter 4.1, chloroplastic-like 1.5402 0.035202

https://doi.org/10.1371/journal.pone.0226752.t004
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metabonomics approach provides the opportunity to systematically analyze the metabolic

changes in celery under different treatment conditions. In our study, 1,774 annotated metabo-

lites, which belonged various metabolic pathways, were identified. In total, 10 SDAMs were

classified into four significantly enriched KEGG pathways (P< 0.05), “Metabolism of xenobi-

otics by cytochrome P450,” “Steroid hormone biosynthesis,” “Phenylpropanoid biosynthesis”

and “Biosynthesis of phenylpropanoid.” Phenolic compounds, such as phenylpropanoid and

flavonoids, are the most prominently produced secondary plant metabolites, and they have

antioxidative activities and protect cells from biological and abiotic stresses, including infec-

tion, injury, ultraviolet radiation, ozone, pollutants and herbivores [55–57]. Total flavonoids

was reduced by Se theatment. The changes in these metabolite levels may result from increased

oxidative stress caused by Se stress.

Conclusion

In conclusion, we used transcriptome and non-targeted metabolomic techniques to study dif-

ferences in gene expression and metabolite accumulation-related responses to Se exposure. In

total 8,907 DEGs, including 5,319 up- and 3,588 downregulated genes, were identified. Addi-

tionally, 11 KEGG pathways changed both at transcriptome and metabolic levels under Se-

stress conditions. Plant hormones and phenylpropanoids might play important roles in plants

responses to Se stress.
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